
Synchronization	in	an	OS	
1. Questions	from	reviews:	

a. What	should	be	evaluated?	How	evaluate	a	programming	model?	
2. Context	–	Pilot	development	

a. Authors	were	writing	Pilot	in	Mesa	–	needed	a	way	to	handle	multithreading	
i. For	a	uniprocessor,	with	lots	of	“processes”	==	threads	

b. Written	by	a	bunch	of	“do	the	right	thing”	kind	of	people	
c. Recent	work	by	Per	Brinch	Hanson	and	C.	A.	R.	Hoare	(Tony)	developed	Monitors	

3. What	are	the	problems	they	are	solving?	
a. What	are	the	right	language-level	constructs	for	synchronization?	
b. How	do	you	use	language-level	constructs	for	synchronization	within	an	OS?	

4. Why	is	this	an	OS	and	not	a	PL	problem?	
a. For	30	years,	only	OS	people	had	concurrency	–	between	processes	in	the	kernel.	

Programs	were	almost	all	single	threaded.	
5. Synchronization	Needs	

a. Need	atomicity	
i. Concurrent	updates	without	ordering	required:	
ii. Example:	Credit(),	debit()	

b. Need	ordering:	
i. Make	sure	some	operations	happen	after	others	
ii. Example:	bounded	buffer:	consumer	has	to	run	after	producer	
iii. Initialization:	start	threads,	they	all	wait	for	initialization	to	complete	

before	proceeding	
6. What	makes	this	an	interesting	problem?	

a. Granularity	
i. Fine-grained	locking	needed	for	scalable	performance	on	a	

multiprocessor	(see	thread	alternatives)	
ii. Fine-grained	locking	needed	for	responsiveness	on	a	uniprocessor	
iii. Fine-grained	locking	is	hard	to	get	right	

1. Why?	
a. Must	acquire	locks	in	canonical	order	to	avoid	deadlock	
b. Example:	back	balance	transfer:	
c. Transfer	(queue	x,	queue	y,		Obj	elem)	{	

		x.lock();	
		y.lock();	
		x.dequeue(obj);	
		y.enqueue(obj);	
		y.unlock();	
		x.unlock();	

d. Can	cause	deadlock	if	called	with	transfer(x,y,z)	and	(y,x,w)	
iv. Coarse-grained	locking	scales	poorly	



1. Can	have	many	unrelated	objects	protected	by	one	lock;	e.g.	a	
lock	on	all	open	files	

2. Could	have	a	lock	per	file	
b. Expressing	“conditional	synchronization”:	

i. Want	to	sometimes	wait	for	something	specific	to	happen	
ii. Example:	

1. Wait	for	a	buffer	to	be	full	or	empty	
2. Wait	for	a	bunch	of	workers	to	complete	
3. Wait	for	readers	to	finish	before	writing	

iii. Need	to	express	what	the	“condition”	is	being	waited	for,	need	to	detect	
when	the	condition	becomes	true	

c. OS	needs	more	than	critical	sections/mutual	exclusion;	needs	ability	to	wait	for	
things	and	wakeup	

i. How	do	you	make	sure	you	get	notified	when	to	wake	up?	
if	(queue_empty)	
		wait_for_data();	
process_data();	

d. Programmers	want	simple	ways	to	do	asynchronous	tasks.	
i. Synchronous	version:	

1. Buffer	=	readline(terminal)	
ii. In	mesa:	

1. p	=	FORK	readline(terminal)	
2. Buffer	=	join	p	

iii. Complex	semantics:	
1. What	if	terminal	(input	parameter)	changes	after	fork?	

a. Does	new	thread	make	a	copy,	or	have	reference	to	the	
original	one	that	changed?	

b. In	C	–	pointers	to	local	variables	on	the	stack	may	get	
overwritten	when	procedure	returns.	

iv. Detaching	a	thread	
1. Detach	p	à	nobody	will	wait	for	p	
2. Race	conditions	around	data	used	in	p	and	in	other	thread:	

a. X	=	malloc()	
b. P	=	fork	f(x);	
c. Detach	p	
d. When	is	it	safe	to	free	x?	

i. Answer:	f(x)	has	to	free	x	(or	GC)	
v. 	

e. Composability	
i. What	if	you	have	code	like	this:	

f()	{	
			lock(x);	
			a();	
			unlock(x);	



}	
g()	{	
			lock(x);	
			b();	
		unlock(x);	
}	
	
a()	{	
	
			if	(no_data)			wait();	
}	
b()	{	
		no_data	=	FALSE;	
}	

ii. Critical	to	(a)	allow	blocking	in	a	critical	section	for	composability,	but		
conditional	synchronization	puts	limits	on	it	

1. an	never	set	no_data	to	false	
f. Correctness	

i. Easy	to	forget	to	lock	things	
1. E.g.	failure	to	lock	when	updating	shared	state	

ii. Easy	to	forget	to	unlock	things:	
1. Lock(x);	

	if	(do_something(x)	==	EFAIL)	{	
		return(EFAIL);	
…	
unlock(x)	

a. 	
g. Priorities	

i. May	have	different	priorities;	need	to	ensure	liveness	
ii. E.g.	priority	inversion:	

1. Low_priority:	lock(x)	à	success	
high_priority:lock(x)	à	block	
medium_priority:	execute	something	
	

2. Result:	high	priority	code	is	blocked	by	low	priority	code,	which	is	
blocked	by	medium	priority	

h. Interacting	with	hardware	
i. Want	to	execute	code	in	response	to	hardware	events	(interrupts)	
ii. How	does	this	interact	with	running	code	in	a	critical	section?	

1. Pre-empt	code	and	run	new	code?	May	be	unsafe;	should	disable	
interrupts	

iii. Schedule	some	code	to	run	later?	
7. Earlier	solutions	

a. Semaphores:	too	naked	



i. Easy	to	get	wrong,	forget	to	signal	or	wait,	etc.	
ii. Example:	

1. semaphore fillCount = 0; // items produced 
2. semaphore emptyCount = BUFFER_SIZE; // remaining 

space 

3.  
4. procedure producer() { 
5.     while (true) { 
6.         item = produceItem(); 
7.         down(emptyCount); 
8.         putItemIntoBuffer(item); 
9.         up(fillCount); 
10.     } 

11. } 

12.  

13. procedure consumer() { 

14.     while (true) { 

15.         down(fillCount); 

16.         item = removeItemFromBuffer(); 

17.         up(emptyCount); 

18.         consumeItem(item); 

19.     } 

20. } 

	

b. Conditional	critical	region	–	early	70’s	approach	
i. Attach	“regions”	to	code/data	(a	lock)	
ii. Basic	critical	regions	for	locking:	

1. with	R	do	{	
a. code	

2. }	
3. Like	a	java	synchronized	statement	

iii. Conditional	critical	regions:	waiting	for	things	to	happen	
1. with	R	when	(!buffer_empty)	do	{	
2. 		do_work();	
3. }	

4. int Count = 0; // items produced 
5. int BUFFER_SIZE; // remaining space 
6.  
7. procedure producer() { 



8.     while (true) { 
9.         item = produceItem(); 
10.   with R when (count < BUFFER_SIZE0) { 

11.         putItemIntoBuffer(item); 

12.         Count++; 

13.   } 

14. } 

15.  

16. procedure consumer() { 

17.     while (true) { 

18.         with R when (count > 0) { 

19.             item = removeItemFromBuffer(); 

20.             count--; 

21.         } 

22.         consumeItem(item); 

23.     } 

24. } 

25. 	
iv. Implementation:	

1. Re-evaluate	predicate	after	anyone	leaves	the	region,	decide	who	
to	take	

v. Issues:		
1. a	bit	complex	to	re-evaluate	after	every	region	entry,	could	be	

slow	
2. cannot	do	any	work	before	waiting	

c. Windows	events	
i. Usage:	

1. setEvent()	
2. WaitForSingleObjects()	to	wait	for	it	
3. Manual	reset	–	have	to	be	rest	

a. Good	to	wait	for	something	to	start,	that	happens	just	
once	

4. Automatic	reset	–	resets	when	someone	wake	up	on	it	
a. Can	be	used	for	bounded	buffer	or	to	wake	up	a	single	

thread	to	respond	to	something	
b. No	queue	(unlike	a	semaphore);	does	not	remember	

history	
5. No	atomicity	for	modifying	something	then	signaling	

a. Need	to	guarantee	when	signaling	waker	will	see	change	
8. Monitor	solution	

a. Tie	locking	to	language,	so	it	gets	used	in	the	right	places	



i. Monitor	==	class	
ii. Entry	procedure		

1. Public	member	function	
2. acquire	lock	on	entry	

iii. Internal	procedure	==	private	member	function	
iv. Public	procedure	==	no	acquire	lock	on	entry	

b. Useful	sync.	Operations	–	powerful	
i. Wait	=	release	lock,	wait	for	a	condition	variable	to	be	“notified”	
ii. Notify	=	a	hint,	that	a	logical	condition	may	have	become	true	

1. QUESTION:	Why	relax	semantics	over	Hoare,	where	it	was	
guaranteed?	

2. A:	efficiency,	not	need	to	do	scheduling	
3. A:	simpler	implementation	
4. A:	more	general;	can	do	broadcast	
5. A:	more	general:	can	have	one	condvar	for	all	conditions	(see	

Java)	as	long	as	you	broadcast…	
c. Invariants	

i. Monitors	have	a	data	consistency	rule	that	can	must	be	true	when	
unlocked	

1. Example:	doubly-linked	list	is	well	formed	
2. Sum	of	accounts	in	a	bank	must	equal	total	money	

ii. 	Rule:	monitor	invariant	true	whenever	lock	released	
1. When	leaving	
2. When	waiting	(more	later)	
3. Relies	on	programmer	to	enforce	monitor	invariant	

d. Why	use	monitors?	
i. Provides	both	mutual	exclusion	and	signaling	
ii. Provides	abstraction	&	correctness	at	programming	level	

e. Question:	what	is	correctness	criteria	for	waiting?	
i. Mesa:	If	a	thread	is	waiting,	it	will	get	woken	up	
ii. Compare	to	locks:	will	wake	exactly	1	thread,	no	spurious	wakeups	
iii. NOTE:	correct	implementation	of	wait()	=	sleep();		

9. Hoare	Monitor	Comparison	
a. Rule:	waiters	run	immediately	when	signal()	is	called	

i. Must	establish	monitor	invariant	
ii. Must	ensure	“condition”	is	true	

b. Example:	
i. Monitor	bounded	buffer	

1. Int	buf[100]	
2. Int	size=0;	
3. Cond_var	not_full,	not_empty;	
4. Entry	put_in_buff(data)	

a. If	(size	==	100)	wait	(not_full)	
b. Add_to_buf(data)	



c. Signal(not_empty);	
5. Entry	get_from_buff(data)	

a. If	(size	==	0)	wait	(not_empty)	
b. Pull_from_buf(data)	
c. Signal(not_full)	

ii. How	implement?	Sempahores	
1. Monitor	semaphore:	used	on	normal	entry/exit	(no	signals)	
2. Urgent	semaphore:	used	when	signaling	thread	
3. Condvar	semaphore:	used	when	waiting	on	a	condition	variable	
4. Wait:	

a. Waiters++;	
b. If	(urgents)	

i. Signal(urgent_sem)	
c. Else	signal(monitor_sem)	
d. Wait(condvar_sem)	
e. Waiter--;	

5. Signal:	
a. If	(waiters	!0)	

i. Urgents++;	
ii. Signal(condvar_sem);	
iii. Wait(urgent_sem);	
iv. Urgents--;	

6. Exit:	
a. If	urgents	!=	0	

i. Signal(urgent_sem);	
b. Else	signal(monitor_sem);	

iii. How	good	is	this?	
1. Key	problem:	signaling	requires	extra	context	switches	(signaler	

has	to	wait	to	exit	monitor	until	signaled	runs	and	returns)	
2. Key	problem:	require	a	1-1	mapping	of	condition	variables	to	real	

“conditions”	(things	in	if-clause	before	signal)	
a. Waiters	don’t	check	to	see	if	true,	so	must	be	guaranteed	

to	be	true	
b. Cannot	“broadcast”	and	wake	up	many	waiters	and	have	

them	figure	out	which	ones	can	proceed	
10. Mesa	Monitors	

a. Wait	happens	in	a	loop	
i. Always	check	for	condition	to	become	true	
ii. Solves	preceding	two	problems	

b. Is	a	hint	
i. Means:	correct	implementation	is:	

1. unlock	
2. lock	

ii. Can	just	release	lock	to	let	someone	else	run	and	return	immediately	 	



1. Called	a	“spurious	wakeup”	
iii. Simplifies	implementation	

1. If	might	have	been	woken,	always	save	to	return	immediately	just	
in	case	

iv. Can	wake	someone	waiting	on	the	lock	rather	than	the	condition	variable	
v. Implementation:	on	signal,	move	waiting	thread	from	queue	for	condvar	

to	queue	for	lock	
c. Can	broadcast	

i. Wake	up	many	threads,	let	them	decide	which	should	execute	
1. E.g.	thread	waiting	for	enough	memory	–	it	can	check	if	there	is	

enough.	
ii. WHY	IMPOSSIBLE	WITH	HOARE	MONITORS?	

1. Hard	to	guarantee	condition	is	true	when	every	thread	awakes	
iii. Can	use	“covering	condition”	–	something	more	relaxed	

1. E.g.	x	>	0	rather	than	x	>	2	
11. Why	monitors	help?	

a. What	does	it	make	easier?	
i. Tend	to	use	locking	in	the	right	places;	can’t	access	private	data	without	

lock	
ii. Tend	to	release	locks	appropriately	(automatic	when	exit	monitor)	

b. Monitors	enforce	abstraction,	but	not	a	protocol	
i. E.g.	can	call	functions	out	of	order	
ii. Motivates	need	for	Singularity	contracts	

c. Can	use	with	Groups	of	objects	(as	compared	to	a	single	instance	of	a	class)	
i. Monitored	Records	(can	skip)	

1. Basically	allow	explicitly	saying	what	object	you	are	synchronizing	
on	(e.g.	java	synchronized(object)	

2. Compiler	emits	code	to	acquire/release	lock,	monitored	record	
says	what	object	to	lock	on.	

3. Imagine	a	table	of	locks,	one	for	each	object/address	
d. 	

12. Extensions:	
a. Time	out	

i. can	wake	up	after	a	period	
ii. Works	because	calling	thread	has	to	check	condition;	can	check	timeouts	

also	
b. Abort	

i. Can	wake	up	a	sleeping	thread	and	tell	it	to	abort	
ii. Not	delivered	to	running	threads;	next	time	it	waits	it	gets	abort	

exception	
iii. Safe	to	wake	thread	–	not	in	the	middle	of	executing	

c. Exceptions	
i. What	happens	if	exception	happens	in	or	below	monitor?	

1. Cannot	automatically	return:	would	not	restore	monitor	invariant	



ii. Choices:	
1. abort	thread	
2. Return	but	leave	lock	held	
3. Make	monitor	handle		

a. Consequence:	monitors	cannot	pass	along	exceptions	from	
below	

4. Mesa	choice:	
a. Handler	runs	with	monitor	lock	held;	acts	like	a	call	out	
b. Return_with_error()	exits	the	monitor	first	then	throws	

exception	
13. Where	not	help?	

d. Modifying	groups	of	objects	at	once	
i. May	have	problems	if	you	have	to	manipulate	more	than	one	at	a	time:	

a. Transfer(obj	a,	obj	b,	int	x)	
i. A.transfer(b,	x)	

1. A.debit(x);	
2. B.credit(x)	

b. If	Transfer()	is	an	entry	procedure,	Will	deadlock	if	called	
on	(a,b,x)	and	(b,a,x)	simultaneously	

c. If	transfer()	is	not,	does	not	guarantee	atomicity	–	another	
thread	could	see	a	balance	of	zero	for	A	and	B	

14. Central	problem	in	conditional	synchronization:	modularity	
a. Consider	a	world	of	objects/modules		
b. Would	like	a	function	to	be	able	to	safely	call	into	any	other	function	while	inside	

a	monitor/entry	procedure	
i. Not	want	to	know	about	implementation	
ii. Not	want	to	know	about	internal	synchronization	

e. What	is	the	problem?	
i. What	if	it	holds	a	lock?		

1. Only	if	it	calls	back	into	caller	(callback)	–	leads	to	deadlock	
2. Fortunately,	fairly	rare	in	general	purpose	code,	as	leads	to	cyclic	

dependencies	
3. Can	it	happen	in	an	OS?	

a. VM	and	FS	both	call	into	each	other	during	memory	
mapping	files	

ii. What	if	callee	module	blocks	on	a	condition	
1. Release	callee’s	lock	only,	not	callers.	No	new	threads	into	calling	

module	
2. 	

f. What	is	the	right	thing	to	do?	
i. Release	lock	on	call	out?	

1. No:	programmer	must	know	of	caller	will	block	
ii. Prevent	calls	out?	

1. Too	restrictive	



iii. Hold	lock?	
1. O.k.,	but	must	make	sure	callee	doesn’t	wait	for	something	

blocked	by	caller	
2. E.g.:	all	entrees	to	callee	go	through	caller	
3. E.g.	callee	calls	back	to	caller	monitor	

g. Modern	solution	(more	on	Thursday):	transactions	
i. Abort	caller,	rollback	any	changes,	retry	when	necessary	condition	holds	

(see	“conditional	critical	regions”	above)	
2. Extending	monitors	to	the	hardware	

a. Cool	feature:	no	interrupts;	instead	hardware	raises	a	condition	
i. Move	interrupt	handler	to	ready	Q	

WHILE	(buffered_packets	==	0)	
				WAIT	(packet_cond);	
process_next_packet	();	

b. Cool	feature:	on	every	cycle,	hardware	checks	if	there	is	a	higher-priority	process	
to	run,	and	switches	if	so	(~70	cycles)	

i. Makes	sure	that	high	priority	interrupt	handlers	run	right	away	
c. Naked	notify:	

i. Call	notify	while	not	holding	lock	
ii. Problem	with	naked	notify	

1. Thread	can		test	condition,	do	a	wait()	but	signal	comes	in	
between	the	test	and	the	wait,	so	it	is	never	received.		

2. Normally,	monitor	lock	prevents	this	
iii. Problem:	don’t	want	hardware	to	take	locks,	so	may	signal	without	

acquiring	lock	
iv. Solution:	wakeup-waiting	switch	

1. Provides	some	history	to	a	condition	variable,	so	it	stays	signaled	
2. Single	bit	per	process.		0	means	WAIT	acts	as	usual,	1	means	WAIT	

turns	bit	back	to	0	but	never	goes	to	sleep	
3. Device	must	set	wakeup-waiting	bit,	then	NOTIFY	driver	
4. Ensures	that	notify	is	sticky;	a	subsequent	wait()	will	not	stop	

v. SHOW	EXAMPLE	
d. Comparison	to	locks	+	condition	variables	

i. QUESTION:	What	does	language	integration	buy	you?	
1. Consider	Java	notify/notify	all	
2. Less	likely	to	forget	to	hold	a	lock	
3. Locks	are	visible	to	compiler,	so	they	can	make	optimizations	

about	code	while	lock	is	held	
4. Loss	of	flexibility	–	may	want	explicit	locks,	but	locks	are	tied	to	

procedures	
3. Transactional	Memory		

a. What	do	locks	give	you?	
i. Atomicity:	entire	critical	section	is	executed	as	a	chunk	from	perspective	

of	other	threads	



ii. Isolation:	don’t	see	intermediate	states	of	a	thread	in	a	critical	section	
b. Problems:	

i. Deadlock:	acquire	locks	out	of	order	
ii. Wrong	lock:	acquiring	correct	lock	for	data	(see	eraser)	
iii. Lock	granularity:	

1. Fine	grain	–	lots	of	time	spent	locking/unlocking,	likely	deadlock	
2. Coarse	grain	–	easy,	correct,	but	low	concurrency	with	many	

processors	
c. Transactional	memory:	allow	programmer	to	declare	regions	“atomic”	

i. No	associating	locks	with	code/data	
1. Just	annotate	code	that	should	be	executed	atomically	

ii. Provides	atomicity:	executes	either	all	the	way	to	the	end	or	not	at	all	
1. Either	acquire	all	locks	first,	so	can	execute	to	end	without	

waiting,	or	speculate	and	abort	if	got	it	wrong	
iii. Provides		isolation:	internal	state	not	visible	

1. Detect	concurrent	memory	accesses	from	transactions	in	other	
threads	

2. Stall/abort/wait	on	lock	if	someone	tries	to	access	same	data	
iv. Automatically	detects	conflicts	

1. Value	written	by	one	transaction	is	read/written	by	another	
transaction	

2. Prevents	serializability:	execution	as	if	a	global	lock	held	for	
duration	of	transaction	

3. Solution	is	to	abort	one	of	the	two	transactions	
v. How	works?	

1. Eager	system:	tm	writes	to	memory,	stores	old	value	somewhere	
else.	On	coherence	requests	from	other	processors,	checks	
whether	access	is	to	something	accessed	by	the	local	transaction	

2. Lazy	system:	memory	is	unchanged,	new	values	buffered	
elsewhere.	Subsequent	reads	must	check	elsewhere	for	data.	At	
commit,	broadcast	set	of	locations	read/written,	all	conflict	
transactions	abort.	

vi. Tradeoff:	
1. Memory	for	time;	buffers	state	in	memory	for	atomicity	to	solve	

deadlocks.	
vii. Compared	to	locks:	

1. Only	detects	conflicts	when	two	threads	access	the	same	memory	
locations	

a. Like	a	perfectly	fine-grained	lock;	only	protects	memory	
actually	accessed		

2. No	need	to	select	the	lock	to	protect	data;	always	detects	
concurrent	access	to	same	memory	locations	

viii. Example:	
1. Transfer(queue	x,	queue	y,	obj	z)	{	



			begin_tx	
						x.remove(z);	
						y.add(z);	
			end_tx;	

2. What	happens	if	called	on	(x,y)	and	(y,x)?	
a. System	detects	a	conflict,	aborts	one	of	them	

3. What	if	called	on	(x,y)	and	(a,b)?	
a. Can	execute	in	parallel	(fine	grained	locking)	

ix. Contention:	what	happens	when	applications	conflict?	
1. Contention	manager	(in	hw?)	applies	a	policy	to	decide	which	

transaction	gets	to	keep	executing.		
2. Common	policies:	

a. Oldest	wins:	ensures	liveness	
b. Committer	wins:	only	detect	at	commit,	long	tx	gets	

starved	
c. SizeMatters:	tx	that	has	read/written	more	data	wins	

d. What	does	it	make	easier?	
i. No	longer	remember	which	lock	protects	which	data	

1. Only	use	transactions	
ii. No	longer	have	to	create	lots	of	locks	

1. Write	coarse	grained	locks,	get	benefit	of	fine-grained	locks	
2. Just	transactions	

iii. Avoid	the	cost	of	acquiring/releasing	a	lock	
1. Atomic	instructions	are	expensive	

iv. No	deadlock	between	pure	transactions	
1. Detected	by	TM	system,	resolved	automatically	by	abort	
2. If	call	from	tx	1	into	tx2,	which	calls	back	into	code	accessing	data	

from	tx1,	what	happens?	
a. F()	{	

		begin_tx;	
				x	=	1;	
				A();	
		end_tx;	
}	
A()	{	
		begin_tx;	
		G();	
		end_tx;	
}	
G()	{	
		x	=	2;	
}	

b. In	a	monitor,	this	will	deadock	when	recursively	acquiring	
monitor	lock	



c. With	a	transaction,	this	is	just	fine	
v. What	happens	instead	of	deadlock?	

1. Aborts	
vi. What	happens	where	you	might	have	lock	contention?	

1. Repeated	aborts;	even	worse	than	lock	contention	
4. TM	Implementation	

a. Hardware:	
i. Save	registers	
ii. Buffer	state	accessed	by	a	transaction	in	cache	
iii. Detect	coherence	request	from	another	core	as	a	conflict,	abort	

transactions	in	either	thread	
iv. Note:	faster	than	locks	(no	atomic	instructions)	

b. Software	
i. Instrument	code	to	note	begin/end	of	transaction	

1. Save	registers	
ii. Note	all	memory	accesses	and	record	
iii. Compare	accesses	against	concurrent	transactions	from	other	threads	

1. On	conflict,	abort	one	transaction	
iv. Note:	3-10x	slower	than	normal	code	

c. What	gets	harder?	
i. High	contention:	rather	than	queuing,	tx	all	try,	get	aborted,	restart	

1. May	have	mutual	death	
2. May	have	backoff	(Ethernet	style)	to	make	progress,	causing	

longer	delays	
ii. Dealing	with	non-transactional	code	

1. System	calls	
2. I/O	

a. 	
iii. Synchronization	

1. How	do	you	deal	with	waiting,	signaling?	
2. A:	no	answer	–	doesn’t	help	

iv. Modularity/correctness	
1. Not	much	better	than	locks	
2. Can	enforce	in	language	to	be	lexically	scoped,	to	ensure	you	end	

transaction	
3. Take	away	points	

d. Synchronization	is	hard	
e. Important	issues	are:	

i. Granularity	
ii. Priority	
iii. Composition	
iv. Synchronization	

f. There	is	no	free	bullet	


