Shadow Drivers

Mike Swift, Muthukaruppan Annamali
Hank Levy, Brian Bershad

Transparent Recovery for Kernel Extensions

http://www.cs.washington.edu/homes/mikesw/nooks

Problem
- Computers crash too often.
- We can improve the reliability of computer systems by improving the reliability of the operating system
 - Most OS crashes due to bugs in extensions
- OS needs to provide
 - Isolation for extensions
 - see SOSP’03 paper
 - Transparent recovery after a fault

Example
- Sound driver crashes while playing music
- Today: machine panics, all work is lost
- Goal: OS recovers sound driver while MP3 player continues unaware. Music may drop out for a short period

Goals
- Transparent
 - Shouldn’t require modifying kernel or drivers
 - Shouldn’t require modifying applications or user-mode libraries
- Shared
 - Small amount of mechanism should apply to large number of extensions

Architecture
- Isolate extensions with Nooks lightweight kernel protection domains
- Detect faults using exception handlers and wrappers on extension interfaces
- Recover with Shadow Drivers
 - Hot-backup of a kernel extension to take over when the real one crashes
 - Single code base shadows entire class of real extensions - e.g. all sound drivers or all network drivers
 - Shadow driver replays requests to extension to restore its state

Solution
- Implement same interfaces as real drivers: e.g. PCI, IRQ, Timer, Network, Character
- Normal mode operation: Record OS resources used
 - Log request data for recovery
- Failure mode operation:
 - Reply kernel/applications with logged information
 - Log data written
- Recovery mode operation:
 - Respond to kernel requests from driver with saved OS resources
 - Plug extension interfaces back into kernel interfaces
 - Replay logged requests to restore driver to pre-crash state

Beam Splitter Details
- Interposed on communication interfaces between driver and kernel at load time and dynamically during driver registration
- Normal Mode operation: Copies calls from kernel/driver to shadow driver
- Failure/Recovery Mode Operation: Redirect calls from driver/kernel to shadow during mask failure

Related Work
- Recursive & Micro-reboots [Candea & Fox 01]
 - Recover systems by rebooting successively larger portions
- Process-pairs [Bartlett 81]
 - Transfer control to second copy of a process after failure of primary
- Recovery Blocks [Randell 75]
 - Provide second, slim, implementation of function to be called when correctness check fails