
1 
 

GPU	Management	
	

1. Motivation	
a. Programmable	accelerators	becoming	common	
b. Leverage	existing	demand	in	graphics	for	massive	computation	for	non-

graphics	tasks	
i. Floating-point	intensive,	data	parallel	tasks	

c. Examples:	
i. Xeon	Phi	
ii. GPU	

1. Many	cores	
2. Each	core	has	many	threads	–	warps/wave	fronts,	like	

hyperthreads	
3. BUT:	Each	thread	has	lanes	that	execute	the	same	

instruction	at	the	same	time	on	different	data.	For	
different	instructions,	pause	lanes	that	don’t	

4. Languages:	
a. NVidia:	CUDIA	
b. Intel/AMD:	OpenCL	

iii. Programmable	network	interface	card	(smart	NIC)	
iv. Programmable	storage	device	(e.g.	smart	SSD,	smart	disk)	

d. Issues:	
i. How	do	you	abstract	devices	to	programmers?	

1. Network:	sockets	
2. Disk:	file	system	
3. Keybord/display:	tty	
4. GPU:	no	abstraction,	just	a	device	

ii. Who	should	control	these	devices?	
1. Default:	vendor	device	driver	
2. OS	writer:	want	OS	in	control	

iii. What	is	needed	from	OS	perspective?	
1. Scheduling	mechanisms	for	policy	goals	
2. Programming	abstractions	that	compose	with	OS	

a. E.g.	communication,	synchronization	
2. Proposed	solutions	

a. Barrelfish	Multikernel	/	Helios	satellite	kernels	
i. Run	OS	kernel	on	every	device	
ii. OS	does	local	scheduling,	local	functionality	
iii. Can	have	different	architecture,	as	communicate	via	messages	

and	RPC	



2 
 

iv. Can	change	communication	mechanism	based	on	whether	it	is	a	
CPU	or	a	programmable	device	

1. Shared	memory	
2. DMA	/	I/O	memory	

b. GPUnet,	GPUfs:	
i. Write	implementations	of	OS	functionality	to	be	called	from	

accelerator	(GPU),	but	not	provide	scheduling	control	
1. 	

3. Pegasus	
a. Goals:	

i. Allow	virtualized	access	to	GPUs	
ii. Make	GPUs	first-class	entity	

1. Allocate/schedule	work	on	them	by	OS,	rather	than	leaving	
it	all	up	to	the	driver	

iii. QUESTION:	WHY?	
1. Who	do	OS	people	want	to	control/schedule	all	hardware?	
2. ANSWER:	allows	sharing	between	applicatons	
3. ANSWER:	allows	efficiency;	can	overlap	use	of	a	device	

with	other	things	
iv. Coordinated	scheduling	of	CPU	and	GPU	

1. May	need	to	run	at	same	time	to	pass	work	to	GPU,	use	
results	

2. Example:	using	GPU	for	gesture	recognition	with	a	camera	
a. Want	real-time	response	
b. Need	both	CPU	and	GPU	

i. Detect	movement	in	GPU	
ii. Convert	to	mouse	movements	on	CPU	

b. Assumptions:	
i. Static	toolchain	decides	what	to	run	on	GPU	(no	dynamic	decision	

making	on	CPU	vs	GPU)	
ii. 	

c. Architecture:	
i. Use	virtualization	to	share	GPU	

1. Apps	talk	to	virtual	GPU	that	is	scheduled	by	pegasus,	
rather	than	a	real	GPU	

2. Scheduling	within	a	domain	is	not	a	Pegasus	problem	
ii. All	programmable	entities	are	schedulable:	

1. VCPUs	and	aVCPUs	can	be	scheduled	independently	
2. May	want	coordination	if	need	to	run	code	on	both	at	the	

same	time	
iii. GViM	GPU	virtualization	

1. Key	idea:	virtualize	at	CUDA	api	interface	



3 
 

a. Ship	CUDA	calls	to	backend	driver	
2. Run	GPU	driver	&	runtime	in	Dom0	(management	/	device	

driver	domain)	
3. Provide	CUDA	API	(user-mode	GPU	API	for	compute)	in	

guest	client	process	
4. Add	GPU	front	end	to	guest,	GPU	backend	to	Dom0	for	

communication	
5. Use	shared	memory	for	data	movement	to	avoid	copying	

a. Guest	allocates	GPU	data	in	memory	shared	with	
Dom0,	or	ideally,	with	GPU	itself	

6. Ring	buffer	of	requests	for	CUDA	commands	
a. Pass	data	to	backend	over	shared	pages,	ring	buffer	

per	VM	for	requests	
i. Like	other	drivers	

b. In	backend:	polling	thread	pulls	requests	off	ring	
buffer	and	calls	CUDA	runtime	and	sends	responses	

c. SO:	burn	a	virtual	CPU	for	communicating	from	
frontend	to	backend	GPU	

	
7. Management	service	in	Dom0	handles	scheduling	of	GPU	

a. Round	robin:	equal	timeslice	monitoring	of	
different	DomUs	

b. xenCredit:	timeslice	proportional	to	credit	
monitoring	of	DomUs;	more	credits	means	longer	
monitoring	of	queue	

4. Accelerator	Virtual	CPU:	
a. Abstract	representation/virtualization	of	running	code	on	an	accelerator	

(GPU)	
i. Contains	CPU/GPU	state	needed	to	run	on	accelerator	(e.g.	shared	

data,	queues,	context	information)	
b. Can	be	scheduled	by	management	code	in	Dom0	

5. Resource	Management		
a. Phase	1:	domain	selection	

i. Decide	which	domains	can	use	the	GPU	(exclusively)	
1. Place	these	domains	in	ready	queue	

b. Phase	2:	running	requests	
i. When	a	domain	issues	request	over	ring	buffer,	runs	and	its	

requests	are	forwarded	to	GPU	
ii. Goal:	restrict	#	of	domains	using	GPU	at	a	time	due	to	limited	

memory	available	
c. Deciding	which	GPU	to	use	



4 
 

i. Have	profile	of	GPU	properties	(memory,	speed,	bandwidth,	etc.)	
+	dynamic	information	(memory	available)	

ii. Order	GPUs	in	priority	order	of	best	to	use	(most	available	
capacity)	to	worst	to	use	(least	capacity	left)	

d. Doamin	profile:	
i. How	aggressively	does	it	use	GPU?	
ii. How	much	GPU	memory	does	it	need?	
iii. How	much	share	has	it	been	given	of	the	PU?	
iv. Created	manually	for	now.	

e. DomA	scheduler:	
i. Pick	which	domains	to	assign	to	which	GPUs	when	
ii. Coordinates	with	Hypervisor	scheduler	for	better	behavior	

6. Scheduling	GPUs	
a. What	is	the	right	granularity?	

i. Per	call:	too	fine	grained,	too	small	+	too	much	switching	
overehad	

ii. Per	app	(1	app	at	a	time):	too	coarse	grained,	too	inefficient	and	
too	high	latency	

iii. Really:	want	something	in	the	middle	that	is	fine	grained	for	
responsiveness	but	coarse	grained	for	efficiency	

b. Possible	policies:	
i. Hypervisor-independent	(not	consider	CPU	scheduling)	

1. FCFS	(default	GPU	policy)	
a. Bad	isolation,	sharing	as	described	before	

2. Accelerator	Credit	–	proportional	share	
a. Same	as	XenCredit	but	have	separate	credits	for	

accelerator	
ii. Hypervisor-controlled	policies:	HV	says	who	can	use	GPU	

1. CoScheduling:	only	allow	a	domain	access	to	GPU	when	its	
domain	is	running	on	a	VCPU	

a. Good	for	latency-sensitive	code;	VCPU	is	running	to	
submit	requests	&	receive	results	and	use	
immediately	

iii. Hypervisor	coordinated	policies	
1. Problem:	if	scheduled	domain	does	not	use	GPU,	GPU	is	

idle	
a. Domain	may	not	have	GPU	credit	left	when	it	has	

CPU	credit	
2. Augmented	credit:	

a. Hypervisor	tells	DomA	scheduler	what	upcoming	
schedule	is	&	credits	for	each	domain	



5 
 

b. DomA	scheduler	adds	GPU	credits	to	domains	that	
the	CPU	will	be	running	soon	

i. Increases	chances	of	the	domain	using	a	
GPU	soon,	but	does	not	guarantee	it	(not	
strict	co-scheduling)	

ii. Effectively:	get	a	priority	boost	when	VCPU	
of	a	domain	runs	

3. SLA	feedback	for	QoS	
a. How	handle	real-time	apps	that	need	to	complete	

task?	
b. Solution:	

i. Assign	SLO	(objective)	for	each	app:	how	
much	time	it	should	be	getting	on	GPU	per	
period	

ii. Periodically	poll	domains	with	SLOs	to	see	if	
they	are	getting	enough	time	

iii. If	not,	give	more	credits	to	those	domains	
c. Results:	automatically	adjust	credit	assignment	to	

accommodate	fluctuations	in	actual	utilization	
7. Implementation:	

a. GPU	scheduling:	
i. Simple	policies:	

1. Timer	interrupt	to	DomA	triggers	scheduler	to	switch	
domains	

2. One	timer	interrupt	per	GPU	(like	CPU)	to	decide	when	to	
switch	it	

ii. Complex	policies:		
1. thread	per	GPU	to	be	scheduler	
2. Thread	per	domain	to	poll	for	requests	

iii. Coordination	with	Hypervisor:	
1. Share	VCPU->PCPU	schedule	with	DomA	(shared	mem?)	
2. Quantum	drift	between	CPU	and	GPU	for	co-

scheduling/coordination	
a. Want	to	have	same	start/end	
b. Requests	to	GPU	are	in	a	queue;	may	not	start	

running	when	domains	VCPU	starts	running	
c. Current	solution:	run	aVCPU	for	a	bit	longer	

(before/afterwards)	to	increase	chance	of	overlap	
d. 	


