
1 
 

Energy	Management	
	

1. Motivation	
a. Goal	of	an	OS:	resource	management	

i. Decide	which	processes	get	which	resource,	how	much	
1. Memory:	page	replacement,	etc.	
2. CPU:	scheduling	
3. I/O:	network	bandwidth,	disk	space	and	bandwidth	

b. What	about	energy?	
i. Energy:	how	much	of	your	battery	it	is	using;	power	x	time	used	
ii. Power:	instantaneous	draw	of	energy	
iii. Visibility	

1. Who	is	using	energy,	and	how	much	
2. Why	hard?	

a. Need	to	look	at	services	invoked	by	an	app,	devices	
used	by	an	app	

b. Shared	resources:	radios	
i. High	power	
ii. When	turned	on,	stays	on	for	a	while	
iii. Used	by	multiple	applications	
iv. Who	pays	how	much?	

c. Systems	don’t	have	much	to	measure	power	use	
i. CPUs	now	have	sensors	
ii. Measuring	devices	hard	
iii. Need	to	model	behavior	and	predict	

power/energy	
iv. Example:	energy	of	disk	access	(spin,	seek,	

time),	radio	(transmission,	receive	based	on	
signal	strength)	

v. 	
iv. Control		

1. QUESTION:	as	a	user,	what	do	you	want?	
a. Limit	total	energy	usage?	
b. Ensure	battery	lifetime?	
c. Reserve	life	for	high-priority	apps	(maps,	phone,	

texting,	camera)?	
d. WHAT	IS	ACTUAL	USER	GOAL?	

2. Control	how	much	energy	is	being	used	by	an	
application/service	



2 
 

3. Want	to	control	total	(kill	app	at	end)	but	also	rate,	so	app	
lives	

c. Big	ideas	in	energy	management:	
i. Power	proportional	to		½	cv2f	

1. C	=	capacitance,	how	much	of	chip	is	changing	states	
2. F	=	frequency	–	reducing	just	F	has	a	linear	scale	in	power	
3. V	=	voltage	–	reduces	power	quadratically	
4. When	F	drops,	can	reduce	V	as	well	

a. Get	cubic	effect	in	power	drop	
ii. Energy:	

1. Simple	model:	just	reducing	frequency	doesn’t	save	energy	
a. Run	½	as	fast,	but	run	2x	long	
b. E	=	P*T;	E=(p/2)*(t*2)	

iii. Hardware	support	for	power	management:	(intel	HW)	
1. G	states	–	global	states	of	whole	system	

a. G0	=	running	
b. G1	=	sleeping	(suspend,	hibernate)	
c. G2	=	soft	off	(power	down	but	can	be	powered	up	

by	interrupts)	
d. G3	=	mechanical	off	–	no	power	

2. P	states:	performance	states	
a. voltage/frequency	pairs.	Lower	state	(P0)	is	higher	

performing	
b. P0	=	high	perf,	high	power	
c. P>0	=	lower	perf,	lower	power	
d. Processor	automatically	increases	P	state	when	

CPU	is	underutilized		
3. C	states	–	core	states,	idle	power	saving	–	subset	of	G0	

(running)	
a. C0:	core	is	running	
b. C1:	idle	(after	“halt”	or	“mwait”	instruction;	but	

caches	full	
i. Fast	to	enter,	fast	to	leave	
ii. CPU	clock	stopped,	but	bus	and	interrupts	

still	run	full	speed	
iii. Leave	when	interrupt	arrives	(e.g.,	timer,	

network	packet)	
c. C>1:	deeper	sleep	(slow	to	enter,	slow	to	leave,	but	

use	less	power)	
i. Turn	off	all	clocks,	including	bus,	APIC	

interrupts	
ii. Good	to	use	if	will	sleep	a	while	



3 
 

4. S	states	=	sleep	states	(subset	of	G1)	
a. S0	=	not	sleeping	
b. S3	=	suspend	
c. S4	=	hibernate	

iv. Big	idea	1:	reduce	frequency	to	what	is	required	
1. Assume	have	a	bottleneck	resource:	disk,	memory,	

network	
2. Run	CPU	at	lowest	frequency	&	voltage	to	provide	service	

a. Seek	100%	utilization	of	CPU	
b. Get	V,F	scaling	benefit	
c. No	point	in	running	CPU	faster	as	waiting	on	other	

resources	
3. Implies	perfect	rate	depends	on	the	application	

v. Big	idea	2:	idle	as	much	as	you	can	
1. If	you	finish	a	computation	faster,	you	can	turn	off	more	of	

the	system	
2. Example:	power	off	more	CPUs,	power	down	memory,	I/O	

devices,	display	
3. Suppose	CPU	is	50%	of	system	power	
4. Run	at	full	speed,	uses	energy	X	
5. If	run	CPU	twice	as	fast	and	use	2x	power,	now	have:	

a. Normally:	E	=	X	*	t	(CPU)	+	X	*	t	(rest	of	system)	=	
2Xt	

b. Now:	E	=	2x*t/2	(cpu)	+	x	*	t/2	=	1.5Xt	
6. Called	“Computational	sprinting”	–	finish	quickly	so	you	

can	turn	more	of	the	system	off	
2. Cinder	

a. Goals:	
i. Isolation:	separate	energy	draw	of	each	app;	one	app	shouldn’t	be	

able	to	(without	permission)	draw	down	your	whole	battery	
ii. Delegation:	give	energy	to	a	service/app	doing	work	on	your	

behalf	
1. E.g.	networking	stack	
2. Like	ticket	transfers	

iii. Subdivision:	can	partition	energy,	share	some	but	keep	some	
1. Don’t	give	delegates	full	access	to	all	energy,	just	to	a	part	
2. Example:	browser	plugins.	Need	some	energy	but	not	

much,	don’t	want	abuse	
b. Abstractions:	

i. Reserves:	right	to	use	a	certain	amount	of	energy	
1. Like	a	virtual	battery	
2. Amount	in	reserve	goes	down	when	energy	consumed	



4 
 

3. Cannot	execute	when	reserve	has	insufficient	energy	
4. Track	energy	consumption	
5. QUESTION:	when	plug	in	battery,	what	reserves	get	

charged	first,	and	how	quickly?	
ii. Taps:	connect	reserve	to	another	reserve	using	energy	with	rate	

limit	
1. Example:	allow	1	mJ/sec	(1	mw	average)	
2. Alternate	use:	proportional	tap	

a. Transfer	a	fraction	of	reserve	instead	of	absolute	
energy	amount	

3. Purpose:	rate	limit	allows	saying	how	long	enegy	will	last	
a. Guarantee		5	hour	battery	life	

4. Use:	can	replenish	a	reserve	threads	use	to	execute	at	a	
fixed	rate	

a. Prevents	thread	from	running	too	much	
b. Implementation:	periodically	decrease	one	reserve,	

increase	another	
iii. Resource	consumption	graph:	

1. Graph	of	reserves,	taps,	threads	(or	devices)	connecting	
power	sources	to	power	users	

c. How	meet	goals:	
i. Isolation:	separate	reserves	per	app	
ii. Subdivision:		app	can	create	new	reserves	
iii. Delegation:	app	can	create	tap	from	its	reserve	to	child	

processes/threads/IPC	targets	
3. Implementation	on	a	phone	

a. Power	model:	where	get	a	model	to	calculate	how	much	
b. Online:	use	on-chip	measurements	to	measure	how	much	was	used	

i. Problem:	hard	to	account	for	I/O,	devices	
c. Offline:	run	a	bunch	of	workloads,	measure	behavior	with	performance	

counters,	measure	energy	externally	with	tool	
i. Can	calculate	energy	draw	of	different	operations.	
ii. Limited	to	what	can	be	measured	(e.g.	HTC	dream	can’t	count	

memory	operations	that	use	different	energy	than	integer)	
d. Radio	model	

i. Cost	is	basically	independent	of	workload;	doing	anything	to	turn	
of	radio	is	expensive	

ii. Radio	stays	on	for	a	while	at	high	power	once	activated	
4. What	not	addressed:	

a. How	manage	use	in	kernel.	
b. How	mange	“wake	locks”	–	keep	phone	at	high	power	state	when	in	use	

5. Uses:	



5 
 

a. Sandboxing:	give	an	app	a	fixed	amount	of	energy	or	rate	of	energy	via	a	
reserve	or	a	tap	

b. Fine	grained	control	–	shared	code	handling	multiple	things,	such	as	
video	plugin	

i. Tap	per	page	to	give	it	some	energy	for	each	activity	it	is	doing	
c. Reclaiming	unused	energy	in	a	reserve:	

i. Send	energy	to	a	reserve	
ii. Use	a	proportional	tap	to	send	energy	back	to	source	reserve	

1. If	not	used,	will	eventually	drain	the	reserve	
2. Proportional	means	if	energy	is	low	doesn’t	transfer	much	
3. BUT:	paper	doesn’t	explain	accumulating	10	seconds;	why	

is	that?	
d. Hoarding	

i. Threads	can	create	a	reserve	and	store	their	energy	in	it;	
HOARDING	

1. Backwards	taps	to	an	app	don’t	apply	to	new	reserve:	to	
system,	looks	like	a	use	of	energy	

2. If	not	create	reserve,	thread	could	move	energy	to	reserve	
with	slower	backwards	tap	

ii. Solution:	long	term	decay	on	all	reserves	
1. Every	reserve	has	implicit	backwards	proportional	tap	
2. Return	50%	of	reserves	in	10	minutes	
3. Similar	to	“idle	memory	tax”	in	vmware	
4. Not	apply	to	system	reserves	(e.g.	network),	only	

applications	
e. Application	use	

i. What	does	it	mean	to	be	energy	aware?	
1. Applications	adapt	behavior	according	to	available	energy	
2. Reduce	fidelity,	reduce	functionality	under	low	energy	
3. Example:	lower	frame	rate,	reduce	resolution	of	images	

ii. Background	apps:	
1. Want	to	allow	but	ensure	don’t	use	much	energy	

(matching	user	expectation)	
2. Solution:	apps	have	two	taps:		

a. Foreground:	allow	high	use	when	in	foreground	
b. Background:	allow	low	rate	use	when	in	

background	(foreground	set	to	zero)	
3. Task	switcher	turns	off	foreground	tap	when	switch	to	new	

app	
iii. Shared	power-consuming	resources:	GPS,	network	

1. Give	each	resource	a	reserve	



6 
 

2. Make	apps	using	resource	put	a	tap	to	reserve	at	a	low	
rate	

3. Provides	enough	for	periodic	use,	shares	cost	among	all	
users	

4. QUESTION:	How	adjust	rate	as	users	come/go?	
iv. Network	stack:	

1. How	account	execution	in	network	stack	back	to	
application	using	network?	

a. Cinder	uses	protected	procedure	call;	so	thread	
migrates	(like	LRPC)	

b. Thread	uses	its	own	reserve	as	it	execute	
c. Else:	

i. Would	need	to	extend	RPC/IPC	to	
create/destroy	a	tap	(like	Lottery	
Scheduling)	

ii. PROBLEM	Linux	IPC	mechanisms	don’t	
always	identify	source/destination,	so	hard	
to	set	up	a	tap.	

2. How	handle	expensive	network	start	up?	
a. Create	a	reserve	for	all	threads	using	network	to	

put	energy	into	for	periodic	use	
b. When	enough	energy	available,	network	turns	on	

and	everyone	uses	it.	
i. BENEFIT:	coordinates	use	across	apps,	so	

wait	to	turn	on	once	rather	than	turning	on	
at	a	different	time	for	each	app	

c. Charge	based	on	eventual	cost	
i. Radio	turns	off	20	seconds	after	last	packet	
ii. If	send	packet	1	second	after	last	packet,	

need	to	pay	for	1	second	of	additional	time	
(extension	of	turnoff	time)	

iii. If	send	packet	15	seconds	after	last	packet,	
need	to	pay	for	15	seconds	of	additional	
time	(was	extension)	

iv. QUESTION:	What	if	someone	runs	1	second	
later?	

1. It	pays	for	1	second	of	use,	original	
app	still	pays	for	15	

2. Seems	unfair	
d. Receiving	packets:	

i. Charge	receiving	thread,	even	allow	to	go	
into	debt	(better	than	dropping	packet)	



7 
 

e. So:		
i. When	receive	packet,	may	delay	response	

(send)	until	accumulate	enough	energy	to	
run	

ii. Causes	rate	limiting	
iii. 	

6. Key	questions:	
a. What	happens	to	an	app	when	its	energy	is	limited?	

i. It	doesn’t	get	scheduled	until	tap	delivers	energy	
1. What	is	the	user	experience?	

ii. Does	it	run	often	enough	for	interactivity?	
1. Example:	could	network	connections	timeout	when	run	

out	of	energy?	
2. 	


