
1 
 

High	Availability	
	

1. Questions	from	reviews:	
a. How	does	recovery	start	after	a	failure?	

i. Boot	up	VM	from	snapshot	
b. Flat	curve	with	increase	in	checkpoints	for	network	buffers?	

i. Not	snapshotting	at	desired	frequency	because	snapshot	takes	
too	long,	so	no	change	

c. What	happens	after	failure?	
i. Need	to	recopy	entire	VM	–	full	snapshot	–	to	fully	repair	

d. How	does	checkpoint	frequency	relate	to	fault	tolerance?	
i. It	doesn’t;	it	relates	to	network	latency	
ii. Higher	frequency	checkpoints	->	lower	latency	but	higher	

overhead	
e. How	do	clients	move	to	backup?	

2. Goals	
a. High	availability	for	what	failures?	
b. Unmodified	applications	

3. Commercial	high-availability	systems	
a. Vendors:	

i. Tandem,	stratus	
ii. IBM,	HP	

b. How	built?	
i. Special	purpose	hardware	

1. Dual	redundant	processors	with	lockstep	execution	
2. Redundant	cross-over	networks	
3. Dual-path	storage	

c. Where	used?	
i. Banks,	etc.	

4. Cloud-based	high	availability	systems	
a. Platform:	

i. Commodity	HW,	OS	
b. Infrastructure:	

i. Redundant	networks	
ii. Network	storage	–	GFS	
iii. Redundant	HW	–	store	things	multiple	times	

c. Software	
i. Written	to	distribute	requests	automatically,	detect	failure,	

retry/recovery	quickly	
ii. Everything	custom:	



2 
 

1. Client	apps	detect	failure,	know	about	replicas	and	try	
other	replicas	

2. Services	know	about	failure,	try	other	services.	Know	
about	storage	replicas,	try	other	storage	replicas	

5. Hypervisor-based	fault	tolerance:	
a. General	idea;	

i. Take	non	fault-tolerant	code,	put	a	layer	under	it	that	replicates	it	
transparently	

ii. Question:	what	failures	can	be	tolerated?	
1. Applications?	OS?	Hypervisor?	Hardware?	

iii. Compare	to	application-level	replication	
b. Idea	0:	

i. Run	in	a	hypervisor	on	shared	storage	
ii. If	crash,	restart	somewhere	else	from	shared	storage	

1. Just	like	local	reboot,	but	could	be	done	faster	
2. But	lose	data	during	crash	

c. Idea	1:	
i. Feed	all	inputs	from	one	system	to	another	
ii. Should	lead	to	duplicate	states	
iii. Challenge:	non-determinism	

1. Interrupts	delivered	at	different	times	
2. Timestamps	on	events	(e.g.	http	requests)	vary	
3. Expensive	to	fix	

d. Idea	2:	
i. Replicate	complete	system	state	from	one	hypervisor	to	another	
ii. Block	output	until	replication	completes	

1. Avoid	producing	an	output	that	could	be	lost	
2. No	externally	visible	state	should	be	lost	

a. Example:	report	data	saved,	but	is	not	saved	
e. Challenges:	

i. Good	performance:	
1. Need	to	replicate	memory	state	
2. Can’t	release	output	until	memory	has	been	replicated	
3. Could	cause	lots	of	delays	if	synchronous	

a. Do	op	;	replicate	;	get	ack	;	release	
ii. Data	volume	

1. Often	cheaper	to	ship	an	operation	than	the	data	
a. E.g.	adding	value	to	a	hashtable	touches	many	

pages	but	the	key/value	may	be	small	
b. Reorganization	(e.g.	btree,	rehashing)	lead	to	lots	

of	data	changes	from	small	operations	
6. Remus	design:	



3 
 

a. Overview:	
i. Run	a	primary	
ii. Periodically	snapshot	and	send	snapshot	to	backup	
iii. Delay	output	at	primary	from	before	snapshot	until	snapshot	

arrives	at	backup	
1. But	keep	executing	ahead	

iv. Storage:	
1. Disk	writes	propagated	immediately	to	backup	where	

buffered	until	RAM	snapshot	arrives	
v. Backup	does	not	execute	–	is	just	state	in	memory/disk	–	until	

primary	fails	
b. Failure	model:	

i. Keep	running	with	single	machine	(hardware)	failure	
ii. Reboot	from	dual	failure	(like	a	normal	crash)	

c. Xen	terminology	
i. Architecture:	

1. Hypervisor	
2. Dom0	–	management	code,	device	drivers	
3. DomU	–	guest	VM	

ii. XenStore	–	centralized	config	database,	place	to	share	data	
between	VMs	

iii. XenBus	–	bus	abstraction	for	drivers	in	guests	to	talk	to	to	other	
VMs	

iv. XenD	–	management	Daemon	in	Dom0,	starts/stops/creates	VMs	
via	hypercalls	to	Xen	

v. Dom0	
7. Remus	implementation	

a. Leverage	existing	live	migration:	
i. Migrate	running	VM	to	another	machine	

1. Not	start	machine	at	destination	
2. Continue	running	at	source	

b. Fast	snapshots/checkpoints		
i. Divide	time	into	epochs	between	snapshots	
ii. Once	per	epoch,	pause	running	VM	&	copy	changed	state	into	

buffer	
iii. Transport	buffer	to	backup	
iv. Ack	backup	to	primary	
v. Release	output	

c. Memory/Cpu	snapshot	
i. While	running	epoch,	track	all	modified	pages	
ii. At	end,	mark	all	those	read-only,	copy	to	backup,	then	make	

writable	



4 
 

iii. Mark	memory	read-only,	copy	dirty	pages,	make	writable	
1. Do	in	the	VMM,	not	guest	
2. Can	track	all	pages	modified	since	previous	epoch	

iv. Repeat	until	#	of	pages	dirtied	during	copy	==	#	of	pages	copied	
1. Initially	lots	of	dirty	pages	
2. When	not	converging,	pause	VM	and	copy	remaining	dirty	

pages	
v. Implementation	details:	

1. Optimize	communication	path	to	guest	to	tell	it	to	suspend	
for	final	stop-and-copy	

2. Map	guest	physical	pages	into	a	process	in	management	
VM	completely	to	do	copy	to	avoid	lots	of	map/unmap	
operations	

3. Copy	modified	pages	to	staging	buffer	to	allow	immediate	
execution;	can	restart	VM	before	passing	pages	along	

d. Buffering	output	
i. Why	buffer	output	until	checkpoint	complete?	

1. If	not,	may	announce	something	happened,	when	backup	
cannot	(or	will	not)	do	that	

a. Example:	receiving	email;	could	ack.	Was	received	
but	then	would	get	lost	if	not	replicated	before	
backup		

ii. Implementation:	
1. Use	network	queueing	discipline	in	VMM:	block	outbound	

packets	until	receive	a	release	essage	
2. Copy	off	shared	ring	buffer	for	greater	buffering	space	

e. Disk	buffering	
i. Why	different	than	network?	

1. Network	can	lose,	reorder	packets	
2. Need	to	recover	contents	on	dual	failure	(goal	of	system)	

ii. Solution:	
1. Mirror	disk	contents	completely	to	backup	
2. While	running,	writes	to	disk	tracked	and	checkpointed	

a. Writes	are	write-through:	go	to	local	disk	+	backup	
memory	

b. Ensures	primary	doesn’t	go	to	fast	due	to	local	disk	
writes	

i. Otherwise	if	disk	writes	only	on	backup,	
primary	gets	ahead	and	backup	cannot	
catch	up	

3. Backup	writes	out	blocks	after	receiving	memory	state	off	
following	checkpoint	



5 
 

a. Alternate	writing	primary	&	backup	
b. On	double	machine	failure,	One	is	always	most	

recent	and	correct	 (one	not	being	written)	
f. Recovery:	

i. Detect	failure	via	heartbeat	
ii. Start	VM	on	backup	(load	VCPU	registers	into	real	CPU,	start	

running)	
iii. Move	clients	to	new	machine	

1. Done	at	switch:	send	reverse	ARP	saying	an	IP	address	now	
has	a	new	Ethernet	address	

2. A	few	packets	get	lost	in	the	middle	while	original	machine	
isn’t	responding	

g. Repair	
i. Eventually	fix	primary	(or	backup)	
ii. Need	to	re-replicate	potentially	everything	(all	of	memory,	all	of	

virtual	disk)	
iii. Then	can	be	fault	tolerant	again.	

8. Fit	into	fault	tolerance	framework:	
a. Fault	detection:	heartbeats	
b. Isolation:	separate	VMs	
c. Recovery:	backwards	to	last	checkpoint	at	backup	

9. Evaluation	
a. Question:	what	should	be	evaluated?	

i. Reliability:	how?	
ii. Performance:	what	are	considerations?	

1. App	performance	
a. Throughput	–	hurt	by	overhead	
b. Latency	of	requests	–	hurt	by	waiting	for	

replication	to	complete	
2. Microbenchmark:	determine	what	affects	performance	

a. Look	at	amount	of	data	written	to	see	how	affects	
copy	time	

b. Look	at	frequency	of	checkpoints	to	see	how	
affects	performance	

10. Sources	of	inefficiency	
a. Copies	entire	page	when	partial	page	modified	

i. Not	evaluate	ratio	of	pages	copied	to	size	of	requests	
ii. Solution:	compression/diff	

b. More	pages	dirtied	means	slower	checkpoints	means	more	overhead	
i. Better	to	checkpoint	more	often	when	fewer	pages	dirtied	
ii. Can	slow	down	VM	if	dirtying	pages	too	much	to	keep	checkpoint	

overhead	low	



6 
 

c. Copy	on	write	
i. Remus	copies	all	dirty	pages	synchronously	at	snapshot	(pausing	

VM	
ii. Could	mark	read-only,	copy	slowly	 	

11. Big	design	issues:	
a. Requires	1	hot	backup	per	server	

i. May	require	double	capacity	to	tolerate	failures,	as	have	to	have	
idle	spare	that	is	busy	for	every	machine	

ii. Do	not	evaluate	how	many	different	VMs	can	be	backed	up	from	
a	single	server	at	once	

1. E.g.	5	VMs	backed	up	to	5	different	places	or	one	place?	
2. Can	a	single	machine	server	as	a	backup	for	5	other	

machines?	
iii. 		


