
File	System	Consistency	
	

1. Reviews:	
a. Starting	next	Tuesday,	review	format	will	get	a	lot	simpler:	

i. Summary	
ii. Confusions	

2. Topics	for	end	of	semester	
a. Security	
b. Reliability	
c. Power	management	
d. Manageability	
e. GPUs	
f. Device	drivers	

3. Questions	from	reviews:	
a. Why	is	sequential	overwrite	bad?	

i. Has	to	journal	write	as	doing	in-place	write	
b. More	on	FUA:	

i. Allow	a	single	write	to	be	forced	to	media;	does	not	need	to	flush	cache	
ii. Not	guaranteed	to	work	on	SATA	

1. Disks	lie	to	get	better	benchmarks	
iii. Used	for	journal	writes	to	avoid	full	flushes	

c. Async	notifications?	
i. Normally	interrupt	to	signal	acceptance	of	write	by	disk	into	cache	
ii. Why	2	notifications	–	one	of	accepting	write?	

1. Allows	OS	to	remove	from	queue	to	disk	
d. Why	some	applications	more	prone	to	probabilistic	failures?	

i. Do	they	have	ordering	requirements?	Call	fsync()	frequently?	
e. Industry	use?	

i. Yes	–	Azure’s	block	storage	system,	other	cloud	storage	systems	
f. Relationship	to	GFS	

i. Are	failures	the	norm?	
1. Scale:	among	1000	machines,	it	is	normal	for	one	of	them	to	fail	
2. For	a	single	machine,	failure	is	not	the	norm	

4. Consistency	problem:	
a. File	systems	are	complex	data	structures	
b. Inconsistencies	possible	if	updates	partially	complete	

i. Add	data	block	to	file	+	remove	from	free	list	
ii. Add	file	to	directory	+	write	inode	

5. What	do	applications	have	to	know?	
a. How	do	applications	enforce	their	own	consistency	rules?	

i. Use	fsync()	to	make	things	durable	before	writing	
1. Write	new	file,	fsync(),	rename,	fsync()	to	make	rename		

b. What	consistency	guarantees	do	file	systems	make:	



i. Are	operations	delayed	or	not	
1. Ext4	story	with	delayed	write;	many	apps	depended	on	30-second	

writeback	
ii. Example:	write	(f1,	“pp”);	write	(f2,	“qq”)	

1. 	
2. State	A:	length	updated	but	not	data	
3. State	B:	partial	write	(torn	/	not	atomic)	
4. State	C:	second	write	persists	first	(out	of	order)	

iii. Does	FS	ensure	operations	written	out	in	order	or	not	–	writes	to	
different	files	are	persisted	in	order?	

1. Not	guaranteed	to	be	true	
iv. Are	writes	atomic?	

1. Can	you	update	multiple	blocks	but	only	have	some	of	update	
show?	

2. Can	the	size	of	a	file	change	(inode)	without	data	showing	up?	
c. What	applications	do	this?	

i. Databases:	write	logs	first,	then	data	
ii. Email	servers:	write	email	message,	then	fsync,	before	replying	to	client	

6. Solutions:	
a. So	nothing:	FFS,	FAT32,	EXT2	

i. Run	FSCK	to	fix	things	up	afterwards	
b. Pessimistic	approaches	–	

i. Make	sure	ordering	is	enforced	by	disk	
c. Ordering	every	operation	

i. Write	free	block	bitmap	(BM)	
ii. write	data	(FB)	
iii. Write	inode	(IN)	
iv. Ordering:	BM	->	FB	->	IN	

d. Shadow	updates	
i. Write	all	new	data	

1. New	file	blocks	(FB)	
2. New	file	inode		(IN)		
3. New	free	block	bitmap	(BM)	

ii. Swing	pointer	to	new	data	
1. Inode	map	(IM)	pointing	to	inode	

iii. Ordering:		
1. (FB,	IN,	BM)	->	IM	

iv. Note:	uses	copy-on-write	(like	LFS)	
e. (ordered)	Journaling:	

File F1. Size: 0

File F2. Size: 0

Initial
 State

p p

q q

Size: 2

Size: 2

Final
 State

p

q

Size: 1

Size: 1

Intermediate
 State #B

X X

X X

Size: 2

Size: 2

Intermediate
 State #A

q q

Size: 0

Size: 2

Intermediate
 State #C

 

Figure 2: Crash States. The figure shows the initial, final, and
some of the intermediate crash states possible for the workload de-
scribed in Section 2.1 . X represents garbage data in the files. Interme-
diate states #A and #B represent different kinds of atomicity violations,
while intermediate state #C represents an ordering violation.

2 Persistence Properties
In this section, we study the persistence properties of
modern file systems. These properties determine which
possible post-crash file system states are possible for a
given file system; as we will see, different file systems
provide subtly different guarantees, making the chal-
lenge of building correct application protocols atop such
systems more vexing.

We begin with an example, and then describe our
methodology: to explore possible on-disk states by re-
ordering the I/O block stream, and then examine pos-
sible resulting states. Our testing is not complete, but
finds persistence properties that do not hold for a file-
system implementation. We then discuss our findings for
six widely-used Linux file systems: ext2 [6], ext3 [51],
ext4 [50], btrfs [30], xfs [45], and reiserfs [37].

Application-level crash consistency depends strongly
upon these persistence properties, yet there are currently
no standards. We believe that defining and studying per-
sistence properties is the first step towards standardizing
them across file systems.

2.1 An Example
All application update protocols boil down to a sequence
of I/O-related system calls which modify on-disk state.
Two broad properties of system calls affect how they are
persisted. The first is atomicity: does the update from the
call happen all at once, or are there possible intermediate
states that might arise due to an untimely crash? The
second is ordering: can this system call be persisted after
a later system call? We now explain these properties with
an example.
We consider the following pseudo-code snippet:

write(f1, "pp");
write(f2, "qq");

In this example, the application first appends the string
pp to file descriptor f1 and then appends the string qq to
file descriptor f2. Note that we will sometimes refer to
such a write() as an append() for simplicity.

Figure 2 shows a few possible crash states that can
result. If the append is not atomic, for example, it would
be possible for the size of the file to be updated without
the new data reflected to disk; in this case, the files could
contain garbage, as shown in State A in the diagram. We

refer to this as size-atomicity. A lack of atomicity could
also be realized with only part of a write reaching disk, as
shown in State B. We refer to this as content-atomicity.

If the file system persists the calls out of order, another
outcome is possible (State C). In this case, the second
write reaches the disk first, and as a result only the second
file is updated. Various combinations of these states are
also possible.

As we will see when we study application update pro-
tocols, modern applications expect different atomicity
and ordering properties from underlying file systems. We
now study such properties in detail.

2.2 Study and Results
We study the persistence properties of six Linux file sys-
tems: ext2, ext3, ext4, btrfs, xfs, and reiserfs. A large
number of applications have been written targeting these
file systems. Many of these file systems also provide
multiple configurations that make different trade-offs be-
tween performance and consistency: for instance, the
data journaling mode of ext3 provides the highest level of
consistency, but often results in poor performance [35].
Between file systems and their various configurations, it
is challenging to know or reason about which persistence
properties are provided. Therefore, we examine different
configurations of the file systems we study (a total of 16).

To study persistence properties, we built a tool, known
as the Block Order Breaker (BOB), to empirically find
cases where various persistence properties do not hold
for a given file system. BOB first runs a simple user-
supplied workload designed to stress the persistence
property tested (e.g., a number of writes of a specific size
to test overwrite atomicity). BOB collects the block I/O
generated by the workload, and then re-orders the col-
lected blocks, selectively writing some of them to disk to
generate a new legal disk state (disk barriers are obeyed).
In this manner, BOB generates a number of unique disk
images corresponding to possible on-disk states after a
system crash. BOB then runs file-system recovery on
each resulting disk image, and checks whether various
persistence properties hold (e.g., if writes were atomic).
If BOB finds even a single disk image where the checker
fails, then we know that the property does not hold on
the file system. Proving the converse (that a property
holds in all situations) is not possible using BOB; cur-
rently, only simple block re-orderings and all prefixes of
the block trace are tested.

Note that different system calls (e.g., writev(),
write()) lead to the same file-system output. We group
such calls together into a generic file-system update we
term an operation. We have found that grouping all op-
erations into three major categories is sufficient for our
purposes here: file overwrite, file append, and directory
operations (including rename, link, unlink, mkdir, etc.).

3



i. Write	data;	make	sure	is	durable	(FB)	
ii. Write	everything	to	a	journal	first	

1. New	file	inode	(IN)	
2. New	bitmap	(BM)	

iii. Commit	journal	(JC)	
1. Why?	
2. Not	all	journal	blocks	may	make	it	out;	need	to	wait	for	them	all	

to	be	durable	before	commit	
iv. Write	metadata	(checkpointing)	

1. File	inode	(IN)	
2. Bitmap	(BM)	

v. Ordering:	
1. FB	->	J(IN,BM)	->	JC	->	IN,BM	->	journal	clean	

vi. Note:	when	can	you	clean	up	the	journal?	
1. After	checkpointing	

vii. Note:	when	do	you	have	to	write	back	metadata?	
1. Any	time	you	want	

viii. Recovery:	if	recover	after	JC,	roll	forward	and	write	back	metadata	
1. Else	discard	journal	

ix. Note:	must	hold	metadata	in	memory	until	everything	else	is	written	
1. Not	safe	to	write	early	

f. All	solutions	require	ordering:	
i. Need	to	know	where	you	are	in	the	steps	so	know	what	done/what	not	

done	
ii. Need	to	know	if	operation	is	complete	

1. If	too	early,	roll	back	(lack	complete	information)	
2. If	past	commit	point,	roll	forward	–	fix	up	missing	operations	

g. How	can	you	do	this	with	a	disk?	
i. Disks	can	reorder	everything	internally	for	reducing	seek	time	/	rotation	

time	
ii. Ordering	primitive	is	flush	
iii. Flush	cache	and	wait	for	it	to	complete	
iv. Guarantee:	what	is	guarantee	of	a	flush?	

1. Anything	after	a	flush	takes	place	after	anything	before	a	flush	
2. Nothing	after	a	flush	can	hit	disk	before	everything	before	a	flush	

v. Note:	no	other	way	to	know	that		write	completed	except	do	a	flush	after	
the	write	(excluding	force-unit-access	FUA	operations)	

1. FUA	writes	a	single	operation	out	to	disk	bypassing	cache	
2. Was	often	used	for	writing	journal	in	NTFS,	EXT4	
3. Problem:	most	disks	now	are	SATA,	work	reliably	in	SCSI/SAS	but	

not	in	SATA	
h. Problems:	

i. Flushes	are	slow	
ii. Conflates	ordering	and	durability	



1. After	flush,	everything	before	flush	is	durable	
a. Will	survive	power	failure/system	crash	

2. Sometimes,	want	ordering	but	don’t	need	durability	
a. QUESTION:	Is	this	true?	
b. QUESTION:	Examples	of	when?	

i. Probabilistic	consistency:	
i. Do	everything	above,	but	don’t	enforce	at	disk	level	
ii. Issues	writes	in	order,	hope	they	complete	in	order	
iii. Window	of	vulnerability:	

1. Period	when	some	of	the	blocks	of	a	transaction	have	been	
written	out	

a. E.g.	new	inode	pointing	to	data	block	before	data	block	
b. E.g.	journal	transaction	before	data	

2. After	all	blocks	out,	inconsistency	goes	away	
3. Overall,	fraction	of	time	where	a	crash	would	cause	inconsistency	

is	probability	of	inconsistency.	
iv. When	a	good	assumption?	

1. Writes	are	sequential	
2. Writes	have	large	time	gap	

a. Reordering	is	across	a	small	span		
3. Writes	have	a	large	space	gap	(far	apart	on	disk)	

a. Tends	to	cluster	journal	writes/data	writes	so	they	don’t	
mix	

v. Else	a	bad	assumption	
vi. Who	does	this?	

1. MacOS	–	doesn’t	actually	wait	for	data	to	go	to	disk	
vii. Why	some	applications	more	vulnerable?	

1. More	operations	that	require	consistency	
a. Database,	email	server	

7. Application	to	databases:	
a. Write	a	log	for	a	transaction	

i. Commit	to	disk	
b. Write	the	data	
c. Truncate	log	after	data	written	to	disk	

8. Techniques	to	reduce	ordering	
a. Checksumming:	

i. Basic	idea:	if	you	want	something	atomic	(all	or	nothing)	
1. Write	the	data	+	a	checksum	someplace	new	
2. If	checksum	matches,	all	data	was	written,	use	it	
3. If	checksum	does	not	match,	some	data	was	not	written,	do	not	

use	it	
4. Note:	cannot	use	for	in-place	updates	

ii. Where	use:	
1. Journal	commit:	write	journal	entries	+	checksum	instead	



2. Data	append:	write	data	checksum	in	journal;	if	checksum	fails	
abort	transaction		

b. Asynchronous	durability	notification:	
i. Notification	that	a	previous	write	completed	without	a	flush	
ii. O.k.	to	clean	log,	reuse	a	block	that	was	previously	used,	etc.	

9. Optimistic	concurrency	
a. Goals:	

i. Want	to	write	at	full	speed	(no	flushes)	
ii. Recovery	consistently	but	not	to	latest	transaction	

1. O.k.	to	keep	a	prefix	of	writes	only	
b. Big	idea:	

i. Write	data	out	of	order,	using	checksums	for	atomicity	
ii. On	recovery,	walk	log	and	complete	every	fully	formed	transaction	
iii. For	operations	that	require	ordering	(reusing	blocks,	cleaning	logs)	wait	

for	disk	to	acknowledge	data	is	durable	rather	than	forcing	data	to	be	
durable	

c. Techniques:	
i. Data	checksumming:	put	data	checksum	in	journal	
ii. Transaction	checksumming:	commit	transaction	by	including	checksum	

1. Net	result:	can	tell	from	checksums	if	complete	transaction	was	
written	or	not;	allows	atomicity	

iii. Delay	metadata	checkpoint	until	preceding	writes	durable	
1. Use	async.	Durability	notifications	instead	of	flush	
2. May	buffer	writes	for	a	long	time	

iv. Ordering	depends	on	preceding	transactions	
1. Cannot	write	metadata	for	TX3	if	TX1	and	TX2	are	not	durable	

a. Journal/data	for	TX3	is	not	enough	
d. What	ordering	remains?	

i. (d,JM,JC)	->	M	
ii. M	->	clean	J	
iii. Note:	both	off	critical	path!	

e. Cleaning	TX	
i. Can	only	clean	when	metadata	is	durable	

1. QUESTION:	WHY?	
a. Know	that	won’t	have	to	repeat	journal	

2. Needs	AND	
f. Recovery:	

i. Walk	journal,	re-execute	TX	that	are	complete	
ii. QUESTION:	When	stop?	

1. When	get	to	first	TX	with	failed	checksum;	
2. Indicates	incomplete	TX	or	data	didn’t	write	

g. Reusing	blocks		
i. Problem:	TXi	frees	block,	TXj	uses	block	
ii. Data	write	for	TXj	completes	before	TXi’s	commit	block,	then	crash	



iii. On	recovery,	TXi	rolled	back	->	block	still	in	old	file;	new	data	is	there;	
wrong	data	in	file	

iv. Solution:	don’t	reuse	block	until	previous	metadata	write	durable	
1. Big	idea:	wait	don’t	flush	

h. In-place	updates:	
i. Can	use	copy-on-write	and	allocate	new	block,	but	hurts	locality	for	

sequential	files	
ii. Solution:	selective	data	journaling	where	new	data	written	to	log	first	

1. In-place	update	only	happen	after	ADN	for	TX	
2. Benefit:	makes	data	writes	sequential;	good	for	random	write	

workloads	
iii. Why	selective?	

1. For	appends,	no	need	to	keep	old	value	to	abort	transaction	
10. Consistency	vs	durability	

a. Durability:	after	a	crash	data	will	be	there	
b. Consistency:	some	prefix	of	data	will	be	there	
c. 	Fsync()	currently	does	both	
d. QUESTION:	When	want	just	consistency?	

i. Multi-stage	update;	e.g.	new	files	on	a	web	server	
1. Use	osync	between	stages;	dsync	at	end	to	make	sure	all	done	

ii. Freshness	not	that	important	
1. Logging,	statistics	
2. Generated	reports,	intermediate	files	

11. Evaluation:	
a. QUESTION:	How	evaluate	something	like	this?	

i. Is	it	correct?	
1. Write	a	test	that	stresses	correctness	

a. Lots	of	dependent	writes	(	same	file,	same	directory)	
b. Crash	simulation:	take	possible	reorderings	of	writes	&	try	

to	boot	FS	
ii. Performance?	

1. Run	applications	using	dsync	instead	of	fsync	
2. Use	osync	instead	of	fsync	
3. Run	applications	that	don’t	call	fsync	

iii. Space	
1. Measure	mem	usage	
2. Measures	CPU	usage	–	may	be	blocked	waiting	on	disk	

b. Techniques:	
i. Disk	simulators:	to	look	at	amount	of	reordering	
ii. Reordering	simulation:	

1. Look	at	order	of	blocks	between	flushes.	Legally,	they	can	be	
completely	reordered.	Try	some	

iii. 	


