
Transactions	for	Concurrency	
	

1. Problem:	
a. Locks	are	hard	to	use,	not	always	available	

i. Example:	across	system	calls	
2. Problem	within	an	OS:	

a. Two	classes	of	problems:	in	mutual	exclusion	
i. Concurrency/isolation	

1. Want	to	hide	updates	until	complete	
ii. Atomicity	

1. Want	updates	to	persistent	state	to	be	complete	or	not	happen,	
e.g.	across	a	failure	

b. Atomic	update	to	multiple	files	
i. Add	user	to	both	/etc/shadow,	/etc/passwd	
ii. If	login	between	two	changes,	could	get	incorrect	information	
iii. If	system	crashes	between,	left	with	inconsistent	state	that	needs	to	be	

detected	and	repaired	
c. Atomic	check	permissions	and	open:	

i. Servers	do	setuid(user),	access(filename),	setuid(0),	open()	to	check	if	a	
caller	has	access	to	a	file	

1. Is	possible	to	rename	the	file	between	the	access()	call	and	the	
open()	call	via	symbolic	link	to	some	system	file	like	/etc/shadow	

d. More	general	file	updates	
i. Install	application	–	want	all	or	nothing	
ii. Update	website	–	want	all	files	update	or	none	when	some	goes	there	(if	

live)	
3. General	solution:	Transactions	

a. Designed	for	fault	tolerance:	reason	about	state	of	system	after	a	failure	
i. Key	property:	atomicity,		

1. Atomicity	means	either	the	whole	set	of	operations	happened	
successfully,	or	none	of	the	operations	took	place	

2. No	clean	up	code	needed	
3. Typically	mplemented	via	logging	operations	during	transaction	

a. Redo	after	commit	if	not	complete	
b. Undo	after	failure	it	not	complete	

ii. Key	property:	isolation	
1. Isolation	means	intermediate	state	not	visible	to	other	entities	

(could	be	threads,	processes,	transactions)	
2. Key	rule:	two	conflicting	transactions	cannot	overlap	

a. Access	same	location	in	memory,	one	is	a	write	
b. E.g.	allow	readers/writers	locks	or	mutex	locks.	

3. Implemented	via;	
a. Locks:	lock	data	when	modifying	it,	block	others	from	

seeing	it	until	commit/abort	



b. Speculation:	make	a	copy	of	the	data,	only	modify	the	
copy,	make	copy	visible	(“publish”)	on	commit	

4. “strong	isolation”	–	prevent	access	from	other	transactions	and	
code	outside	a	transaction	

5. “Weak	isolation”	–	only	prevent	conflicting	access	from	other	
transactions.	

6. “Serializability”	–	outcome	of	transactions	that	overlap	is	
equivalent	to	executing	them	in	some	serial	order	

a. “serializing”	means	executing	transactions	in	an	order,	
rather	than	concurrently	

iii. Consistency:	really	an	application	property	–	it	needs	to	ensure	invariants	
hold	at	end	of	transaction	

iv. Durability:	effects	of	a	transaction,	if	committed,	will	survive	a	crash	
1. Implies	saved	on	disk	
2. Not	always	needed	

4. Transactional	memory	
a. Use	isolation	properties	of	transactions	instead	of	locks	
b. Two	key	needs:	

i. Version	control:	
1. Need	to	keep	both	old	version,	for	abort,	and	new	version,	for	

commit	
2. Can	do	eagerly:	update	in	place,	store	old	version	someplace	else	
3. Can	do	lazily:	update	someplace	else,	write	back	on	commit	

a. Eager:	faster	commit,	slower	abort	
b. Lazy:	faster	abort,	slower	commit	

ii. Conflict	detection	
1. Need	to	detect	when	two	threads/transaction	are	modifying	the	

same	state	
2. Can	do	it	pessimistically/eagerly:	acquire	locks	as	execute	

transaction	to	block	other	threads	
a. On	a	conflict,	stall	one	transaction,	or	if	a	deadlock,	abort	

one	transaction	to	let	other	continue	
3. Can	do	it	optimistically:	acquire	locks	when	ready	to	commit,	do	

commit,	release	locks	
a. First	to	commit	makes	all	other	transactions	accessing	the	

same	data	abort	
c. Benefits:	

i. Not	need	to	assign	locks;	automatically	“locks”	just	the	locations	accessed	
ii. No	deadlock:	will	abort	&	retry	if	would	deadlock	
iii. Concurrent	execution	for	non-conflicting	transactions	

1. Like	fine-grained	locks,	but	easy	of	coarse-grained	locking	
d. Implementation:	

i. Hardware:		
1. Version	management	:	buffer	new	state	in	cache	



2. Isolation:	abort	transaction	if	another	thread	tries	to	access	state	
accessed	by	a	transaction	in	a	conflicting	way	

ii. Software:	
1. Instrument	loads/stores	
2. Keep	table	of	memory	locations	referenced	for	conflict	detection	
3. Keep	log	of	locations	accessed	for	atomicity	

5. Transactional	Memory		
a. What	do	locks	give	you?	

i. Atomicity:	entire	critical	section	is	executed	as	a	chunk	from	perspective	
of	other	threads	

ii. Isolation:	don’t	see	intermediate	states	of	a	thread	in	a	critical	section	
b. Problems:	

i. Deadlock:	acquire	locks	out	of	order	
ii. Wrong	lock:	acquiring	correct	lock	for	data	(see	eraser)	
iii. Lock	granularity:	

1. Fine	grain	–	lots	of	time	spent	locking/unlocking,	likely	deadlock	
2. Coarse	grain	–	easy,	correct,	but	low	concurrency	with	many	

processors	
c. Transactional	memory:	allow	programmer	to	declare	regions	“atomic”	

i. No	associating	locks	with	code/data	
1. Just	annotate	code	that	should	be	executed	atomically	

ii. Provides	atomicity:	executes	either	all	the	way	to	the	end	or	not	at	all	
1. Either	acquire	all	locks	first,	so	can	execute	to	end	without	waiting,	

or	speculate	and	abort	if	got	it	wrong	
iii. Example:	

1. Transfer(queue	x,	queue	y,	obj	z)	{	
			begin_tx	
						x.remove(z);	
						y.add(z);	
			end_tx;	

2. What	happens	if	called	on	(x,y)	and	(y,x)?	
a. System	detects	a	conflict,	aborts	one	of	them	

3. What	if	called	on	(x,y)	and	(a,b)?	
a. Can	execute	in	parallel	(fine	grained	locking)	

d. 	
e. Implementation	

i. Version	control:	for	atomicity/aborts/deadlock	
1. Need	to	keep	both	old	version,	for	abort,	and	new	version,	for	

commit	
2. Can	do	eagerly:	update	in	place,	store	old	version	someplace	else	
3. Can	do	lazily:	update	someplace	else,	write	back	on	commit	

a. Eager:	faster	commit,	slower	abort	
b. Lazy:	faster	abort,	slower	commit	

4. 	



ii. Provides	isolation:	internal	state	not	visible	
1. Detect	concurrent	memory	accesses	from	transactions	in	other	

threads	
2. Stall/abort/wait	on	lock	if	someone	tries	to	access	same	data	

iii. Automatically	detects	conflicts	
1. Value	written	by	one	transaction	is	read/written	by	another	

transaction	
2. Prevents	serializability:	execution	as	if	a	global	lock	held	for	

duration	of	transaction	
3. Solution	is	to	abort	one	of	the	two	transactions	

iv. Conflict	detection	
1. Need	to	detect	when	two	threads/transaction	are	modifying	the	

same	state	
2. Can	do	it	pessimistically/eagerly:	acquire	locks	as	execute	

transaction	to	block	other	threads	
a. On	a	conflict,	stall	one	transaction,	or	if	a	deadlock,	abort	

one	transaction	to	let	other	continue	
3. Can	do	it	optimistically,lazily:	acquire	locks	when	ready	to	

commit,	do	commit,	release	locks	
a. First	to	commit	makes	all	other	transactions	accessing	the	

same	data	abort	
v. Tradeoff:	

1. Memory	for	time;	buffers	state	in	memory	for	atomicity	to	solve	
deadlocks.	

vi. Compared	to	locks:	
1. Only	detects	conflicts	when	two	threads	access	the	same	memory	

locations	
a. Like	a	perfectly	fine-grained	lock;	only	protects	memory	

actually	accessed		
2. No	need	to	select	the	lock	to	protect	data;	always	detects	

concurrent	access	to	same	memory	locations	
vii. Contention:	what	happens	when	applications	conflict?	

1. Contention	manager	(in	hw?)	applies	a	policy	to	decide	which	
transaction	gets	to	keep	executing.		

2. Common	policies:	
a. Oldest	wins:	ensures	liveness	
b. Committer	wins:	only	detect	at	commit,	long	tx	gets	

starved	
c. SizeMatters:	tx	that	has	read/written	more	data	wins	

f. What	does	it	make	easier?	
i. No	longer	remember	which	lock	protects	which	data	

1. Only	use	transactions	
ii. No	longer	have	to	create	lots	of	locks	

1. Write	coarse	grained	locks,	get	benefit	of	fine-grained	locks	



2. Just	transactions	
iii. Avoid	the	cost	of	acquiring/releasing	a	lock	

1. Atomic	instructions	are	expensive	
iv. No	deadlock	between	pure	transactions	

1. Detected	by	TM	system,	resolved	automatically	by	abort	
2. If	call	from	tx	1	into	tx2,	which	calls	back	into	code	accessing	data	

from	tx1,	what	happens?	
a. F()	{	

		begin_tx;	
				x	=	1;	
				A();	
		end_tx;	
}	
A()	{	
		begin_tx;	
		G();	
		end_tx;	
}	
G()	{	
		x	=	2;	
}	

b. In	a	monitor,	this	will	deadock	when	recursively	acquiring	
monitor	lock	

c. With	a	transaction,	this	is	just	fine	
v. What	happens	instead	of	deadlock?	

1. Aborts	
vi. What	happens	where	you	might	have	lock	contention?	

1. Repeated	aborts;	even	worse	than	lock	contention	
6. TM	Implementation	

a. Hardware:	
i. Save	registers	
ii. Buffer	state	accessed	by	a	transaction	in	cache	
iii. Detect	coherence	request	from	another	core	as	a	conflict,	abort	

transactions	in	either	thread	
iv. Note:	faster	than	locks	(no	atomic	instructions)	

b. Software	
i. Instrument	code	to	note	begin/end	of	transaction	

1. Save	registers	
ii. Note	all	memory	accesses	and	record	
iii. Compare	accesses	against	concurrent	transactions	from	other	threads	

1. On	conflict,	abort	one	transaction	
iv. Note:	3-10x	slower	than	normal	code	

c. What	gets	harder?	
i. High	contention:	rather	than	queuing,	tx	all	try,	get	aborted,	restart	



1. May	have	mutual	death	
2. May	have	backoff	(Ethernet	style)	to	make	progress,	causing	

longer	delays	
ii. Dealing	with	non-transactional	code	

1. System	calls	
2. I/O	

a. 	
iii. Synchronization	

1. How	do	you	deal	with	waiting,	signaling?	
2. A:	no	answer	–	doesn’t	help	

iv. Modularity/correctness	
1. Not	much	better	than	locks	
2. Can	enforce	in	language	to	be	lexically	scoped,	to	ensure	you	end	

transaction	
3. Take	away	points	

7. System	transactions	
a. Overview:	

i. Big	picture:	apply	transactions	to	system	calls	and	kernel	state	
1. Abort/block	conflicting	accesses	while	transaction	in	progress	
2. Intuition:	most	system	calls	execute	like	mini	1-operation	

transactions	
a. E.g.	two	processes	try	to	create	a	file	with	the	same	name	

ii. Only	applies	to	system	state	
1. Aborts	do	not	roll	back	user-level	state	

iii. Not	safe	to	communicate	two-ways	
1. Outside	entity	learns	of	state	inside	transaction,	cannot	roll	back	

or	might	deadlock	waiting	for	response	
b. General	idea	

i. Buffer	modifications	in	transaction-local	structures	until	commit	(“lazy	
version	management”)	

1. Example:	file	write	:	data	goes	to	buffer	
c. Implementation	

i. Version	management	
1. Multiple	versions	can	exist	
2. Create	private	copy	–	a	shadow	–	when	accessed	

a. All	subsequent	system	calls	access	shadow	–	protect	
against	external	change	

3. Split	objects	into	headers	and	data	
a. Header	is	stable	–	destination	of	pointers,	identity	

information	(inode	number)	
b. Data	is	versioned	
c. Code	that	needs	versioned	data	takes	a	diferent	type;	

identifyable	statically	in	compiler	
d. Split	data	portion	of	an	object	if	has	disjoint	use	



i. Inode	metadata	has	both	mapping	information	and	
owner/access	time/permissions	

4. Support	read-only	objects	to	avoid	expensive	copies;	code	has	to	
guarantee	it	will	never	be	written	

ii. Isolation/conflict	detection	
1. Need	to	record	who	is	using	an	object	in	a	transaction	

a. Embed	on	object	header	–	tx_data	field	
b. Existence	of	a	list	of	readers	or	a	writers	could	trigger	a	

conflict	
2. Use	normal	locks	to	detect	conflicts	with	non-tx	code	

a. Tries	to	get	lock	while	TX	in	progress	
3. Resolving	conflicts	

a. Go	by	OS	priority	to	prefer	high-prio	threads,	or	by	older	
TX	(to	assure	progress)	

b. For	non-tx	code,	use	preemption	to	suspend	non-tx	thread	
until	tx	completes	

iii. Aborts	
1. Can	abort	back	to	beginning	of	a	system	call	(before	anything	

modified)	by	storing	registers	there	
a. Discard	shadow	objects	

iv. Commits	
1. Defer	some	operations	until	commit	

a. Free	memory	–	may	need	it	back	if	abort	
b. Notify	of	file	change	–	inotify,	dnotify	

i. Only	on	commit	does	it	become	permanent	
c. Store	a	list	of	deferred	operations	–	“commit	handlers”	to	

run	at	commit	
2. Protocol	

a. Go	through	all	objects,	get	kernel	lock	protecting	object	
b. If	get	all	locks,	can	then	apply	updates	

d. Integration	with	user-mode	TX	
i. User	TX	gets	ready	to	commit,	asks	system	TX	to	commit	
ii. If	successful,	user	Tx	follows	system	TX	

1. Requres	user	TX	not	required	to	abort	once	asks	system	TX	to	
commit	

8. TxOS	subystems	
a. File	system:	

i. All	updates	written	as	a	single	file	system	transaction	to	disk;	ensures	
atomicity	&	durability	

b. Processes:	
i. Allow	transactional	processes	that	access	internal	transaction	state	
ii. All	tasks	in	process	have	to	call	sys_xend()	or	exit()	to	commit;	not	just	

any	one	thread	
c. Signales:	



i. Defer	until	commit	if	possible	
ii. Allows	signal	handlers	to	be	transactions	themselves	

9. Challenges:	
a. How	do	networking/communication?	
b. What	happens	if	there	is	a	failure	during	commit?	Write	some	blocks	to	disk	but	

not	all?	
c. What	if	you	run	out	of	memory	to	buffer	state,	e.g.	for	the	file	system?	


