
xCalls: Safe I/O in Memory Transactions

Haris Volos, Andres Jaan Tack, Neelam Goyal∗, Michael M. Swift, and Adam Welc+

University of Wisconsin–Madison, ∗Oracle, +Intel

{hvolos,tack,neelam,swift}@cs.wisc.edu, adam.welc@intel.com

Abstract

Memory transactions, similar to database transactions, allow

a programmer to focus on the logic of their program and let

the system ensure that transactions are atomic and isolated.

Thus, programs using transactions do not suffer from dead-

lock. However, when a transaction performs I/O or accesses

kernel resources, the atomicity and isolation guarantees from

the TM system do not apply to the kernel.

The xCall interface is a new API that provides transac-

tional semantics for system calls. With a combination of de-

ferral and compensation, xCalls enable transactional mem-

ory programs to use common OS functionality within trans-

actions.

We implement xCalls for the Intel Software Transactional

Memory compiler, and found it straightforward to convert

programs to use transactions and xCalls. In tests on a 16-core

NUMAmachine, we show that xCalls enable concurrent I/O

and system calls within transactions. Despite the overhead

of implementing transactions in software, transactions with

xCalls improved the performance of two applications with

poor locking behavior by 16 and 70%.

Categories and Subject Descriptors D.4.1 [Operating Sys-

tems]: Process Management-Concurrency

General Terms Design, Languages, Performance

Keywords Concurrent programming, Transactional mem-

ory, xCalls, System calls, I/O

1. Introduction

As the microprocessor industry transitions to multithreaded

and multicore chips, programs must use multiple threads to

obtain the full performance of the underlying platform [Sut-

ter 2005]. Transactional memory (TM) [Herlihy 1992] has

garnered interest in research and industry as a mechanism

to simplify concurrent programming. Transactions allow a

programmer to declare a block of code atomic, and the TM

system ensures that (1) it executes to completion or not at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

all, and (2) intermediate states of memory are not visible to

other transactions. Programmers are given the illusion that

transactions execute in a serial order, while the TM system

executes them concurrently. As a result, a transaction may

abort when it accesses the same data as another transac-

tion, because the two transactions cannot be serialized. This

prevents deadlock, which after decades of research remains

a problem for many applications [Jula 2008, Wang 2008].

Most major processor and OS vendors have expressed in-

terest in transactional memory [Microsoft Corp. 2008, Saha

2006b, Schlaeger 2008, Tremblay 2008].

While memory within a process is under the TM sys-

tem’s control, memory in the kernel may not be. As a re-

sult the atomicity and isolation properties are not automat-

ically enforced for changes to kernel data structures. For

example, file data changed by one transaction that subse-

quently aborts may be read by another transaction. In ad-

dition, most I/O operations, such as sending a packet, cannot

be reversed on abort. Analyses of multithreaded programs

written with locks show that system calls are a regular occur-

rence in critical sections [Baugh 2007, Swift 2008]. Forbid-

ding system calls in transactions reduces the utility of TM

and threatens its validity as a solution to real concurrency

problems [Cantrill 2008, Lu 2006].

Prior work on transactions has identified three mecha-

nisms for handling irreversible actions and system calls with

side-effects: (1) defer existing system calls and I/O until

commit [Baugh 2007, McDonald 2006, Rossbach 2007]; (2)

execute existing system calls during the transaction and re-

verse side effects on abort [Baugh 2007, Moravan 2006], or

(3) ensure that transactions with system calls always commit

(called irrevocable transactions) [Blundell 2007, Olszewski

2007, Spear 2008, Welc 2008]. However, each approach is

itself insufficient. When two operations are deferred, the OS

may not be able to guarantee that both will succeed, leading

to an inconsistent state. When system calls must be reversed

on abort, actions to reverse side effects may fail. To guaran-

tee theywill commit, irrevocable transactions cannot execute

concurrently, limiting performance.

This paper presents a new programming interface for

transactional memory programs called xCalls. The xCall in-

terface provides transactional access to common OS ser-

vices, such as file handling, communication, and threading.

For example, rather than calling the write() system call,

247

code in a transaction calls x write(). Data written by this

call is not visible until the transaction commits.

This interface is guided by two design principles. First,

system calls should be executed as early as possible, but

no earlier. This ensures that errors from the OS are avail-

able early, to allow application recovery, but that irreversible

actions are deferred until the transaction commits. Second,

xCalls must expose all failures to the application, as do sys-

tem calls. This bypasses the intractable problem of handling

all low-level failures within the xCall API and ensures that

transactional programs can be as reliable as lock-based ones.

We implement xCalls purely at user-mode implementa-

tion to provide portability across systems and to avoid costly

kernel modifications. We find that the majority of system

calls can be accessed within transactions without support

from the operating system. Furthermore, our implementation

makes only general demands on the supporting transactional

memory system. While implemented for a single software

TM system, it could easily be implemented or ported to other

software TMs as well as proposed hardware TM systems.

Rather than making every system call transactional, the

xCall API handles the common cases of file access, com-

munication, and threading. xCalls provide isolation for ker-

nel resources with sentinels, which are revocable user-level

locks. A transaction acquires a sentinel when it accesses a

kernel resource, such as a file, through an xCall. Competing

threads must block until the transaction completes and re-

leases the sentinel. xCalls provide atomicity for system calls

through a combination of deferral, delaying execution un-

til the transaction commits, and compensation, calling back

into the kernel to undo the side effects of a previous call.

Rather than concealing the execution model, the xCall inter-

face specifies when every call executes, so programmers are

aware when the side effects of an xCall become visible. Fi-

nally, xCalls return errors after the transaction completes to

notify programs when a deferred system call or compensa-

tion fails.

We implement xCalls for prototype Intel Software Trans-

actional Memory (STM) compiler [Intel 2008] and apply it

to three applications: the Berkeley DB embedded database,

the BINDDNS server, and the XMMSmedia player.We find

that using transaction in place of locks is straightforward,

and that adapting existing code to use xCalls is simple.

In line with recent analysis of STM systems [Cascaval

2008], we find that software TM has non-trivial performance

overheads: the Intel STM can slow critical sections by up

to 1100%. Thus, we find that TM is best suited to improve

(1) the programmability of rarely executed critical sections,

where the overhead is small, and (2) the performance of

heavily contended critical sections where additional concur-

rency is possible. Programs with high transaction rates and

conflicting critical sections experience performance degra-

dation.

In tests on a 16-core NUMA machine, transactions with

xCalls improved performed better than the native transac-

tions provided by the Intel STM. For one workload, per-

formance decreased due to the overhead of the transactional

memory system. For another two workloads with heavy lock

contention, performance increased by 16 and 70%. With

hardware support to remove the overhead of transactions,

performance could be even better.

In the next section, we present a primer on transactional

memory. We follow with the design of xCalls in Section 3

and the interface in Section 4. We present experimental eval-

uation of the system in Section 5. We end the paper with

related work and conclusions.

2. Transactional Memory Overview

Transactional memory (TM) seeks to simplify multithreaded

programming by removing the need for explicit locks. In-

stead, a programmer can declare a section of code atomic,

and the TM system will enforce isolation (i.e., no access

to uncommitted data) and atomicity (i.e., all or nothing) for

the code, and resolve any conflicts that occur. Conflicts arise

when two concurrent transactions access the same memory

items and one transaction performs a write. Transactions can

execute concurrently if they do not conflict. Thus, they can

improve performance if critical sections rarely conflict. If a

conflict occurs, a resolution policy may stall or abort one

of the transactions to clear up the conflict. TM systems en-

force isolation by detecting when two transactions conflict,

and provide atomicity by buffering either old or new values

to allow the transaction to abort.

Transactional memory has been implemented in software

(an STM) [Dice 2006, Harris 2003, Saha 2006a] and can

be implemented in hardware (an HTM) [Hammond 2004,

Moore 2006], or with a combination [Baugh 2008, Damron

2006, Minh 2007]. Because a software TM system must

perform version management to store both old and new

values written and conflict detection on loads and stores,

performance may drop by 65% or more [Harris 2006, Saha

2006a]. Proposed hardware transactional memory systems

would perform these operations in hardware, so transactions

that do not conflict are executed with almost no overhead.

However, such hardware is not yet available.

Some TM systems implement irrevocable transactions

(also called inevitable transactions) that cannot abort. These

allow system calls to execute within transactions by remov-

ing the need to reverse the system call’s effects [Blundell

2007, Olszewski 2007, Spear 2008, Welc 2008]. However,

this approach only allows a single irrevocable transaction

at a time to prevent conflicts and thus limit concurrency.

In addition, irrevocable transactions may not abort them-

selves, which prevents the use of transactions for error

handling [Fetzer 2007] or for conditional blocking [Harris

1991].

248

The xCall interface depend on three additional features

provided by many TM systems:

1. Transactions must be able to abort themselves to resolve

deadlocks around I/O.

2. Transactionsmust be able to escape into non-transactional

code without terminating the transaction. This enables

xCalls to invoke system calls and non-transactional li-

brary code.

3. Transactions must be able to specify commit actions that

execute at commit and compensating actions that execute

on abort.

The Intel STM supports these requirements [Ni 2008], as

do many proposed HTM designs [McDonald 2006, Moravan

2006, Moss 2006].

3. xCall Design

The xCall interface enables applications to invoke system

calls within transactions. Rather than transparently make ex-

isting system calls transactional, xCalls expose to the pro-

grammer how atomicity is provided for each function. This

informs programmers about which failures may occur dur-

ing the transaction and which occur on commit or abort.

3.1 Design Overview

The xCall APIs rely on four components to provide transac-

tional semantics for I/O and system calls:

1. xCall functions provide transactional semantics for com-

monly used kernel functionality.

2. Deferral, compensation, and buffering provide atomicity

for kernel data and I/O.

3. Sentinels provide isolation for kernel data.

4. Error handlers inform the program asynchronouslywhen

deferral or compensation fails.

The xCall interface is similar to the POSIX interface,

so porting existing code requires mostly syntactic changes,

such as changing the name of a function and passing an

additional result parameter. We defer discussion of the xCall

API to Section 4.

3.2 Atomic Execution with Deferral, Compensation

and Buffering

Work in transaction processing has found two fundamen-

tal techniques for atomic state changes: (1) compensation:

buffer old values, execute the change during the transaction,

and revert or undo on abort, or (2) deferral: buffer new data

and defer the change until commit. The xCall implementa-

tion provides atomicity with both deferral and compensa-

tion, depending on the semantics of the call.

The xCall APIs classify system calls into six categories

based on their behavior. Table 1 lists the categories and the

actions they perform during transaction execution, commit,

and abort. An xCall executes a system call in place when

(1) it has no side effects; (2) it can be reversed; or (3) its

output is required for the program to proceed. This ensures

that errors are visible to the program as early as possible. An

xCall defers a system call until commit when its side effects

cannot be reversed at user level, such as sending a packet.

Consumer and reader system calls differ by whether they

destroy data in the kernel. For example, reading data from a

pipe deletes the kernel’s copy of that data. Thus, the xCall

must buffer the data to make it available to other threads

if the transaction aborts. Similarly, xCalls make a distinc-

tion between writer system calls, which have reversible side

effects, and producers, which do not. Producer calls must

be deferred until commit. Finally, renegade system calls

are ones that are not reversible and cannot be deferred.

These calls produce side effects and either have ambigu-

ous/variable semantics or require two-way communication

with a non-transactional device or service. Renegade calls

can only be supported by irrevocable transactions, because

their effects cannot be either deferred until commit or re-

versed on abort by library code.

Our study of the Linux system calls, indicates as shown

in Table 2, that most system calls can be handled through

compensation or deferral. Of 284 Linux system calls, 84 do

not modify visible kernel state and can be executed without

xCalls. Of the remainder, 163 can be made atomic with de-

ferral and compensation. Only 33 require irrevocable trans-

actions, and none of the programs we experiment with make

these calls within transactions.

Strategy Count Example

Read-only 88 getpid, mincore, pread

Deferral 66 exit, settimeofday, umount

Compensation 97 chdir, flock, symlink

Irrevocable 33 fcntl, ioctl, poll, select

Table 2. Categorization of Linux system calls into those made
atomic through deferral, compensation, and those that require

irrevocable transactions.

3.3 Sentinels for Isolation

Most transactional memory systems operate only at user

level and do not isolate changes to kernel data made within

a transaction. For example, a thread may view speculative

data written to a file by a transaction that later aborts. Such

transient effects do not occur with locks and may cause the

program to behave incorrectly.

The xCall interface provides isolation for kernel objects

with sentinels. A sentinel is a lightweight, revocable user-

level lock for a kernel object. The purpose of a sentinel is

to isolate the effects of system calls from other threads in

the same process. Similar to a database lock, sentinels are

centrally managed to detect deadlocks and can be revoked to

recover from deadlocks.

249

Category Examples Execution Commit Abort

Side-effect free fstat() Execute – –

Readers read() file Execute – Reset kernel pointers

Consumers recv() socket Execute, buffer results – Share buffer

Writers write() file Execute, buffer old contents – Rewrite from buffer

Producers send() socket Buffer Execute –

Renegades ioctl() Execute, make transaction irrevocable – –

Table 1. Categories of system calls and the xCall operations at execution, on commit, and on abort.

The xCall APIs associate sentinels with distinct kernel

objects, such as sockets and file descriptors. Sentinels are

released only when the transaction commits or aborts to im-

plement two-phase locking. However, sentinels do not pro-

tect programs with inherent race conditions, such as when a

non-transactional thread reads data from a file written by a

transaction.

Before invoking a system call, an xCall acquires the sen-

tinel that isolates the underlying kernel object accessed by

the call. Sentinels only lock the logical state of the kernel

that is visible through system calls. Internally, kernel queues

and buffers may have different contents as long as system

calls do not observe a change.

The sentinel implementation must detect deadlock when

two transactions acquire the same set of sentinels concur-

rently in different orders. On deadlock, one transaction

aborts and releases its sentinels.

3.4 Error Handlers

Robust programs must check for the failure of a system

call and clean up their state when an error occurs. In ad-

dition, they may handle errors that arise while cleaning up.

Database transactions provide failure atomicity, so that all

operations either succeed or the transaction aborts. Mem-

ory transactions, though, cannot provide this automatic er-

ror handling for system calls, so programs must still include

this code. However, xCalls change when this code executes;

some error results are not available until the transaction com-

mits or aborts.

For xCalls that execute system calls in-place within trans-

actions, errors may be handled in place as well. For xCalls

that defer system calls until commit, the programmer must

move error-handling code to execute after commit. Because

a transaction may execute multiple xCalls, it is possible that

some deferred operations succeed while others fail.

The xCall API relies on result parameters to return errors

asynchronously. As illustrated below, every xCall takes an

extra parameter that returns errors after the transaction com-

mits or aborts.s s i z e _ t x _ w r i t e _ p i p e (i n t f d , v o i d * b u f ,s i z e _ t n b y t e s , i n t * r e s u l t) ;
The result value is set on failure. If a single variable is passed

to a set of calls, it will be set if any deferred xCall operation

fails, allowing a program to check for failure with a single

test.

The xCall interface also reports when a compensating

action fails to compensate. A compensating action could

fail for either transient reasons, such as low memory, or for

persistent reasons, if the state of the system changed between

the xCall and its compensating action. For example, an xCall

may be unable to rewrite data to a network file server during

abort if the network is partitioned. To handle these failures,

xCalls allow a program to request that (1) the transaction not

be retried when a compensating action fails and (2) a single

error result be set. The result parameters from individual

xCalls indicate which compensating actions failed. Thus,

programs can test with a transaction failed during commit

or abort by testing this result.

4. xCall Functions

We implemented xCalls for file handling, communication,

and threading system calls and rely on the Intel STM’s

internal support for memory management. All the system

calls invoked within critical sections, both in our workloads

and other applications we investigated, fall in these cate-

gories [Swift 2008].

4.1 File Handling

The xCall file APIs provide support for common file oper-

ations within a transaction. We rely on the TM system for

transactional access to memory-mapped files and do not en-

force transaction semantics if a file is simultaneously ac-

cessed through memory and a system call. We defer discus-

sion of pipes to the following section.

As shown in Table 3, most file operations are handled

in place, which is possible because many file modifications

can be reversed from user mode. Operations without well-

defined semantics, such as fcntl(), are not supported by

xCalls and must execute in an irrevocable transaction.

There are two xCalls for writing data to the file, allowing

the xCall implementation to optimize its atomicity mecha-

nism. The x write seq() call appends to the file and trun-

cates the file on abort. The x write ovr() call supports ran-

dom access. It reads the old content being overwritten into

a buffer before writing new data. On abort, it restores the

original data. While x write ovr() is correct for sequential

access, it adds unnecessary overhead when appending.

250

xCall System Call Execution Compensation Failures

x open open in-place close abort

x create open in-place unlink, rename abort, commit

x dup dup in-place close abort

x rename rename in-place rename abort

x seek lseek in-place lseek abort

x read read in-place lseek abort

x write ovr write in-place lseek, write abort

x write seq write in-place truncate abort

x unlink unlink deferred – commit

x close close deferred – commit

x fsync fsync deferred – commit

x fstat fstat in-place – –

Table 3. The xCalls for accessing files. For each xCall, this table shows the underlying system call, when the operation executes, the
compensation, and which asynchronous actions can fail.

As illustrated in Figure 1, the x read() call is also exe-

cuted in place. Its compensation is to reset the file pointer by

seeking backward. To achieve better performance, x read()

places restrictions on the buffer that receives data. The buffer

must be (1) thread private and (2) empty at the start of the

transaction, meaning that it does not contain useful data.

A buffer may be used for multiple x read() calls, though.

With these requirements, the xCall can pass the buffer to

the kernel without first saving its original contents. In addi-

tion, the TM system need not detect conflicting accesses to

this buffer. Programs requiring transactional semantics can

memset() the buffer in advance of use.

The read and write xCalls acquire sentinels on file de-

scriptors to prevent other threads from viewing uncommit-

ted changes to a file. We do this for efficiency, as locking the

file itself requires an additional system call to find the file’s

inode number. The library detects when descriptors are du-

plicated with x dup(), but will allow concurrent access if the

same file is opened twice.

Providing atomicity for directory operations requires spe-

cial care. When creating a file, x create() tests whether the

file name is in use. If so, it renames the old file before creat-

ing the new file. When the transaction commits, the old file is

removed. This preserves the contents of the file if the trans-

action aborts. Similar to x create(), x rename first tests if

the new file name is in use, and renames it. Then, it creates

a new hard link with the new name, which points to the file

to be renamed. When the transaction commits, the old file is

removed. x unlink() function is deferred until commit, as

its actions cannot easily be reversed.

Race conditions may arise between transactions that per-

form directory operations. For example, because create op-

erations are executed in place, a transaction could open the

newly created file, only to have it disappear if the creating

transaction aborts. The x open(), x create(), x unlink()

and x rename() calls prevent this race by acquiring a sen-

tinel indexed by the file inode number. These xCalls invoke

s s i z e _ t x _ r e a d (i n t f d , v o i d * b u f ,s i z e _ t n b y t e s , i n t * r e s u l t) {s s i z e _ t b y t e s ;g e t _ s e n t i n e l (f d) ;b y t e s = r e a d (f d , b u f , n b y t e s) ;i f (b y t e s ! = G 1)c o m p e n s a t e (x _ u n d o _ r e a d , f d , b y t e s , r e s u l t) ;r e t u r n (b y t e s)} i n t x _ u n d o _ r e a d (i n t f d , s s i z e _ t n b y t e s , i n t * r e s u l t) {o f f _ t r e t ;r e t = l s e e k (f d , G n b y t e s , S E E K _ C U R) ;i f (r e t = = G 1)* e r r = e r r n o ;r e t u r n (r e t = = G 1) ;}
Figure 1. The xCall code for reading from a file and its com-
pensating action for abort. Code in the xCall for isolation and

atomicity is marked with boldface. The compensating action

x undo read() returns a flag indicating whether the compen-

sation failed.

the sentinel manager to acquire a lock on a table of open

files before opening, creating, deleting or renaming a file.

The lock is released after the xCall discovers the file’s in-

ode number and acquires the sentinel. Furthermore, both x -

create() and x rename() overwrite existing files, they ac-

quire an extra sentinel indexed by the inode number of the

overwritten file.

4.2 Communication

The xCall API supports network communication with sock-

ets and intra- and inter-process communication with pipes.

To distinguish between pipe operation and file operations,

there are separate xCalls, x read pipe() and x write -

pipe(), for pipe access. These calls are also suitable for

other forms of streaming communication, such as standard

input and output. We have also written xCall functions for

standard socket calls, such as x send() and x recv(). As

251

the xCalls for pipe and socket communication behave sim-

ilarly, we describe their implementations together. As with

the file xCalls, communication xCalls acquire sentinels on

file descriptors or sockets for send/receive operations.

Sockets and pipes support two fundamental operations,

send and receive, which may be accessed through file system

APIs or socket APIs. The send xCalls buffer messages at

user level until the transaction commits, when messages are

delivered to the kernel. Deferring sends ensures that the

message recipients only receive committed send operations,

but prevents two-way communication.

The receive xCalls execute in place, but store results in

a shared buffer. On abort, the data cannot be pushed back

into the kernel, so it remains within shared buffers until

eventually consumed or the program calls x close() on the

socket or pipe. All receives first check whether buffered

data exist before requesting new data from the kernel. Thus,

receiving data requires two copy operations: one copy from

the kernel into a shared buffer, and one copy from the shared

buffer into the application buffer.

4.3 Threading

The xCall interface supports thread creation, locking, and

condition variables. xCalls defer thread creation until com-

mit, so memory changed by the new thread does not need

to be rolled back on abort. As a result, transactions cannot

interact with threads they create. No sentinels are used, be-

cause the thread is not visible until commit.

Locking and condition variables require special APIs be-

cause acquiring a lock within a transaction may lead to

deadlock, livelock, or loss of mutual exclusion [Rossbach

2007, Volos 2008]. We implement transaction-safe locks

(TxLocks) [Volos 2008] to allow transactions to acquire mu-

tex locks. Unlike other xCalls, the locking functions replace

existing Pthread locking functions to allow legacy code us-

ing locks to interact with transactional code. TxLocks pro-

vide atomicity with compensating and commit actions to re-

lease locks: locks acquired within a transaction are released

with a compensating action on abort, and locks released

within a transaction are held until the transaction commits.

In addition, xCalls provide a transactional version of con-

dition variables [Dudnik 2009]. Like regular condition vari-

ables, transactional condition variables commit the transac-

tion before waiting, and start a new transaction after resum-

ing. Unlike regular condition variables, the signal and broad-

cast functions wake up waiters directly, rather then enqueu-

ing them on the lock.

4.4 xCall Implementation

We implemented the xCall API using the Intel Prototype

STM compiler version 2.0 for Linux [Intel 2008]. The xCall

APIs execute as escape actions, outside of transaction, using

the tm waiver annotation.We rely on the Intel STM to pro-

vide transactional memory management. The STM defers

freeing memory until commit and compensates for memory

allocation by freeing allocated buffers on abort [Wang 2007,

Zilles 2006].

The total implementation is 7990 lines of code, com-

prising the implementation of 27 xCalls for common sys-

tem calls and three subsystems: buffer management, sentinel

management, and failure management.

Sentinel Manager. This subsystem allocates and maps sen-

tinels to logical kernel objects in user mode. We implement

process-wide sentinels with POSIX reader/writer locks to

allow multiple readers to access a kernel object simultane-

ously. The sentinel manager maintains lists of the sentinels

acquired by each transaction and releases them at commit or

abort.

To prevent deadlocks, the sentinel manager enforces a

canonical global order over all sentinels based on the sen-

tinel’s index in the global table of allocated sentinels. When

a transaction cannot acquire a sentinel, the sentinel manager

aborts the transaction and releases the acquired sentinels.

The transaction re-acquires all the sentinels it encountered

in canonical order before restarting. The transaction holds

on to the sentinels until commit, even if it does not require

the same sentinels when re-executed.

Buffer Manager. This subsystem provides shared and pri-

vate buffers to store data for deferred system calls and for in-

place system calls that require compensation. Shared buffers

store data when the kernel cannot undo a data-producing

action, such as reading from a pipe. These buffers persist

across transactions and may be accessed by any thread. Pri-

vate buffers store data for deferred calls for compensating

actions. For example, undoing a random file write replaces

the data in the file with its original contents, which are stored

in a private buffer. As private buffers are discarded when a

transaction aborts, they are organized as a per-thread log to

reduce fragmentation and bookkeeping overheads.

Failure manager. This subsystem informs programs when a

compensating or deferred action fails. It exposes an interface

to applications to specify an action to take or a variable to

set when an asynchronous failure (one during commit or

abort) occurs. Figure 2 illustrates the use of this interface.

For example, the program may specify that the transaction

should not be retried if a compensating action fails by calling

the manager with the X NO RETRY flag.

4.5 Semantics

The Intel STM provides single lock atomicity (SLA) [Menon

2008]. Under SLA, a program behaves as if a single global

lock guards each atomic block. Thus, programs that are race

free under a single global lock will execute correctly un-

der transactional execution. xCalls maintain the single lock

atomicity (SLA) semantics.

The SLA semantics places two requirements on trans-

actional programs and the xCall implementation. First, the

STM requires that program be race free using only transac-

252

T r a n s a c t i o nR e c o v e r y
i n t d o _ r e q u e s t (s t r u c t r e q u e s t * r e q) {i n t e r r 1 , e r r 2 , t x _ e r r ;_ _ t m _ a t o m i c {x _ f m _ r e g i s t e r (X _ N O _ R E T R Y , & t x _ e r r) ;x _ r e a d (r e q � > f d 1 , b u f , n b y t e s , & e r r 1) ;x _ w r i t e _ s e q (r e q � > f d 2 , b u f , n b y t e s , & e r r 2) ;}i f (t x _ e r r) {i f (e r r 1) c l o s e (r e q � > f d 1) ;c a n c e l _ r e q u e s t (r e q) ;}}

Figure 2. Example code of error handling. The X NO RETRY

indicates that the transaction should not be retried if an asyn-

chronous failure occurs during abort, and the result parame-

ters allow the program to determine exactly what failed.

tions for concurrency control 1. Consequently, accesses to

a system resource (e.g., file, network socket, etc.) from both

outside and inside a transaction are considered racy and be-

havior of a program executing such accesses is undefined

(much like behavior of a racy program in Intel’s STM). As

long as xCalls are strictly used inside transactions, accesses

to system resources through xCalls are not racy, and there-

fore they do not compromise SLA.

Second, SLA requires that schedules be serializable. The

Intel STM guarantees serializability of atomic blocks with

respect to memory accesses through its internal implemen-

tation of concurrency control. xCalls maintain serializability

of transactions with two-phase locking of sentinels. Thus,

xCalls maintain the SLA semantics of the underlying STM.

These semantics apply only within a single process. For

example, while file writes within a transaction are not visible

to other threads in the same process until that transaction

commits, they are immediately visible to threads running in

other processes. This is a result of our choice of user-mode

sentinels for isolation.

4.6 Kernel support for xCalls

The current xCall implementation is entirely user-mode

code. This implementation therefore demonstrates that most

system calls do not require support from the kernel at all.

However, we have identified three situations where ker-

nel support could simplify the implementation and use of

xCalls. First, the xCalls that access directories hold a user-

mode lock while calling into the kernel and must call into the

kernel a second time to obtain inode numbers used to iden-

tify the sentinel required. A single kernel API that opens a

file and acquires a kernel lock on the file would improve

performance of directory operations.

1There is a growing consensus that it is difficult to guarantee SLA for

programs whose race-freedom is guaranteed by traditional synchronization

mechanisms, such as mutual exclusion locks - Intel’s STM does not provide

such guarantee.

Second, a modified kernel could guarantee that some de-

ferred calls or compensating actions cannot fail. This would

relieve the programmer of writing error-handling code for

these cases. However, we believe that it is a bad practice

for the kernel to promise that operations succeed, as it pre-

cludes future kernel modifications that introduce new fail-

ure modes. Otherwise, kernel support could reduce the fre-

quency of failed compensating and commit actions by re-

serving resources in advance. Nevertheless, since errors can

still occur, error handling within programs is still required

for reliability.

Third, kernel-mode sentinels could even provide inter-

process isolation guarantees of kernel resources between

transactional programs that explicitly use the xCall API and

non-transactional programs that use the existing system call

interface.

4.7 Summary

The xCall interface provides two concrete benefits to trans-

actional memory programmers. First, it exposes transac-

tional semantics to programmers. Unlike proposals to exe-

cute existing system calls transactionally [Baugh 2007], pro-

grammers are aware of how the call is made transactional.

For example, xCalls do not speculate that deferred calls will

succeed; instead they return an error code at commit, after

the underlying system call executes. Second, xCalls enable

performance optimizations. While system calls make no as-

sumptions about their arguments, an xCall can require that

a buffer be empty and need not be restored to its original

contents on abort.

5. Evaluation

The goal of xCalls is to enable concurrent system calls and

I/O within memory transactions. In this section, we evaluate

two aspects of xCalls:

1. Ease of use. Is it straightforward to use xCalls and trans-

actions instead of system calls and locks?

2. Performance.What is the performance cost of the xCall

mechanisms as compared to using locks or irrevocable

transactions?

As most transactional memory systems do not support sys-

tem calls, existing TM workloads have no system calls in

their transactions [Minh 2007, Yen 2007]. We therefore con-

verted three large multithreaded programs to use transac-

tions for some of their critical sections. While new programs

written from scratch to use transactions could reflect a dif-

ferent programming style, they would not accurately capture

the size and complexity of large existing applications. In ad-

dition, we wrote microbenchmarks to measure the perfor-

mance of xCalls for comparison against native system calls

and the Intel STM’s irrevocable transactions.

253

A f t e ri n t f a i l e d = 0 ;_ _ t m _ a t o m i c {i f (o v _ o p e n (f d , & v fi l e , N U L L , 0) < 0) {f a i l e d = 1 ;g o t o t x _ e n d ;}o v _ c l e a r (& v fi l e) ;}t x _ e n d :i f (f a i l e d) {c l o s e (f d) ;r e t u r n F A L S E ;}
B e f o r ep t h r e a d _ m u t e x _ l o c k (& v f _ m u t e x) ;i f (o v _ o p e n (f d , & v fi l e , N U L L , 0) < 0){ p t h r e a d _ m u t e x _ u n l o c k (& v f _ m u t e x) ;c l o s e (f d) ;r e t u r n F A L S E ;}o v _ c l e a r (& v fi l e) ;p t h r e a d _ m u t e x _ u n l o c k (& v f _ m u t e x) ;
Figure 3. Converted critical section code from XMMS. Ar-
rows indicate corresponding code blocks.

5.1 Ease of use

We converted three large programs to use transactions, as

listed in Table 4: Berkeley DB, BIND, and XMMS. We use

these programs both for performance testing and to gauge

the experience of programming with transactions, to learn

whether xCalls burden programmers.

Converting these applications to use memory transactions

was a straightforward process of converting all uses of a lock

variable into blocks of code denoted with tm atomic. In

addition, we annotated all functions called from transactions

with tm callable (required by the STM to produce transac-

tional versions of the code).

A common problem across all three workloads was criti-

cal section code with multiple exits. For example, the before

code in Figure 3 drops the lock in the middle of a critical

section to handle an error. With transactions, shown in the

after code, the error handling code must be moved out of the

atomic block. This problem arises because the Intel STM en-

forces a block structure on transactions, and does not arise

in TM systems that provide explicit begin and commit trans-

action statements. A similar problem occurs when a lock is

released and re-acquired in the body of a loop. We restruc-

ture these loops into a prologue that executes once and a loop

containing the termination condition.

In many cases, we found that error handling with transac-

tions was simpler than with locks, because every transaction

with xCalls must test for failure at the end of a transaction.

Thus, repetitive cleanup code that ordinarily follows each

successive invocation of a system call can be consolidated in

one place.

Berkeley DB is an embedded database that provides storage,

locking, and transactions [Oracle Corporation]. We have

converted 20 critical sections in the locking subsystem and

11 critical sections in the logging subsystem to use memory

transactions. This subsystem uses xCalls to overwrite a file.

The logging routines in Berkeley DB conscientiously check

errors from all system calls in the style shown in Figure 3.

We moved this code to the end of transactions to recover

from failed compensating and commit actions.

The STM provides helpful statistics to indicate how often

every transaction aborts, and these helped us quickly iden-

tify hotspots in our code. Unlike lock profiling, which identi-

fies which lock is contended but not which critical section is

causing the contention, the Intel STM identifies the problem-

atic code. As others have found [Damron 2006], we discov-

ered that direct conversion of the locking subsystem’s criti-

cal sections into memory transactions resulted in excessive

contention on list heads, leading transactions to conflict and

abort. We resolved these hotspots by maintaining multiple

lists indexed by CPU ID. We also found excessive conflicts

in the database deadlock detector, and explicitly serialized

this transaction by making it irrevocable.

BIND is a commonly used DNS server [Internet Systems

Consortium]. Past versions of BIND had severe scalability

problems [Jinmei 2006]. We selected a non-scalable version

(9.3.5) and sought to improve its scalability with transac-

tions. We converted the logging and memory subsystems

to transactions. In both cases, we converted write() and

stat() system calls to xCalls. We configured the memory

subsystem to use BIND’s internal memory allocator, which

uses malloc() occasionally to allocate large blocks of mem-

ory and thereafter manages that memory. The logging sub-

system records BIND’s activity and uses of xCalls to append

entries to the log file. BIND handles the failure of a compen-

sating action by ignoring the failure, which is similar to the

original source code’s practice of ignoring I/O failures dur-

ing logging.

XMMS is a media player that uses multiple threads to pro-

cess UI events and sound decoding concurrently [xmms.org].

We converted the playlist interface module and the Ogg Vor-

bis codec [xiph.com] to use transactions. The playlist mod-

ule performs memory allocation with transactions but no

I/O. The codec uses threads to concurrently read audio data

from a file and decode it. We transactionalized critical sec-

tions containing file I/O, including calls to open(), read(),

and lseek(). We modified XMMS to handle the failure of a

compensating action by first, retrying the action to ensure it

is not transient, and then terminating playback of the current

song.

Summary. Our experience converting these three programs

to transactions and xCalls is encouraging, as we found that

xCalls could often replace existing system calls with few

other changes. With fewer locks, future modifications to

these programs may be less likely to cause deadlock. Han-

dling the asynchronous failure of an xCall proved simple in

these programs, as they already had mechanisms for recov-

ering from system call failures.

5.2 Performance

We measure the performance impact of using xCalls with

transactionalized applications and microbenchmarks. We

measure all programs except XMMS on a NUMA machine

with 4 quad-core 2 GHz AMD Barcelona processors, 16 GB

254

Name Description Code Size Transactions xCalls

Berkeley DB 4.4.20 Database 77,591 lines 31 File read/write

BIND 9.3.5 DNS server 223,755 lines 87 File open, close, write, stat, fsync

XMMS 1.2.11 Media player 59,357 lines 22 File open, read, seek

Table 4. The programs used to evaluate xCalls. The table shows the program name, purpose, size of code base, number of
transactions in the code, and the system call operations used in transactions.

RAM, a SATA hard disk, and a gigabit network running Fe-

dora Core 9 in 64-bit mode. We measure the performance of

XMMS on a 1.8 GHz Intel Core2-Duo with 2 GB RAM. We

replace the C compiler in our workload makefiles with the

Intel STM Compiler.

We perform tests in three configuration: native uses un-

modified applications, locking for synchronization and sys-

tem calls for I/O; STM uses transactions and relies on the In-

tel STM’s irrevocable transactions to execute system calls;

xCalls uses transactions with xCalls for I/O.

5.2.1 Microbenchmark Performance

We use microbenchmarks to measure the performance over-

head of using a software TM system and the potential benefit

of xCalls.

The memtest program measures the overhead of software

transactions by reading or writing 100 integers in an array.

We compare the performance of the STM with the perfor-

mance with locks, both on a single thread. The results below

show that the STM causes a 2-5x slowdown for reads and a

5-11x slowdown for writes.

Read Write

Stack 2.3x 5.3x

Heap 8.3x 11.6x

In all cases the STM adds substantial overhead to store old

values for atomicity. Stack access is cheaper, though, be-

cause the compiler is able to determine statically that data

has not been shared, whereas heap access requires more ex-

pensive runtime conflict detection. These overheads would

not be present with proposed hardware supported TM sys-

tems [Hammond 2004, Moore 2006]. These results indicate

that an STM must substantially improve scalability to over-

come the cost of isolation and atomicity.

The iotest microbenchmark measures the performance

and scalability of system calls. The test issues sets of four

identical operations, either in a transaction (for the STM and

xCalls configurations) or with no locks held (for the native

configuration). Read and write tests access 64KB of data

in 16KB chunks from a single file. All data fits within the

buffer cache, so the disk is not accessed. Tests of the open()

call open four files in a transaction and close them after

the transaction commits. We separately test x write ovr, x -

write seq, x write pipe, x read and x read pipe against

a file to measure the overhead of the different atomicity

mechanisms.

00 . 20 . 40 . 60 . 8 11 . 2
F i l e O p e n F i l e R e a d F i l e W r i t eP erf ormanceR el ati vet o N ati ve M i c r o b e n c h m a r k ë 1 T h r e a dN a t i v e S T M x C a l l s ü o v r x C a l l s ü p i p e x C a l l s ü s e q

N / A N / A
Figure 4. Relative performance of the Intel STM and xCalls
compared to native system calls with a single thread.

00 . 20 . 40 . 60 . 8 11 . 2
F i l e O p e n F i l e R e a d F i l e W r i t eP erf ormanceR el ati vet o N ati ve M i c r o b e n c h m a r k 3 1 6 T h r e a d sN a t i v e S T M x C a l l s F o v r x C a l l s F p i p e x C a l l s F s e q

N / A N / A
Figure 5. Relative performance of the Intel STM and xCalls
compared to native system calls with 16 concurrent threads.

Figure 4 shows the throughput of the STM and xCalls rel-

ative to locks for a single thread, and Figure 5 shows results

for 16 threads. With a single thread, the Intel STM performs

similarly to locks, because irrevocable transactions avoid the

overhead of conflict detection and atomicity; instead, the

transaction acquires a global lock. xCalls are slower because

they buffer data and acquire sentinels. Overwriting a file (la-

beled xCall-ovr) is the most expensive because it must read

in existing data before writing new data. Pipe-style writing

is cheaper, because old data is not read, but writes must

still be buffered until commit. Sequential writing is cheap-

est because atomicity is provided by truncating and little ex-

tra work is required. Similarly, regular file reads are cheaper

than pipe reads, which must buffer data until commit.

With 16 threads, the relative performance of the STM

drops because it achieves no concurrency. The concurrency

benefit of read and write xCalls raises their performance to a

255

05 0 0 01 0 0 0 01 5 0 0 02 0 0 0 02 5 0 0 0
0 5 1 0 1 5D at ab aseT ransacti ons/ sec

T h r e a d s

B e r k e l e y D B m L o c k s c a l e P e r f o r m a n c eN a t i v eS T Mx C a l l s

Figure 6. Scalability of Berkeley DB with the Lockscale work-
load.

`03 0 06 0 09 0 01 2 0 01 5 0 01 8 0 0

0 5 1 0 1 5D at ab aseT ransacti ons/ sec
T h r e a d s

B e r k e l e y D B ¨ T P C ¨ C P e r f o r m a n c eN a t i v eS T Mx C a l l s

Figure 7. Scalability of Berkeley DB with the TPC-C work-
load.

point where other system bottlenecks dominate the overhead

of buffering and sentinels. However, the open xCall always

performs worse than the STM. As noted in Section 4, this

function acquires a global lock to prevent races with calls to

create a file. As a result, it achieves no scalability with more

processors. To verify this cause, we removed the lock from

the open xCall and found that its performance rose to near

native speed.

These tests demonstrate that with highly concurrent

workloads, xCalls can provide scalable I/O performance

within transactions despite the added buffering and sentinel

costs.

5.2.2 Application Performance

We measure the performance of the test applications with

commonworkloads. The workloads and test results are sum-

marized in Table 5.

05 0 0 01 0 0 0 01 5 0 0 02 0 0 0 02 5 0 0 03 0 0 0 0

0 5 1 0 1 5
Q ueri es/ sec

W o r k e r T h r e a d s

B I N D Ú Q u e r y P e r f P e r f o r m a n c eN a t i v eS T Mx C a l l s

Figure 8. Scalability of BIND.

Berkeley DB. We use two workloads to evaluate Berkeley

DB. The Lockscale driver, derived from code distributed

with the database source, stresses the transaction, logging,

and locking subsystems. The driver spawns threads that:

begin a database transaction, acquire a write lock for an

object picked randomly from a set of 1000 objects, writes

a log record, and commit the database transaction.

Second, we use a single-process implementation of TPC-

C [Fedorova 2007]. While a full-blown TPC-C requires a

multi-tier client server set-up, this version simulates only the

load on the server resulting from executing database trans-

actions. The benchmark spawns several threads that perform

transactions over a previously generated database. We con-

figured the benchmark to run with 8 warehouses and a 2.5GB

buffer cache to prevent serialization around database locks

and disk I/O due to buffer page replacements. With a smaller

buffer cache the benchmark becomes disk I/O bound, and

the performance across all three versions is identical. De-

spite this configuration, the workload still performs disk I/O

for logging. The results for both workloads using all cores

are shown in Table 5.

For the Lockscale workload, xCalls performs 16% bet-

ter than native locking code, while the STM performs 62%

worse. Figure 6 shows performance results for different

numbers of worker threads. This figure demonstrates that

transactions can improve the scalability of lock-based work-

loads, even with expensive software transactions.While irre-

vocable transactions limited scalability by serializing around

I/O calls, xCalls improved concurrency.

For TPC-C, as shown in Figure 7, the transactional ver-

sion of Berkeley DB using xCalls achieves 54% of native

performance, while the STM version achieves only 30%.

However, in testing with fewer threads we find that perfor-

mance with xCalls scales with the number of threads, while

the STM version does not. This illustrates that executing sys-

tem calls concurrently is critical to the scalability of this ap-

plication.

256

Application Workload # of Threads xCalls Intel STM Transaction

Name % of locks % of locks frequency

Berkeley DB Lockscale 15 116 % 38 % 58,260 /sec

TPC-C 15 54 % 30 % 23,661 /sec

BIND QueryPerf 14 170 % 139 % 228,940 /sec

XMMS Play .ogg 2 96 % 99 % 182 /sec

Table 5. Performance results for transactional workloads using the Intel STM’s irrevocable transactions and xCalls, as a percentage
of the performance of lock-based code.

To understand the low performance on TPC-C, we pro-

filed the xCall and native versions of the code to identify

where performance is lost. We found that for this workload,

Berkeley DB spends an average of 33 ms per database trans-

action in the STM runtime, while the lock-based version

spends a total of 23 ms per database transaction in all user-

mode code. Transactionalized code invokes the transaction

runtime to perform conflict detection and to store old val-

ues for abort. In addition, the transactional functions (those

called fromwithin transactions) execute 2-3x slower than the

non-transactional version, due to the added calls into the run-

time. These costs are due to executing transactions in soft-

ware, and would be greatly diminished with a hardware TM

system, or even hardware support for a software TM [Baugh

2008, Minh 2007, Saha 2006b].

BIND. We use the QueryPerf tool to measure the perfor-

mance of BIND. We loaded an imaginary local zone for

BIND with 2,900 domain names scraped from Internet

web sites paired with imaginary IP addresses. Against this

database, we ran a fixed set of 100,000 queries, repeated as

long as each experiment lasted (30 seconds). All three con-

figurations were run at the first debug level (-d 1). At this

debug level, we configure BIND to print one line of logging

output per query.

Figure 8 shows the scalability of the two transactional

versions of BIND and the original lock-based version. While

the performance of the native version flattens out after 6

threads, with xCalls performance continues to scale up to

14 threads, achieving a 70% performance improvement. The

Intel STM also improves performance by up to 39%, but not

as much because of serializing around I/O.

XMMS. For XMMS, we play an ogg file and measure the

CPU idle time (CPU utilization is so low that it varies by

a factor of 5 on short time scales). This application uses

only two threads and has a light workload, and neither the

STM nor xCalls have a noticeable impact on performance.

These results demonstrate xCalls are unnecessary because

there is little concurrent I/O. However, xCalls retain a benefit

even here, because they allow program-initiated aborts of

transactions with I/O, which irrevocable transactions do not.

5.3 Performance Summary

While transactions are primarily intended to simplify multi-

threaded programs, the Berkeley DB and BIND results show

that supporting concurrent system calls in transactions can

improve scalability. In contrast, irrevocable transactions pre-

vent performance from scaling as cores are added. In ad-

dition, transactional memory, even a software implementa-

tion, can improve the performance of applications with ex-

cess synchronization.

6. Related Work

Our work is motivated by studies indicating the preva-

lence of system calls in the critical sections of lock-based

code [Baugh 2007, Blundell 2007, Swift 2008]. The problem

of performing non-transactional operations within transac-

tions has long been addressed within the transaction process-

ing and fault-tolerant systems communities. More recently,

transactional memory research has proposed mechanisms

for addressing the problem.

Transaction processing. Transaction processing systems

commonly defer “real actions” that are not under transaction

control until the transaction commits [Gray 1993]. Similar

to xCalls, failure of a real action must be reported to the

application. Compensating actions are common in databases

to revert changes made by long-running transactions [Gray

1993]. However, the failure of a compensating action is of-

ten handled by (1) retrying the action, or (2) notifying an

administrator [Strandenæs 2002]. Both approaches would

lead to unreliable software when applied to system calls.

Fault tolerant systems. QuickSilver built transaction sup-

port into all system facilities [Haskin 1987]. This support

would simplify file I/O and communication in memory

transactions. However, QuickSilver made no provision for

irreversible I/O operations. Vistagrams provide kernel sup-

port for transactional message passing [Lowell 1998] by

deferring message send and receive until commit. However,

Vistagrams buffering is per-process, not per thread.

Speculator provides isolation for speculative execution of

system calls [Nightingale 2005]. Unlike xCalls, which use

sentinels to lock kernel objects, Speculator creates a copy of

kernel data structures and updates the copy. If the specula-

tion is correct, the copies are made permanent. While spec-

ulation could be used to implement transactional I/O and

system calls, the implementation requires substantial kernel

modifications and supports only single-threaded processes.

Distributed simulation systems have relied on optimistic

concurrency of atomic sections, similar to transactions, to

257

improve performance [Fujimoto 1989, Jefferson 1985]. Like

transactional memory, they rely on conflict detection and

rollback to correctly order parallel execution. These systems

rely on an irrevocability mechanism to execute actions with

irreversible side effects non-speculatively.

Transactional memory. TM systems either prohibit system

calls in transactions or support them through deferral, com-

pensation, or irrevocable transactions. Baugh et al. show that

all three mechanisms are required to support every system

call made in the critical sections of two programs [2007].

Several systems commit transactions before making a

system call, similar to waiting on a condition variable

[Smaragdakis 2007, Birrell 2007]. This approach avoids

the problem by forcing programmers to remove I/O from

critical sections. However, studies of existing multithreaded

programs show that I/O and system calls occur frequently

within critical sections [Baugh 2007, Lu 2006].

Many TM systems use a combination of deferral and

compensation to execute system calls within transactions

[Harris 2004, McDonald 2006, Moravan 2006, Zilles 2006].

These systems conceal the failure of deferred system calls

or compensating actions from applications, leading to un-

reliable programs. TxLinux executes the state modifications

made by system calls in place, but defers I/O until the trans-

action commits. This decreases the likelihood of failure, but

does not support I/O that returns data or that can fail. Nested

LogTM [Moravan 2006] proposed but did not implement a

sentinel mechanism for isolation.

Irrevocable transactions provide a simple mechanism for

executing system calls in transactions [Blundell 2007, Ham-

mond 2004, Olszewski 2007, Spear 2008, Welc 2008]. Un-

like xCalls, they support system calls that are neither de-

ferrable nor reversible. However, they do not provide concur-

rency between system calls, which may becomemore impor-

tant as systems grow to more processors. Irrevocable trans-

actions also prevent program-initiated aborts, which could

assist in error handling [Fetzer 2007].

7. Conclusions

Transactional memory must support access to system re-

sources to become a viable method of concurrent program-

ming. Support for these resources will expose the benefits of

transactional memory, such as freedom from deadlock and

concurrent execution of non-conflicting critical sections, to a

larger set of programs. xCalls are a practical approach to ex-

ecuting system calls in transactions that defer calls that can

be delayed and compensate for calls that can be reversed.

xCalls specify exactly when a system call will take place,

so programmers can understand how their code will exe-

cute, and provide error-handling mechanisms for when de-

ferral or compensation fail. Thus, the design of xCalls en-

sures that application reliability is not compromised by the

use of transactions.

All is not roses and lilies in the world of xCalls. Our

experiments suggest there is a significant and inherent cost

to software transactional memory, which is employed by

this implementation. Furthermore, there remain system calls

whose semantics preclude the use of xCalls.

In general, though, we find with xCalls that much can be

done to make transactional memory available to program-

mers in commodity operating systems with few modifica-

tions to the systems themselves. Future work includes addi-

tional error-handling techniques, such as exception handling,

and the prudent application of kernel support where the re-

wards are large. In addition, a performance study of xCalls

on a proposed hardware TM system would clarify the per-

formance implications of transaction-enabled system calls.

Acknowledgments

This work is supported in part by the National Science Foun-

dation (NSF) grants CNS-0205286, CNS-0720565, CNS-

0834473. Thanks to Mark Hill for valuable feedback on

early versions of this paper, and the Hewlett Packard Cor-

poration for equipment donations. Swift has a significant fi-

nancial interest in Microsoft.

References

[Baugh 2008] Lee Baugh, Naveen Neelakantam, and Craig Zilles.

Using hardware memory protection to build a high-performance,

strongly-atomic hybrid transactional memory. In ISCA 35, June

2008.

[Baugh 2007] Lee Baugh and Craig Zilles. An analysis of I/O and

syscalls in critical sections and their implications for transac-

tional memory. In TRANSACT 2, August 2007.

[Birrell 2007] Andrew D. Birrell and Michael Isard. Automatic

mutual exclusion. In HotOS 11, May 2007.

[Blundell 2007] Colin Blundell, Joe Devietti, E Christopher Lewis,

and Milo M.K. Martin. Making the fast case common and the

uncommon case simple in unbounded transactional memory. In

ISCA 34, June 2007.

[Cantrill 2008] Bryan Cantrill. Concurrency’s shysters. http:

//blogs.sun.com/bmc/entry/concurrency s shysters,

November 2008.

[Cascaval 2008] Calin Cascaval, Colin Blundell, Maged Michael,

HaroldW. Cain, PengWu, Stefanie Chiras, and Siddhartha Chat-

terjee. Software transactional memory: why is it only a research

toy? Commun. ACM, 51(11):40–46, 2008.

[Damron 2006] Peter Damron, Alexandra Fedorova, Yossi Lev,

Victor Luchango, Mark Moir, and Daniel Nussbaum. Hybrid

transactional memory. In ASPLOS 12, October 2006.

[Dice 2006] Dave Dice, Ori Shalev, and Nir Shavit. Transactional

locking ii. In DISC 20, September 2006.

[Dudnik 2009] Polina Dudnik and Michael M. Swift. Condition

variables and transactional memory: Problem or opportunity? In

TRANSACT 4, February 2009.

[Fedorova 2007] Alexandra Fedorova, Margo Seltzer, and

Michael D. Smith. Improving performance isolation on chip

multiprocessors via an operating system scheduler. In PACT 16,

pages 25–38, 2007.

258

[Fetzer 2007] Christof Fetzer and Pascal Felber. Improving pro-

gram correctness with atomic exception handling. Journal of

Universal Computer Science, 13(8):1047–1072, 2007.

[Fujimoto 1989] Richard M. Fujimoto. The virtual time machine.

In Proceedings of the First ACM Symposium on Parallel Algo-

rithms and Architectures, June 1989.

[Gray 1993] Jim Gray and Andreas Reuter. Transaction Process-

ing: Concepts and Techniques. Morgan Kaufmann, 1993. ISBN

1-55860-190-2.

[Hammond 2004] Lance Hammond, Vicky Wong, Mike Chen,

Brian D. Carlstrom, John D. Davis, Ben Hertzberg, Manohar K.

Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Oluko-

tun. Transactional memory coherence and consistency. In ISCA

31, June 2004.

[Harris 2004] Tim Harris. Exceptions and side-effects in atomic

blocks. In PODC Workshop on Concurrency and Synchroniza-

tion in Java Programs, Jul 2004.

[Harris 2003] Tim Harris and Keir Fraser. Language support for

lightweight transactions. In OOPSLA 18, October 2003.

[Harris 1991] Tim Harris, SimonMarlow, Simon Peyton Jones, and

Maurice Herlihy. Composable memory transactions. In PPOPP

12, June 1991.

[Harris 2006] Tim Harris, Mark Plesko, Avraham Shinnar, and

David Tarditi. Optimizing memory transactions. In PLDI 2006,

June 2006.

[Haskin 1987] Roger Haskin, Yoni Malachi, Wayne Sawdon, and

Gregory Chan. Recovery management in quicksilver. In SOSP

11, pages 107–108, November 1987.

[Herlihy 1992] Maurice Herlihy and J. Eliot B. Moss. Transac-

tional memory: Architectural support for lock-free data struc-

tures. Technical Report Technical Report 92/07, Digital Cam-

bridge Research Lab, 1992.

[Intel 2008] Intel. Intel c++ stm compiler prototype edition 2.0

language extensions and user’s guide. Technical Report 318253-

001US, Intel Corp., April 2008.

[Internet Systems Consortium] Internet Systems Con-

sortium. Berkeley internet name domain (BIND).

http://www.isc.org/index.pl?/sw/bind/.

[Jefferson 1985] David R. Jefferson. Virtual time. ACM Transac-

tions on Programming Languages and Systems, 7(3):404–425,

1985.

[Jinmei 2006] Tatuya Jinmei and Paul Vixie. Implementation and

evaluation of moderate parallelism in the BIND9 DNS server. In

Usenix ATC 2006, June 2006.

[Jula 2008] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and

George Candea. Deadlock immunity: Enabling systems to de-

fend against deadlocks. In OSDI 8, November 2008.

[Lowell 1998] David E. Lowell and Peter M. Chen. Persistent

messages in local transactions. In PODC 17, pages 219–226,

1998.

[Lu 2006] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.

Learning from mistakes: A comprehensive study on real world

concurrency bug characteristics. In ASPLOS 13, October 2006.

[McDonald 2006] Austen McDonald, JaeWoong Chung, Brian

Carlstrom, Chi Cao Minh, Hassan Chafi, Christos Kozyrakis,

and Kunle Olukotun. Architectural semantics for practical trans-

actional memory. In ISCA 33, June 2006.

[Menon 2008] Vijay Menon, Steven Balensiefer, Tatiana Shpeis-

man, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Bratin Saha,

and Adam Welc. Single global lock semantics in a weakly

atomic STM. In TRANSACT 3, February 2008.

[Microsoft Corp. 2008] Microsoft Corp. Transactional memory

team blog. http://blogs.msdn.com/stmteam/default.

aspx, October 2008.

[Minh 2007] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,

Austen Mcdonald, Nathan Bronson, Jared Casper, Christos

Kozyrakis, and Kunle Olukotun. An effective hybrid transac-

tional memory system with strong isolation guarantees. In ISCA

34, June 2007.

[Moore 2006] Kevin E. Moore, Jayaram Bobba, Michelle J. Mora-

van, Mark D. Hill, and David A. Wood. Logtm: Log-based trans-

actional memory. In HPCA 12, pages 258–269, February 2006.

[Moravan 2006] Michelle J. Moravan, Jayaram Bobba, Kevin E.

Moore, Luke Yen, Mark D. Hill, Ben Liblit, Michael M. Swift,

and David A. Wood. Supporting nested transactional memory in

logtm. In ASPLOS 12, pages 359–370, October 2006.

[Moss 2006] J. Eliot B. Moss. Open nested transactions: Semantics

and support. In Workshop on Memory Performance Issues,

February 2006.

[Ni 2008] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe

Bach, Sion Berkowits, James Cownie, Robert Geva, Sergey

Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier, Serguei Preis,

Bratin Saha, Ady Tal, and Xinmin Tian. Design and implemen-

tation of transactional constructs for c/c++. InOOPSLA 23, June

2008.

[Nightingale 2005] Edmund B. Nightingale, Peter M. Chen, and

Jason Flinn. Speculative execution in a distributed file system.

In SOSP 20, pages 191–205, October 2005.

[Olszewski 2007] Marek Olszewski, Jeremy Cutler, and J. Gregory

Steffan. Judostm: A dynamic binary-rewriting approach to soft-

ware transactional memory. In PACT 2007, September 2007.

[Oracle Corporation] Oracle Corporation. Oracle Berke-

ley Database. http://www.oracle.com/database/

berkeley-db/index.html.

[Rossbach 2007] Christopher J. Rossbach, Owen S. Hofmann,

Donald E. Porter, Hany E. Ramadan, Aditya Bhandari, and Em-

mett Witchel. TxLinux: Using and managing hardware trans-

actional memory in an operating system. In SOSP 21, October

2007.

[Saha 2006a] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L.

Hudson, Chi Cao Minh, and Benjamin Hertzberg. Mcrt-stm:

a high performance software transactional memory system for a

multi-core runtime. In PPOPP 13, March 2006.

[Saha 2006b] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Ja-

cobson. Architectural support for software transactional mem-

ory. In MICRO 39, December 2006.

[Schlaeger 2008] Chris Schlaeger. The impact of operating systems

on modern CPU designs (and vice versa). http://arcs08.

inf.tu-dresden.de/docs/arcs08 schlaeger-sld.pdf,

February 2008.

259

[Smaragdakis 2007] Y. Smaragdakis, A. Kay, R. Behrends, and

M. Young. Transactions with isolation and cooperation. In

OOPSLA 22, October 2007.

[Spear 2008] Michael F. Spear, Maged M. Michael, and Michael L.

Scott. Inevitability mechanisms for software transactional mem-

ory. In TRANSACT 3, February 2008.

[Strandenæs 2002] Thomas Strandenæs and Randi Karlsen. Trans-

action compensation in web services. In Norsk Informatikkon-

feranse, June 2002.

[Sutter 2005] Herb Sutter and James Larus. Software and the

concurrency revolution. ACM Queue, 3(7), September 2005.

[Swift 2008] Michael M. Swift, Haris Volos, Neelam Goyal, Luke

Yen, Mark D. Hill, and David A. Wood. OS support for virtualiz-

ing hardware transactional memory. In TRANSACT 3, February

2008.

[Tremblay 2008] Marc Tremblay and Shailender Chaudhry. A

third-generation 65nm 16-core 32-thread plus 32-scout-thread

cmt sparc processor. In ISSCC 2008 Conference Proceedings,

February 2008.

[Volos 2008] Haris Volos, Neelam Goyal, and Michael M. Swift.

Pathological interaction of locks with transactional memory. In

TRANSACT 3, February 2008.

[Wang 2007] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin

Saha, and Ali-Reza Adl-Tabatabai. Code generation and opti-

mization for transactional memory constructs in an unmanaged

language. In CGO 2007, March 2007.

[Wang 2008] Yin Wang, Terence Kelly, Manjunath Kudlur,

Stephane Lafortune, and Scott Mahlke. Gadara: Dynamic dead-

lock avoidance for multithreaded programs. In OSDI 8, Novem-

ber 2008.

[Welc 2008] AdamWelc, Bratin Saha, and Ali-Reza Adl-Tabatabai.

Irrevocable transactions and their applications. In SPAA 2008,

pages 285–296, October 2008.

[xiph.com] xiph.com. Ogg Vorbis documentation. http://www.

xiph.org/vorbis/doc/.

[xmms.org] xmms.org. X Multimedia System. www.xmms.org.

[Yen 2007] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E.

Moore, Haris Volos, Mark D. Hill, Michael M. Swift, and

David A. Wood. LogTM-SE: Decoupling hardware transac-

tional memory from caches. In HPCA 13, pages 261–272,

February 2007.

[Zilles 2006] Craig Zilles and Lee Baugh. Extending hardware

transactional memory to support non-busy waiting and non-

transactional actions. In TRANSACT 1, June 2006.

260

