
Per-Application Power Delivery
Akhil Guliani

University of Wisconsin-Madison, USA
guliani@cs.wisc.edu

Michael M. Swift
University of Wisconsin-Madison, USA

swift@cs.wisc.edu

Abstract
Datacenter servers are often under-provisioned for peak
power consumption due to the substantial cost of providing
power. When there is insufficient power for the workload,
servers can lower voltage and frequency levels to reduce
consumption, but at the cost of performance. Current proces-
sors provide power limiting mechanisms, but they generally
apply uniformly to all CPUs on a chip. For servers running
heterogeneous jobs, though, it is necessary to differentiate
the power provided to different jobs. This prevents inter-
ference when a job may be throttled by another job hitting
a power limit. While some recent CPUs support per-CPU
power management, there are no clear policies on how to
distribute power between applications. Current hardware
power limiters, such as Intel’s RAPL throttle the fastest core
first, which harms high-priority applications.

In this work, we propose and evaluate priority-based and
share-based policies to deliver differential power to applica-
tions executing on a single socket in a server. For share-based
policies, we design and evaluate policies using shares of
power, shares of frequency, and shares of performance. These
variations have different hardware and software require-
ments, and different results. Our results show that power
shares have the worst performance isolation, and that fre-
quency shares are both simpler and generally perform better
than performance shares.

CCS Concepts • Hardware → Platform power issues;
Enterprise level and data centers power issues;

Keywords Power Management, DVFS, Proportional Shares

ACM Reference Format:
Akhil Guliani and Michael M. Swift. 2019. Per-Application Power
Delivery. In Fourteenth EuroSys Conference 2019 (EuroSys ’19), March
25–28, 2019, Dresden, Germany. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3302424.3303981

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00
https://doi.org/10.1145/3302424.3303981

Figure 1. Performance interference between applications
with RAPL, normalized to standalone execution at 85W. Ap-
plication gcc is low demand and cam4 is high demand.

1 Introduction
Power has become a first-class citizen inmodern data centers:
it is a primary cost in provisioning data centers [16], which
emphasize improving overall efficiency. It is a major concern
for server designers [21], who have focused on efficiency
and power proportionality [5]. It is also a major concern for
data-center operators, who must ensure their systems stay
within provisioned power limits [18, 28, 56].

Across systems, it is currently possible to provision more
power to some hosts than others, such as using more power
on hosts executing more applications. The distribution of
power is accomplished explicitly through power-aware job
placement [56] and implicitly by normal job scheduling.
Within a single host, modern processors provide a rich

toolset for managing available power. This toolset is only
getting richer as power management rises in importance. For
example, some Intel and AMD processors provide per-core
dynamic voltage and frequency scaling (DVFS) in hardware,
automatic enforcement and reporting of power limits (run-
ning average power limit or RAPL [22]), and hardware per-
formance hints (hardware-managed P-states or HWP [1]).
Currently, much of the software leveraging these hard-

ware capabilities target mobile systems where managing
battery lifetime (energy) and thermals (temperature) is of
prime importance. For example, Linux’s cpufreq and power
governors are largely used by mobile systems. However, in
cloud and internet-service data centers there is a large class
of heterogeneous workload machines that operate under a
power budget due to the high cost of power provisioning [16].
Tools that use thesemechanisms to control application power
consumption, can benefit such systems.

https://doi.org/10.1145/3302424.3303981
https://doi.org/10.1145/3302424.3303981


As a motivating example, Figure 1 shows the impact of
Intel processors’ current power limiting mechanism, RAPL.
This figure shows the relative performance of two different
applications running concurrently on different cores of a
Skylake processor when subjected to a power limit with
RAPL. Further, gcc is low demand (i.e., uses less power at a
given frequency), while cam4 is high demand (i.e., uses more).
Also, cam4 uses Intel AVX instructions, which limits it to a
lower maximum frequency of 1667 MHz [29], as compared
to 2360 MHz for gcc.

When these two applications run together under progres-
sively lower power limits, the processor start throttling the
frequency of gcc, even though it consumes less power than
cam4. At 50W, gcc is throttled to 1975 MHz (12% reduction)
while cam4 is throttled only to 1570 MHz (5%). At 40W both
are throttled to the same frequency of 1240 MHz, but this
represents a 48% reduction in frequency for gcc but only
a 25% reduction for cam4. These results show that current
power-limiting mechanisms do not address the difference in
power usage and frequency limits across cores. Furthermore,
any administrator-provided priorities, such as a preference
to run gcc faster while the power-hungry cam4 sacrifices
performance at lower power levels, are ignored. This makes
co-locating latency-sensitive and batch tasks difficult, as
batch workloads may exceed power caps and affect the other
workloads [33].

To address this problem, we focus on the problem of differ-
ential power delivery: how can and should a system allocate
different amounts of power to different applications to ef-
fect prioritization and isolation? We study the mechanisms
available in modern processors and develop two classes of
differential power-delivery policies. First, we investigate a
simple two-level priority model with foreground and back-
ground tasks, with the goal that foreground applications
get peak performance subject to a power limit. Background
applications receive the rest.
Second, we look at a proportional share model, where

power is distributed according to shares [55]. Within this
class of policies, we investigate allocating shares of three dif-
ferent resources: power, performance, and frequency. These
three share types have different hardware and software de-
mands, and result in different, yet useful behavior. For ex-
ample, distributing power directly requires per-core power
measurements, which are not available on Intel platforms.
Distributing performance requires a reasonable estimate of
application performance in hardware.
In our evaluation on recent AMD and Intel platforms,

we found that all policies were effective at providing some
level of power isolation across applications. While power
shares are conceptually simpler, they are poor at isolating
performance. Frequency shares performed similarly to per-
formance shares yet are simpler to implement and require
less overhead.

2 Background

In this section we describe the various power management
and capping mechanisms implemented by recent micropro-
cessors. We focus on power (energy per unit time) which is
of greater importance to datacenters as opposed to energy
efficiency, which is often the focus for mobile systems.

2.1 Power Management

The following mechanisms are provided by microprocessors
to control power consumption.
Dynamic voltage and frequency scaling (DVFS): DVFS
varies the frequency of a processor. With reduced frequency,
voltage can be dropped leading to a cubic drop in power and
higher energy efficiency. This occurs because dynamic power
(Pdyn ) is related to voltage (V ) and frequency (f ) according to
the equation Pdyn ∝ V 2 f . Current implementations of DVFS
are fast (taking 1-30µsec [35]). DVFS has been adopted by
almost all current processors [2, 10, 20] and is the preferred
mechanism for power management. We see two implemen-
tations in practice.
Global frequency and voltage scaling: The most common im-
plementation of DVFS scales voltage and frequency for all
cores simultaneously. It requires a single voltage controller.
Hence, all cores run at the same frequency, so it cannot be
used for differential power delivery.
Individual Frequency and Voltage Scaling: Introduced with
the Haswell-EP [15] and AMD Ryzen [4] processors, indi-
vidual DVFS allows each core to have a different individual
voltage and frequency levels. However, this approach in-
creases hardware complexity by requiring on-chip per-core
voltage regulators (e.g., Intel’s FIVR [11]). In between global
and individual frequencies, a processor may also support
1 < N < #cores levels. For example, the Ryzen 1700x allows
only 3 unique voltage/frequency combinations across 8 cores,
although the frequencies and voltages are configurable [4,
31, 38]. We discuss this limitation and its workaround in
the next section. This workaround leads to an optimization
problem of determining which three frequencies are optimal
for a set of workloads. For finer-grained control processors
may allow setting voltage and frequency separately .
Performance states (P-States) The standard way to com-
municate DVFS states from supervisory software is perfor-
mance states (P-States), which represent different power/per-
formance levels. This interface is presented to the user via
the following API’s:
ACPI P-States: This is the industry standardized interface for
setting the processor DVFS state [50]. There are 16 possible
states starting from P0 being the highest frequency state and
higher states having lower operating frequencies.
Model-specific register: Recent processors provide model-
specific registers (MSRs) for direct control over voltage and
frequency. This can be done using a vendor provided driver,

2



such as Intel P-State driver in Linux [57] or directly writ-
ing frequency and voltage levels to relevant MSR registers
for AMD Ryzen devices. The Intel devices provide 100MHz
frequency steps and AMD Ryzen provides 25MHz steps.
Limitations of P-States: While designed as a power/perfor-
mance control mechanism, P-States can have different effects
on each application because the power savings of moving
to a higher P-State and the resulting loss of performance
depends on workload characteristics. The speed of mem-
ory and I/O does not change with frequency, so changing
P-state has less impact on the performance of memory- and
I/O-bound applications. As a result, using P-states to con-
trol useful metrics like power consumption or performance
requires dynamic adaptation to the workload.

There has been an attempt to reconcile this using a new in-
terface in ACPI known as the Collaborative Processor Perfor-
mance Control (CPPC) interface [50]. With this mechanism,
hardware controls DVFS settings and software provides a
range of allowable performance. Intel’s implementation of
CPPC is called Hardware P-States (HWP) [1]. However, the
performance level used by CPPC is specific to the hardware
implementation, and hence needs to be tuned for a specific
workload and machine.
Opportunistic ScalingModern processors provide the abil-
ity to overclock cores when only a subset of the total cores
is active. In these modes, such as Intel’s TurboBoost and,
AMD’s Precision Boost and Extended Frequency Range (XFR),
when some cores are idle and provide power/thermal head-
room, the remaining cores may run at higher power, and
hence higher frequencies [3, 22]. This provides a benefit to
sequential code while staying within power limits.
Core Idling (C-States) With sleep states, the processor is
forced to idle, which reduces the frequency to zero until the
core receives an interrupt. While these are the lowest-power
states, they do no computation and take longer to enter and
exit (1-200 µsec [46]). At idle the most efficient processors
consume power in milliwatt range compared to 10s of watts
at maximum frequency. The non-idle state or active state for
the processor is denoted as C0. All other C states represent
different levels of sleep states for an idle core. Core idling,
even when there are jobs waiting to execute, can be useful
to provide more power, and hence more performance (even
opportunistic scaling) to high priority tasks running on the
remaining active cores.

2.2 Power capping

The following mechanisms and interfaces are provided for
limiting power consumption.
Running Average Power Limit (RAPL) This interface
provides software with the ability to monitor, control, and re-
ceive notifications of processor energy and power consump-
tion [22]. To allow for granular power control, Intel divides
the processor into multiple power domains such as package,

DRAM controller, CPU cores, graphics and uncore [25, 43].
RAPL allows an operator to set a limit on the amount of
power a particular domain can use, and the system dynam-
ically adjusts voltage and frequency on fine time scales to
stay within the limit. This mechanism has been adopted by
other vendors as a viable way to provide deterministic power
draw for a processor [9]. When RAPL is implemented with
global DVFS, all cores are throttled to the same frequency,
even if one core uses much more power than others. As we
have limited control over who gets throttled, RAPL alone is
unable to provide differential power to applications.
OS Frequency Governors Software heuristics are used to
determine the next P-State of system based on the current
system usage / load. Examples include Power Plans in Win-
dows [37], and cpufreq in Linux [7]. These governors may
limit peak CPU speeds, or the time spent at peak speed to
save power/energy. A common policy is to look at CPU
utilization and reduce frequency when the CPU has low uti-
lization. These governors’ express the desired OS policy to
the hardware as requested P-States. In our experiments we
use the userspace governor to manually set the P-states from
a userspace application.
Thermal Daemon Linux also offers the thermald interface
to the processor’s thermal management features. This inter-
face allows the user to set thermal limits on the system.When
triggered these limits can use P-states, RAPL, C-states and
even clock cycle gating [22] to reduce power consumption.
The thermal daemon selects the set points for the various
mechanisms based on provided thermal limits. Depending
on the mechanisms enabled to maintain the thermal lim-
its it can have differing effects on application performance.
As these mechanisms can be both global (RAPL) or local
(clock cycle gating, DVFS), they may be helpful in building
a per-application power delivery system.

3 Effectiveness of Power Management
Mechanisms

We study the common power management mechanisms
(DVFS and RAPL power capping) to assess their impact on
application power draw and performance, and to determine
their viability for differential power delivery on our test plat-
forms. The test platforms are two recent microprocessors:
Intel Xeon-SP 4114 (Skylake) and AMD Ryzen 1700X. Table 1
provides a summary of features provided by each CPU. Note
that the study is meant to only evaluate the processor mech-
anisms, not the platforms we chose to evaluate them on. We
thus look only at processor and not whole system power.
While many past studies have reported on the effectiveness
of DVFS, we include results here to motivate per-application
polices described in Section 4.

3



Table 1. Summary of Power Management Features (Mecha-
nisms) Available

Processor Features
Skylake: ◦ 2 sockets, 10 cores, 20 threads,
Xeon SP 4114 192 GB DRAM

◦ 0.8–2.2 GHz + 3 GHz TurboBoost
◦ Per-Core DVFS, 100MHz increments
◦ RAPL power capping (20-85 W)
◦ Platform power measurements

Ryzen: ◦ 8 cores, 16 threads, 16 GB DRAM
AMD Ryzen 1700X ◦ 0.4–3.4 GHz + 3.8 GHz XFR2

◦ Per-core-DVFS, 3 simultaneous P-states, 25
MHz increments
◦ Platform and per-core power measure-
ments

3.1 Methodology and Experimental Setup

We evaluate power management mechanisms and our poli-
cies using a recommended subset of 11 benchmarks (lbm,
cactusBSSN, povray, imagick, cam4, cpugcc, exchange2, deep-
sjeng, leela, perlbench, omnetpp) from SPEC2017 [30]. These
benchmarks provide a comparative measure of compute in-
tensive performance enabling us to study, in a controlled
way, the effects of various power management techniques
on applications. The goal for this work is to manage appli-
cation performance loss when applications are co-located
under a power cap. Having benchmarks with steady perfor-
mance characteristics simplifies analysis, as there are few
large phase changes that dramatically change application
behavior.
We measure power consumption using RAPL interfaces,

which we verified using a Watts Up meter and which have
previously been shown to be accurate [26]. We recorded the
following variables to aid our analysis of the mechanisms:

• Package power : power consumed by the whole plat-
form, including the core and uncore, as reported by
RAPL interface.

• Core power : power consumed by the cores as reported
by RAPL interface, available only on Ryzen

• Performance: instruction count per second for the pro-
cess.

• Active frequency: The frequency of operation for the
processor when it is in C0 state (Active/Non-idle).

We use the turbostat tool to collect these variables once
per second [8]. We modify this tool to support monitoring
the AMD Ryzen processor.

For Skylake, we directly set the P-states for each core, with
each P-State corresponding to a different fixed frequency.
For Ryzen, our processor is limited to 3 P-States, though, we
can redefine the frequency of these 3 P-states. Thus, we use
P-State 0 (P0) for frequencies 3.4–3.8GHz, P1 for frequencies
2.2–3.3 GHz, and P2 for 0.8–2.1 GHz. Each P-state uses the
same voltage level (the default one configured by the BIOS)
for all frequencies it represents.

(a) Performance normalized to
2.2GHz.

(b) Average package power.

Figure 2. Effects of DVFS on Skylake for SPEC2017 work-
loads. Power values are for the package, averaged over ap-
plication runtime. The line denotes median, box denotes the
1st and 3rd quartiles of the dataset, and the whiskers show
the 1st and 99th percentiles of the distribution, with outliers
marked as stars.

(a) Performance normalized 3.0GHz. (b) Average core power.

Figure 3. Effects of DVFS on Ryzen for SPEC2017. The line
denotes median, box denotes the 1st and 3rd quartiles of the
dataset, and the whiskers show the 1st and 99th percentiles
of the distribution, with outliers marked as stars.

3.2 Results

We first conduct a sweep of power management parameters
on both platforms to determine the effect of P-states (DVFS)
on power and performance. We then evaluate the interaction
of per-core DVFS and RAPL power limiting.
DVFS P-statesWe begin with a study of the effectiveness of
DVFS on both Intel and AMD platforms. We analyze DVFS
by first setting all cores to the same P-state and then running
the benchmark, pinned to an isolated core, to completion. We
show normalized runtime and average power over the range
of available frequencies in Figure 2 for Skylake and Figure 3
for Ryzen. The performance is normalized to running the
application at 3.0 GHz for Ryzen, and 2.2GHz for Skylake.
The effect of DVFS on power and performance varies

widely by application. This is observed in the wide range
of results across the 11 benchmark programs and has been
shown previously (e.g., by Koala [48] and others). On Sky-
lake, two features in particular stand out. First, the results
show several power outliers; these applications ( lbm, imag-
ick and cam4) make use of Advanced Vector Extension (AVX)
instructions that are relatively high power. Second, we see

4



(a) Performance normalized to 2.5GHz and 85W RAPL limit

(b) Active Frequency

Figure 4. Impact of RAPL on per-core DVFS with gcc benchmark. Half the cores are unconstrained at 2.5GHz and the other
half are throttled to the frequency on the X axis, while progressively lowering the power limit with RAPL.

that for these applications the performance peaks at a rela-
tively low 1.9, well below the limit of 3.0 GHz. Using AVX
instructions reduces the maximum processor frequency [29].
This result demonstrates the necessity of active measure-
ments to determine if higher power states are necessary for
a given workload [1]. Finally, we observe that at 2.2 GHz and
above, power jumps by about 5 watts. This represents the
change from regular operation to TurboBoost modes, which
draw substantially higher power.
For Ryzen the results are similar, but with smaller anom-

alies. Performance does not show any saturation effects, as
it increases nearly linearly as frequency increases. Like Sky-
lake, Ryzen shows a jump in power use for SPEC workloads
at 3.5 GHz, which when Precision boost and XFR (like Tur-
boBoost) frequency levels take effect.

While we presented results for applications running on a
single core, using per-core DVFS and multiple applications
or multi-threaded applications resulted in similar power/per-
formance graphs.
RAPL power limits Past work has shown that RAPL limits
provide stability, accuracy, and fast settling time [59], so we
do not present results showing its basic functionality. As
mentioned in Section 1 and shown in Figure 1, with global
DVFS, RAPL throttles all cores to the same frequency, so
cores using less than their fair share of power may be throt-
tled due to unrelated high-power applications.
We evaluate the ability of RAPL with per-core DVFS as

a possible solution for differential power delivery on the
Skylake platform, which supports both (Ryzen lacks RAPL
limits). We run copies of the same application ( gcc) on all
available cores. We configure half the cores to be uncon-
strained (running at the maximum of 2.5GHz) while the
remainder we set to a progressively lower frequency. We
repeat this with a range of power limits from 85W (the pro-
cessor’s TDP) to 40W.

The results are presented in Figure 4. We see two salient
features from these results. First, Figure 4(b) shows that
RAPL finds a global maximum frequency to keep the system
under the power limit. Second, Figure 4(a) shows that the
power saved by throttled cores is used by the unconstrained
cores to run faster. For example, at 50W, when the throttled
core runs at 0.8 MHz, the unconstrained core performance
improves from 14% below its performance at 2.5GHz to 6%
above. Thus, per-core DVFS provides an effective mechanism
to achieve differential power delivery.

However, we also observe the policy used to apply power
limits when cores have different frequencies: from the fre-
quencies of the throttled core in Figure 4(b), it is apparent
that RAPL only reduces the frequency of the unconstrained core.
This effect is seen once we start throttling below the global
frequency determined by RAPL. This policy is effective for
saving power, as it takes power from the most power-hungry
cores.
However, on a system with mixed-priority workloads,

this policy may be misguided: it may be preferable to take
power from lower priority workloads, even if they are al-
ready throttled, and leave power to isolate and maintain the
performance of high-priority workload as much as possible.
Unfair throttlingWedemonstrate the central problemwith
not having policy control when using RAPL as a power
management mechanism by running two applications on 10
cores, one considered high priority and one low priority. The
low priority application (websearch [14, 42]) has a low power
demand as it consumes only 44 watts with 9 active cores
at 3GHz, while the low-priority application (cpuburn [40])
consumes 32 watts with only 1 active core. We run these two
applications simultaneously under a power limit.
We present the performance (normalized 90th percentile

latencies for 300 users) for websearch with and without co-
location run under a RAPL limit in Figure 5. We observe a

5



0.0

0.2

0.4

0.6

0.8

1.0

35 40 45 50 85

P
er

fo
rm

an
ce

 

RAPL Limit (W)

Running Co-Located Running Alone

Figure 5. Effect of co-location under RAPL. We have a la-
tency sensitive application ( cloudsuite/websearch) co-located
with a power virus ( cpuburn). The figure shows the 90th per-
centile latencies for websearch with and without co-location,
running under progressively lower RAPL limits, with fre-
quency set at 3GHz.

dramatic decrease in performance (less than 50% of when
running alone) as a result of the presence of a single low-
priority application, especially when running under lower
power budget (<40 W). This represents a challenge for any
platform that multiplexes high and low priority applications
on the same hardware at the same time: power-intensive
low-priority applications may trigger power limits, which hurt
the performance of high-priority applications. Indeed, this has
been documented in internet service data centers [33].
With this result in mind, in the following section we de-

velop and evaluate simple policies to control an ideal plat-
form that allows us to perform per-application power man-
agement and isolation.

4 Policy Design
In this section we describe a set of policies that allow an
operator to request differential power delivery among co-
located applications. The ultimate goal for the policies is to
treat power like other system resources, such as memory or
CPU time, that are scheduled or allocated by the operating
system. In particular, we focus on two classes of policies.
Priority policies try to ensure that higher-priority applica-
tions run at maximum performance and use residual power
for lower priority applications. Proportional-share policies
divide power between applications according to operator-
configured shares. Priority policies, while simple to imple-
ment, are rigid in treating mixed priority scenarios and can
lead to starvation. Proportional share policies, common for
CPU [55] and resource allocation [54], provide more flexible
control over power distribution.

In this work we focus on isolation and sharing strategies
for power. We discuss but do not consider time-sharing (ap-
plications running on the same core) in detail, as it requires
modifying the scheduler to be power aware, while we focus
on power management separately from scheduling. We also

do not consider real-time policies, such as those that pro-
vide a performance or power guarantee to applications. We
focus on policies for applications running concurrently on
different cores (space-sharing).

4.1 Priority Policy

We classify applications as high priority (HP) or low prior-
ity (LP) based on their relative importance. In strict priority
policies, low-priority applications only run after all high-
priority applications’ needs are satisfied. In contrast, with
proportional-share policies, low-priority applications run
but receive a lower share of power than high-priority appli-
cations.
When designing a priority policy, we consider the power

demand of an application: in a given P-state, does an appli-
cation use more power than other running applications, or
less power? We term those using more power high demand
(HD) and those using less power low demand (LD). Com-
bining priority and power demand, we have four categories
of applications we name HDHP, HDLP, LDHP, LDLP. The
central scenario where differential power delivery is most
valuable is when there are low-demand/high-priority (LDHP)
applications running simultaneously with high-demand ap-
plications. A high-demand (HDLP) application may trigger
power limits that unfairly harm the low demand yet high
priority (LDHP) application.

Strict priority policies only give resources to low-priority
applications once high-priority application have been fully
satisfied. In the context of power, this means that high-
priority applications should be able to use power up to their
demand, and only left-over power is granted to low-priority
applications. When applications have equal priority, this sce-
nario devolves into a proportional share policy with equal
shares, which we consider in the next section.
The fundamental priority policy here sets the P-state for

HP application(s) to the maximum possible under the power
limit, and the P-state for LP application(s) to the maximum
possible with the residual power. In the absence of a separate
proportional share policy, all HP and all LP applications run
at the same P-states. We note that this policy may cause
starvation at lower power limits, in cases where there may
not be enough power left to run LP applications at their min-
imum P-state. As an alternative, the policy can be modified
to first allocate the minimum required power to all cores to
execute before allocating additional power for high-priority
application to run at maximum performance. Since this is a
choice for the implementation, we discuss our choice in the
implementation section.

Simple priority policies, while easy to implement, are rigid
in treating mixed priority scenarios and can lead to under-
utilization, or even starvation. To overcome this, we propose
proportional share policies that provide more flexible control
over power distribution.

6



4.2 Proportional share policies

Proportional share policies distribute a resource according
to the relative shares of active applications: if an application
with 3 shares runs concurrently with an application having
1 share, the first application receives 3/4ths of the resource
and the second receives 1/4th. A central question, though, is
what is the resource being distributed?

While power itself is an obvious answer, we identify three
possible resources to share proportionally.

1. Power: The power draw of each application should be
proportional to its shares. This requires monitoring
power demand of running applications, adjusting P-
states locally at each core to hit power targets, and only
adjusting P-states for all cores when there is excess
power to redistribute.

2. Frequency: The frequency at which applications run
should be proportional to the shares they hold. As fre-
quency correlates highly with performance, this is a
simple form of proportional performance. It requires
monitoring global power draw and adjusting frequen-
cies for all cores to redistribute power when it deviates
from the power limit.

3. Performance loss: The performance of applications, rel-
ative to running in isolation without a power limit,
should be proportional to shares, so applications with
more shares suffer less performance loss. This requires
monitoring application performance and total power
draw and adjusting frequencies on all cores to redis-
tribute performance when total power deviates from
the limit.

These three resource options for proportional shares, have
different properties. Power shares are attractive as they re-
late directly to the resource being allocated and allow local
control with infrequent global redistribution. However, they
may require knowledge of application power demand to set
shares (e.g., understanding how much power is needed for
adequate performance), about which operators may be unfa-
miliar. Frequency shares are simple to reason about, require
little hardware support (just global power measurements
and per-core DVFS) and no prior application knowledge
is required. However, it may provide non-intuitive behav-
ior. Finally, performance shares control what operators care
most about, performance, but require an accurate/meaning-
ful measure of application performance.

4.3 Single-core Sharing Policy

On a single core applications time share the CPU. To control
the fraction of the core for an application, the user can specify
its CPU shares using the cgroups cpusets feature [13], or by
changing the Linux priorities of the application. In this case
the applications can present themselves in the following
combinations:

Figure 6. Time-shared power consumption for cactusBSSN
(HD)/gcc (LD) applications running on the same core. We
present both cases, when one app (HD or LD) has been allo-
cated 50% of the core and the shares for the other app (LD
or HD) are varied from 10% to 50%. Also shown is the power
consumed when either of the apps are given 100% share of
the CPU (i.e run alone) at 3.4GHz on the Ryzen Platform.

1. Equal demands, mixed shares, mixed priorities: In this
case the power will be the similar for both applications.
For this scenario the policy sets core P-state to highest
level that can run either application and stay within
power limit.

2. Mixed demands, equal shares, same priorities: With
equal shares, under a power limit the processor fre-
quency must be reduced to run high-demand applica-
tions, which throttles low-demand applications unnec-
essarily. CPU scheduling can be modified to give low-
demand applications more runtime, by dynamically
adjusting their CPU shares at runtime to compensate
for CPU throttling.

3. Mixed demands, mixed shares, mixed priorities: The
core should be set to run the high-priority application
at the highest level possible within the power limit. If
one application is HDHP, the LDLP application runs
at the same frequency, which is slower than if it ran
alone. If one application is LDHP, the core runs at its
maximum frequency and the HDLP application does
not run at all (if it exceeds the power limit).

To demonstrate that this policy can be implemented using
existing mechanisms, we ran HD and LD applications as
docker containers and varied their CPU shares using docker
daemon [36]. We fixed one of the HD/LD applications at 50%
CPU share and varied the share for the other from 10% to
50%. The observations for power consumption are presented
in Figure 6. We note that varying CPU shares changed the
amount of time the apps were resident on the core.

We observe that the change in time resident on core results
in the average power consumption for the core to increase or
decrease proportionally. A closer look reveals that the power
drawn by the core is a time-weighted sum of the individual

7



application power draws. Thus, a power mechanism for time
sharing can achieve the desired power and performance by
varying both processor frequency and per-application CPU
share.

4.4 Discussion

We note that these policies do not consider applications
with performance or power that saturates, such as applica-
tions that perform no faster when run at higher frequen-
cies (see Figure 2(a)). To handle this case, both priority and
proportional-share policies can be modified to try to run
applications at the highest useful frequency rather than
the highest possible frequency. Hardware support such as
Intel’s HWP [1] can help identify this point. Furthermore,
these policies do not address the situation where there is
not enough power to run all applications in a class, such as
all low-priority applications with the power remaining after
high-priority applications are satisfied.

We also note that these simple policies can lead to starva-
tion under space sharing even when a subset of applications
could still run. For example, with a priority policy, there
may not enough power for all low-power applications to
run, but there is enough for a subset. In this case, the policy
should disable cores (put them in a sleep state) and let the OS
scheduler time-slice applications on the remaining cores.

5 Policy Implementation
To better understand how our proposed policies, affect ap-
plications, we designed a userspace daemon to implement
them. The daemon dynamically sets the target P-state config-
uration based on power limit, policy (shares or priority) and
power feedback. It takes a list of programs as input with their
priority and shares. This information is used to select the
initial set of applications to run and the initial state of the sys-
tem. Applications are pinned to cores, and their priorities or
shares are used to select an initial P-state for each core. The
daemon then runs a monitoring loop. In every loop iteration
(1 second in our implementation), it reads processor statis-
tics, including power (per-core or per-package), performance
(retired instruction count), and actual frequency. Based on
the measured values, the daemon may change P-states for a
subset of cores. If the daemon detects an application/core is
using more or less of a resource than it was allocated, it can
either increase the frequency of the core or redistribute the
resource to other cores, called re-distribution.

5.1 Implementing priorities

Under all policies, the daemon monitors package power and
adjusts P-states if total power is above or below the target.
For priority policies, the daemon starts the HP applications
at the highest P-state. If the total power is above the target,
the daemon lowers the P-state of all HP applications until
they are within the budget. This uses one of the proportional
share policies described below. If, on the other hand, there is

excess power after all HP applications are running at maxi-
mum speed, the daemon starts LP applications at the slowest
P-State. It then increases their P-state (according to a pro-
portional share policy) until the system reaches the power
limit. Thus, at low power limits with HDHP applications, LP
applications may suffer starvation if not all can be started at
the slowest P-state.
We note that when only a few applications are running,

the processor may enable TurboBoost (Intel) or XFR (AMD)
and run above normal frequencies. When all cores are used
through, these higher frequencies are not available. Thus,
a policy decision must be made as to whether to starve LP
applications to enable HP applications to use these higher
frequencies, or to allow the LP applications to run at the
lowest frequency without hurting the HP application. In our
implementation we starve the LP applications.

5.2 Implementing shares

For proportional-share policies, the daemon starts all appli-
cations with an initial estimate of the correct P-states, and
then adjusts the voltage and frequency to satisfy both share
proportions and the power limit. We describe below the exact
control loop for each resource.
When there is excess power, we use a min-funding revo-

cation policy [54] to distribute the excess across applications
that are not running at the maximum frequency. We im-
plement this by removing saturated applications from the
mix, then re-running the distribution algorithm across the
remaining resources and remaining applications.
We note that unlike memory or CPU, there is a low dy-

namic range for shares of power: as shown in Section 3,
frequency only varies by a factor of 3–4, core power by a fac-
tor of 12-14, and performance by a factor of 4. Consequently,
not all share ratios are possible. Assigning a share ratio of
99:1 leads to two outcomes: either the low-share application
starves when the high-share application is running, or it uses
a larger fraction of resources than its share. If we choose
starvation, we get perfect isolation, but may cause the re-
source to be underutilized when the high-share application
cannot use all the available power. Letting the low-share ap-
plication use a larger fraction improves resource utilization
but breaks isolation. In our implementation, we only allow
starvation with priority policies and with shares we allow
all applications to run at least at the minimum frequency.

All share mechanisms are implemented using three func-
tions: (i) an initial distribution function to run when starting
applications, (ii) a redistribution function to run when power
is above or below target, and (iii) a translation function that
converts units of the managed resource to frequencies that
can be programmed into the CPU. The initial distribution
finds the initial resource allocations for the given set of ap-
plications. The redistribution function is similar to the initial
distribution function, but has the additional responsibility
of applying the min-funding revocation policy to handle

8



excesses and shortages of the shared resource and of identi-
fying saturation. Saturation means that a core has reached
the maximum (or minimum) value possible for the shared
resource and hence usefully use more (or give up less) of
the resource. The translation function takes the result of the
redistribution function (changes to resource allocations for
cores) and translates them into target frequencies.

Since these functions can vary according to the policy, we
discuss them in detail below.
Power shares For this policy we care that applications
share power proportionally. This requires that we have per-
application power feedback for our control loop. We imple-
ment this policy only on Ryzen platform as it fulfills this
requirement.

The initial distribution function for this policy distributes
the power limit among the applications based on their share
ratios. The result of this distribution is a set of per-application
limits.

The redistribution function updates per-application limits
by distributing the difference in current power and the power
limit among non-saturated cores.
For the translation function, we use a power model to

predict the initial distribution of frequencies, and then every
iteration adjusts the frequency values based on the power
feedback from each core and the calculated limits. The power
model is simple linear equation that converts the power
range to the frequency range. Since we dynamically adjust
the values later, modeling errors do not affect steady state
behavior.
Frequency Shares In this policy applications share fre-
quency proportionally. This requires per-application fre-
quency measurements, which are supported on both Ryzen
and Skylake.
Since the shared entity is frequency and our limits are

specified in power, this policy requires translating the power
limit into a frequency limit, the opposite of what was needed
for power shares. The translation function uses a conversion
factor α as a function of the change in power (PowerDelta):

α = (PowerDelta/MaxPower )
FrequencyDelta = (α ∗MaxFrequency∗

NumAvailableCores)

This naïvemodel allows the daemon to estimate howmuch
frequency (cycles) must be distributed or withdrawn from
a target to change power. The FrequencyDelta is applied
proportionally to all applications, resulting in a new set of
per-application frequency limits. While this model is sim-
plistic, the error becomes smaller when the system is near
the target power.

The initial distribution function sets the highest-share ap-
plication to the maximum frequency and remaining applica-
tions to their proportions of the maximum frequency. The
redistribution function computes the difference in power used
to the target, converts it to frequency, and distributes the

frequency among non-saturated cores. The translation func-
tion converts the target frequencies into valid (quantized)
frequencies for the platform.
Performance Shares For this policy we care that appli-
cations share performance proportionally. It requires per-
application performance feedback for our control loop. We
use instructions-per-second (IPS) as a proxy for performance,
as our workloads are single-threaded. For multithreaded
workloads with lock contention, where spinlocks may ar-
tificially inflate instruction counts, hardware mechanisms
such as Intel’s HWP with its abstract performance metric [1]
may be a better choice. IPS is available on both Ryzen and
Skylake platforms.
As a baseline, we use the performance of an application

running alone at maximum frequency (measured offline). We
normalize IPS to the baseline to get the performance number
used for power distribution. We convert the power limit into
a performance limit, using α and then multiplying it to the
maximum core performance and the number of cores we can
allocate.

Per f ormanceDelta = (α ∗MaxPer f ormance∗
NumAvailableCores)

The initial distribution function distributes this perfor-
mance limit among the applications based on their share
ratios. The result of this distribution is a set of per-application
performance limits. The redistribution function updates these
per-application limits by first converting the difference in
current power and the power limit into a performance value
and the distributing it among non-saturated cores.
The translation function uses α to translate power into

performance, and performance into an updated set of fre-
quencies. The performancemodel here is similar to the power
model described above.
Ryzen details The Ryzen platform only supports use of 3
unique P-states concurrently, so we built an additional selec-
tion utility that dynamically reduces the target frequencies
to three valid P-States.
Our control daemon is not designed for production use,

but instead to demonstrate the effects of different power
management policies. The policy should be implemented
in hardware, similar to RAPL, to provide a low sampling
overhead and have a fast response to changing workloads,
and workload characteristics.

6 Policy Evaluation

We present two sets of evaluation results. First, using care-
fully constructed workloads from SPEC CPU2017, we demon-
strate the capability of our policies and, the Skylake and
Ryzen platforms to implement differential power delivery.
We chose cactusBSSN as a HD application and leela as a LD
application, to show how our policies perform across a vari-
ety of settings. Second, wemeasure the ability of our policies

9



(a) Measured performance normalized to standalone performance at 85W. (b) Active frequency reported for the two priority levels

Figure 7. Priority experiments on Skylake. The Upper graph in each pair is the priority policy and the lower is RAPL. The
number of HP application ranges from 10 to 1 and is indicated in the ratios. The values in each bar is averaged over all active
applications.

Figure 8. Priority Policy experiments on Ryzen. The number of high-priority application ranges from 8 to 2. Performance is
normalized to standalone performance at 85W.

to enforce useful properties by running them with speci-
fied shares and random mixes of applications. These results
evaluate how effective our policies are in realistic settings
at providing differential power delivery and performance
isolation.

We evaluated both policy types on both Skylake and Ryzen
with the exception of power shares, which we only ran on
Ryzen. For brevity, we do not show all the results but they are
available at http://research.cs.wisc.edu/sonar/power.html,
both in tabular form and as graphs. For the curious read-
ers, we also provide our scripts and the userspace daemon.

6.1 Priority Experiments

For the priority experiments, we run as many applications
as there are cores on a processor and vary how many are
high or low priority. In each case we have an equal number
of applications that are LD or HD.
Figure 7 shows the functioning of the priority policy on

Xeon for two different power limits (50W, and 40W). We
execute a mix of high-priority (HP) and low-priority (LP)
applications, which are split between cactusBSSN (HD) and
leela (LD). For LP jobs, there is one more leela and for HP

Table 2. Workload mixes for Skylake priority experiments

Mix cactusBSSN-HP leela-HP cactusBSSN-LP leela-LP
10H 0L 5 5
7H 3L 4 3 1 2
5H 5L 5 5
3H 7L 2 1 3 4
1H 9L 1 4 5

jobs there is one more cactusBSSN. The workload mixes used
for Skylake are shown in Table 2

The performance results at the top of Figure 7a show that
at lower limits, the priority policy results in starvation when
there are too many high-priority applications. As discussed
in Section 4, an alternate policy would be to throttle high-
priority applications to allow low-priority applications to
run. At 85W there is enough power to run all applications
at full speed. At 50W, there is only enough power to run
LP applications when there are 5 or fewer HP applications.
The results also show the policy can leverage opportunistic
scaling. At 40W, when there are only three HP applications,
they run faster than at 85W. This occurs because there is not
enough power for all seven LP applications to run; instead
that power is used to boost the speed of the HP applications.

10

http://research.cs.wisc.edu/sonar/power.html


We note that an alternate policy would be to only disable
some of the 7 cores running LP applications, and time slice
them on the remaining cores. Finally, we see at 50W that
as there are fewer HP applications and their performance
saturates, the LP applications take advantage of the extra
power to run faster.
In contrast, with RAPL (Figure 7 bottom) there is no dis-

tinction between HP and LP applications, so under power
limits both applications suffer similar reduction in frequency
and performance.

Figure 8 shows the results for the priority policy on Ryzen,
which is almost identical to those on Skylake. Here, we show
core power as well (middle figure). There are no RAPL results,
as the mechanism is not documented on the platform.

Here theworkloadmix has four variations of havingmixed
(2HP-6LP, 6H-2L cases) and similar (8HP, 4HP-4LP) demand
workloads. When we limit the system to 50W, LP jobs can
only run when there are 4 or fewer HP jobs. At 40W, they
only run when there are 2 HP jobs. We note that there is a
slight reduction in core power at 50W going from 4H4L to
2H6L; this occurs because the 4H are all HD, while the 2H is
a mixed workload of HD and LD.

6.2 Proportional Share Experiments

For proportional-share experiments, we choose two share
levels and assign half the cores to one share level running
leela (LD) and half to another running cactusBSSN (HD). We
visualize the data two different ways.

Figure 9 shows the results for the proportional share poli-
cies on Skylake. With native RAPL, all applications run at
almost the same frequency and the HD application achieves
8% higher performance. We do not show power shares, as
they require per-core power measurements, which the Sky-
lake platform does not provide.

The Skylake results show two key results. First, there is a
low dynamic range for resource allocation, processor only
supports 800MHz–2200MHz operation. Thus, at 90/10 share
ratios, the low-share application receives more than its share
of frequency or power. Second, we see that frequency and
performance shares have very similar results. This indicates
that a simple frequency share policy, which is more stable
(it does not change with program phase) may work as well
as a more complicated performance share policy.

Figure 10 shows similar results for the proportional share
policies on Ryzen. This visualization shows the relative re-
source use by each application across frequency, perfor-
mance, and power shares. Here we see similar results to
Skylake. In general, the daemon is able to accurately share
resources for the 30/70, 50/50, and 70/30 cases, but cannot
achieve less than 20% resource usage. This occurs due to
the high minimum frequency (800 MHz). We also see that
frequency shares on Ryzen provide the most accurate con-
trol over performance. In contrast, performance shares often

under- or over-shoot the target. This occurs because fre-
quency is stable while running, while performance is mea-
sured as IPS relative to the long-term average IPS for the
program. Small phase changes can affect performance, lead-
ing to control operations to rebalance power. This can be
observed in 30/70 case for performance shares at the 40W
limit. Finally, we can also observe that power shares in gen-
eral provide poor performance isolation due to the differing
power demands and varied behavior of applications.

6.3 Random Experiments

The preceding experiments use hand-selected high demand
and low demand applications to demonstrate the behav-
ior of the policies. For more generalizable results, we per-
form similar experiments using randomly selected subsets of
SPEC2017 workloads (using numbergenerator.org). We cre-
ate two sets, A and B, that are listed in Table 3. For Skylake,
we run two copies of each of the 5 applications, with both
copies given the same share. The share levels for Skylake
platform are {20, 40, 60, 80 and 100}.

Table 3. Applications for random experiments.

App. # 0 1 2 3 4
Skylake A deepsjeng perlbench cactusBSSN exchange gcc
Skylake B deepsjeng omentpp perlbench cam4 lbm

Figure 11 shows the results for random experiments for
the proportional share policies on Skylake. For the A set of
applications (left half of each graph), we see the expected
results: as shares increase, power and performance increase.
The power and frequency shares policies mostly achieve the
same results. Application A3 ( exchange) performs worse
and Application A1 ( perlbench) better than expected with
performance shares due to their higher (lower) sensitivity
to frequency. At 40W, we see little change in performance
for applications A1–A3 with the frequency policy. This oc-
curs because the dynamic range of frequencies is small here
(100s of MHz), so there is not enough range to achieve pro-
portionality. For the B set application on the right, we see
dramatically different results. As seen at 85W, application
B3 and B4 cannot run at full frequency; this is because both
use AVX instructions. At 50W, the frequency shares behave
similar to as expected, with increasing performance as share
increases, even though frequencies saturate.

6.4 Latency-Sensitive Experiments

In this experiment we repeat the unfair throttling experi-
ment presented in Section 3 with our power policies. We
run two applications: a latency-sensitive multithreaded ap-
plication (websearch [14, 42]) colocated with a power virus
(cpuburn [40]).Websearch occupies 9 of the 10 cores and is
considered high priority. Cpuburn occupies the 1 remaining
core and represents an opportunistic low priority application.
We run these applications under progressively decreasing

11

numbergenerator.org


Figure 9. Skylake proportional share policy experiments for Skylake running leela (LD) and cactusBSSN (HD). The left figures
use frequency shares and the right figures use performance shares.

Figure 10. Ryzen proportional share policy experiments. The figure shows percent of total resource used by each application
for frequency, performance, and power shares. Each pair of bars shows results for 40W and 50W limits. Each row represents
the measured use of a different resource.

power limits on the Skylake platform with the proportional
frequency and proportional performance sharing policies.
The websearch application was loaded with 300 users, do-
ing search transactions for 600 sec. We present our findings
with the policies, RAPL and when websearch runs alone in
figure 12. We ran the experiments multiple times (5) and
present the average.
We ran multiple share configurations, but we report on

90/10 share ratio, with each core runningwebsearch receiving
90 shares, and the one core running the power virus receiving
10 shares. For this configuration we found that our policy
was able to improve performance in all cases, even reaching

performance comparable towebsearch running alone in some
cases. For the most power limited cases of 40W and 35W, our
policies reduce the performance loss by 10%. As we found
the results to vary slightly between runs, the variance in
some cases causes our policy looks better than when running
alone.
Another thing to note is the reason we are limited to

the 10% improvement is because of low dynamic range of
frequencies available. This can be seen in figure 13. Note
using performance shares (not shown here) provided similar
improvements in performance over RAPL.

12



Figure 11. Skylake proportional share policy random experiments for frequency and performance shares at 40W, 50W and
85W. The figure shows percent of total resource used by each application for a particular set of frequency, and performance
shares (type indicated below each bar). Each row represents the measured use of a different resource. The share ratio used for
all columns is [AB]4 : [AB]3 : [AB]2 : [AB]1 = 100 : 75 : 50 : 25.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

85 50 45 40 35

N
o
rm

al
iz

ed
 9

0
th

 P
er

ce
n
ti

le
 L

at
en

cy

Power Limit (W)

Not Co-located Prop Freq Co-Located RAPL Co-located

95 ms 103 ms 129 ms 29 ms

1850 ms

Figure 12. The fgure presents the effect of our policies and
RAPL, on 90th percentile latencies, relative to when web-
search is run alone. The baseline value is noted above the
bars).

7 Related Work
There are many prior works on power management, and we
focus on the most relevant categories.
Per-core DVFS for scheduling power: Bircher et al. [6]
provide a performance analysis of P-States and C-states on

0

500

1000

1500

2000

2500

3000

35 40 45 50 85

A
ct

iv
e 

F
re

q
u

en
cy

 (
M

H
z)

Power Limit (W)

websearch cpuburn

Figure 13.Active frequencymeasurements for latency sensi-
tive experiments when run with our proportional frequency
policy.

the Intel Nehalem and AMD 10h Family. Vega et al. [52]
describe knobs for power management on Power 7 proces-
sors targeting efficiency. Isci, et al. [23] provide polices for a
multicore system with a global manager for per-core DVFS.
The paper assumes presence of global management layer in
between the software and the hardware mechanism. They

13



present priority-based policies to follow power limits for this
configuration. Lo et al. in their work Heracles [33] discuss
the isolation problems that arise due to collocating tasks
and motivates our study. Adrenaline [19] talk about polices
to utilize a special hardware with fast per-core voltage and
frequency switching to reduce tail latencies in warehouse
scale workload. Hipster [41] provides a QoS aware energy
management system for ARM’s big-little cores. In contrast,
our work explores currently available power management
techniques on x86 platforms common in data centers, and
focuses on differential power delivery to applications, not
energy efficiency.
Cluster-level methods: There has been much work on
power management at the cluster level, which is comple-
mentary to our work. No Power work from HP Labs [44] in-
troduces the problem of power management in a cluster and
advocates for coordinated systems level solution. They pro-
vide an overview of the main strategies for power manage-
ment at all levels of a cluster hierarchy. Following this work,
there have been a whole host of papers talking about power
management in a data center [12, 18, 19, 27, 28, 33, 53, 56].
The common thread is that they all use node-level primitives
to keep application guarantees. We show that using the most
common of these methods (RAPL) is not enough to follow
SLA’s. We provide a better approach to do node-level power
management with policies that use existing mechanisms to
achieve operator goals.
DVFS studies: Rubik [24] and Adrenaline [19] focuses on
reducing tail latencies by using fine grained DVFS. We try
to understand the interactions between various hardware
power management features to provide policies for better
utilization of the system under a power cap. Marathe et al.
performed an empirical study of performance and energy
efficiency variation in Intel Processors when put under dif-
ferent DVFS levels with similar utilizations [34]. We repeat
some of their studies as a baseline but focus on differential
power delivery policies.
Energy and thermal management: Several systems fo-
cus on energy management targeting mobile or energy-
constrained environments. Cinder[45], ECOSytem[58], and
Power Containers[47] manage energy consumption. Other
works [17] prevent thermal interference among applications.
Our work focuses on the similar goal of promoting power as
a primary resource and controlling the power use of every
application. Since the focus of these works is energy, they
allow long-running applications to accumulate energy over
time, while our policies focus on power draw at all times.
Managing power for heterogeneous systems: Schedul-
ing power for heterogenous systems is complementary to
our idea of per-application power delivery. The problem has
two parts: first finding the most efficient cores for the current
application or thread and then deciding on the right settings
for throttling under a power constraint. Liu et. al. provides

a formal definition for the mapping problem [32]. Craynest
et. al provide a performance-impact-based method to de-
rive schedules for such systems [51]. Muthukaruppan et. al.
provides the first combined solution focusing on power man-
agement [39]. Sozzo et. al. presents a similar approach [49].
These works limit themselves to developing better control
mechanisms and have limited policies. Our proposed can be
extended to include such mechanisms.

8 Conclusions
Recent processors have the ability to delivery different power
levels to each core, but policies to leverage this capability
are not yet available. We propose power shares, frequency
shares, and performance shares as three alternatives to the
current policy of restricting power via an upper limit on
frequency. Through experiments we show that all three can
delivery per-application power, but frequency shares were
the most stable and provided the best performance isolation.
The key difference between frequency, power, and perfor-
mance based policies is that one rewards low power use
(power proportionality) while others reward efficient proces-
sor use (performance and frequency proportionality).

Another consideration is game-ability: an application can
vary its instruction mix to change its measured resource us-
age. For performance, applications can manipulate their IPS
value with NOP instructions, and their power consumption
with extra floating-point or vector instructions. Generally,
a sound policy is to ensure that any gaming steps an appli-
cation takes has an overall larger negative impact on their
performance than any benefit they might receive from a
power allocation policy.

Acknowledgments
This work is supported in part by National Science Founda-
tion (NSF) grants CNS-1617824 and CNS-1533885. We would
like to thank our shepherd Christos Kozyrakis and the anony-
mous reviewers for their invaluable feedback. Swift has a
significant financial interest in Microsoft.

References
[1] Kristen Accardi. 2015. Balancing Power and Performance in the Linux

Kernel. https://events.static.linuxfound.org/sites/events/files/slides/
LinuxConEurope_2015.pdf.

[2] AMD Inc. 2000. AMD PowerNow! Technology. https://support.amd.
com/TechDocs/24404a.pdf.

[3] AMD Inc. 2017. AMD SenseMI Technology. https://www.amd.com/
en/technologies/sense-mi.

[4] AMD Inc. 2017. Processor Programming Reference (PPR) for AMD
Family 17h Model 01h, Revision B1 Processors.

[5] L. A. Barroso and U. Hölzle. 2007. The Case for Energy-Proportional
Computing. Computer 40, 12 (Dec 2007), 33–37. https://doi.org/10.
1109/MC.2007.443

[6] W. Lloyd Bircher and Lizy K. John. 2008. Analysis of Dynamic Power
Management on Multi-core Processors. In Proceedings of the 22Nd
Annual International Conference on Supercomputing. 327–338.

[7] Dominik Brodowski, Nico Golde, Rafael J. Wysocki, and Viresh Kumar.
2016. CPU frequency and voltage scaling code in the Linux(TM) kernel.

14

https://events.static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf
https://support.amd.com/TechDocs/24404a.pdf
https://support.amd.com/TechDocs/24404a.pdf
https://www.amd.com/en/technologies/sense-mi
https://www.amd.com/en/technologies/sense-mi
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/MC.2007.443


https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
[8] Len Brown. 2018. turbostat man page. https://www.mankier.com/8/

turbostat.
[9] Martha Broyles, Christopher J. Cain, Todd Rosedahl, and Guillermo J.

Silva. 2015. IBM EnergyScale for POWER8 Processor-Based Systems.
[10] Martha Broyles, Chris Francois, Andrew Geissler, Gordon Grout,

Michael Hollinger, Todd Rosedahl, Guillermo J. Silva, Mark Vander-
wiel, Jeff Van Heuklon, and Brian Veale. 2011. IBM EnergyScale
for POWER7 Processor-Based Systems. https://www-01.ibm.com/
common/ssi/cgi-bin/ssialias?htmlfid=POW03039USEN.

[11] E A Burton, G Schrom, F Paillet, J Douglas, W J Lambert, K Radhakr-
ishnan, and M J Hill. 2014. FIVR – Fully integrated voltage regulators
on 4th generation Intel Core SoCs. 2014 IEEE Applied Power Electronics
Conference and Exposition (2014), 432–439.

[12] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
efficient and QoS-aware Cluster Management. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems. 127–144.

[13] Simon Derr. 2004. Linux Kernel documentation on cgroup cpusets.
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

[14] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-
ware. Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems.

[15] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R.
Geyer. 2015. An Energy Efficiency Feature Survey of the Intel Haswell
Processor. In 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop. 896–904.

[16] James Hamilton. 2008. Cost of Power in Large-Scale
Data Centers. https://perspectives.mvdirona.com/2008/11/
cost-of-power-in-large-scale-data-centers/.

[17] J. Hasan, A. Jalote, T. N. Vijaykumar, and C. E. Brodley. 2005. Heat
stroke: power-density-based denial of service in SMT. In 11th Interna-
tional Symposium on High-Performance Computer Architecture. 166–
177.

[18] Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and Lingjia Tang.
2018. SmoothOperator: Reducing Power Fragmentation and Improving
Power Utilization in Large-scale Datacenters. In Proceedings of the 23rd
International Conference on Architectural Support for Programming
Languages and Operating Systems. 535–548.

[19] C. H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, J.
Mars, L. Tang, and R. G. Dreslinski. 2015. Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture.
271–282.

[20] Intel Corp. 2004. Enhanced Intel SpeedStep Technology for the Intel
Pentium M Processor. http://download.intel.com/design/network/
papers/30117401.pdf.

[21] Intel Corp. 2009. Power Management in Intel Architecture
Servers. https://www.intel.com/content/dam/support/us/en/
documents/motherboards/server/sb/power_management_of_intel_
architecture_servers.pdf.

[22] Intel Corp. 2018. Intel 64 and IA-32 architectures software developer’s
manual. https://software.intel.com/en-us/articles/intel-sdm.

[23] Canturk Isci, Alper Buyuktosunoglu, Chen Yong Cher, Pradip Bose, and
Margaret Martonosi. 2006. An analysis of efficient multi-core global
power management policies: Maximizing performance for a given
power budget. Proceedings of the Annual International Symposium on
Microarchitecture (2006), 347–358.

[24] Harshad Kasture, Davide B. Bartolini, Nathan Beckmann, and Daniel
Sanchez. 2015. Rubik: Fast Analytical Power Management for Latency-
critical Systems. In Proceedings of the 48th International Symposium on

Microarchitecture. 598–610.
[25] kernel.org. [n. d.]. Power Capping Framework. https://www.kernel.

org/doc/Documentation/power/powercap/powercap.txt. Retrieved
4/1/2018.

[26] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen,
and Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL
for Power Measurements. ACM Trans. Model. Perform. Eval. Comput.
Syst. 3, 2, Article 9 (March 2018).

[27] Vasileios Kontorinis, Liuyi Eric Zhang, Baris Aksanli, Jack Sampson,
Houman Homayoun, Eddie Pettis, Dean M. Tullsen, and Tajana Simu-
nic Rosing. 2012. Managing distributed UPS energy for effective power
capping in data centers. Proceedings - International Symposium on Com-
puter Architecture 00, c (2012), 488–499.

[28] Jaewon Lee, Changkyu Kim, Kun Lin, Liqun Cheng, Rama Govin-
daraju, and Jangwoo Kim. 2018. WSMeter: A Performance Evaluation
Methodology for Google’s Production Warehouse-Scale Computers.
In Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems. 549–563.

[29] Gregory Lento. 2014. Optimizing Performance with Intel Advanced
Vector Extensions. https://computing.llnl.gov/tutorials/linux_clusters/
intelAVXperformanceWhitePaper.pdf.

[30] A. Limaye and T. Adegbija. 2018. A Workload Characterization of the
SPECCPU2017 Benchmark Suite. In 2018 IEEE International Symposium
on Performance Analysis of Systems and Software. 149–158.

[31] Linus Tech Tips. 2017. AMD Extended Frequency Range
(XFR) - Explained. https://linustechtips.com/main/topic/
850358-amd-extended-frequency-range-xfr-explained.

[32] G. Liu, J. Park, and D. Marculescu. 2013. Dynamic thread mapping for
high-performance, power-efficient heterogeneous many-core systems.
In 2013 IEEE 31st International Conference on Computer Design. 54–61.

[33] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving Resource
Efficiency at Scale. In Proceedings of the 42th Annual International Sym-
posium on Computer Architecture.

[34] Aniruddha Marathe, Yijia Zhang, Grayson Blanks, Nirmal Kumbhare,
Abdulla Ghaleb, and Barry Rountree. 2017. An empirical survey of
performance and energy efficiency variation on Intel processors. In
E2SC’17.

[35] Abdelhafid Mazouz, Alexandre Laurent, Benoît Pradelle, and William
Jalby. 2014. Evaluation of CPU Frequency Transition Latency. Comput.
Sci. 29, 3-4 (Aug. 2014), 187–195.

[36] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment. Linux J. 2014, 239, Article 2
(March 2014).

[37] Microsoft Corp. 2017. Power and performance tuning.
https://docs.microsoft.com/en-us/windows-server/administration/
performance-tuning/hardware/power/power-performance-tuning.

[38] Thiago Ramon Goncalves Montoya. 2017. ZenStates. https://github.
com/r4m0n/ZenStates-Linux.

[39] Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan
Venkataramani, Tulika Mitra, and Sanjay Vishin. 2013. Hierarchical
Power Management for Asymmetric Multi-core in Dark Silicon Era. In
Proceedings of the 50th Annual Design Automation Conference. Article
174, 9 pages.

[40] Patrick Mylund Nielsen. 2012. cpuburn. https://patrickmn.com/
projects/cpuburn/

[41] Rajiv Nishtala, Paul Carpenter, Vinicius Petrucci, and Xavier Martorell.
2017. The Hipster Approach for Improving Cloud System Efficiency.
ACM Trans. Comput. Syst. 35, 3, Article 8 (Dec. 2017), 28 pages.

[42] Tapti Palit, Yongming Shen, and Michael Ferdman. 2016. Demystify-
ing Cloud Benchmarking. In 2016 IEEE International Symposium on
Performance Analysis of Systems and Software. 122–132.

[43] Jacob Pan. 2013. RAPL (Running Average Power Limit) driver.

15

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.mankier.com/8/turbostat
https://www.mankier.com/8/turbostat
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POW03039USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=POW03039USEN
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
https://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
http://download.intel.com/design/network/papers/30117401.pdf
http://download.intel.com/design/network/papers/30117401.pdf
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePaper.pdf
https://computing.llnl.gov/tutorials/linux_clusters/intelAVXperformanceWhitePaper.pdf
https://linustechtips.com/main/topic/850358-amd-extended-frequency-range-xfr-explained
https://linustechtips.com/main/topic/850358-amd-extended-frequency-range-xfr-explained
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/hardware/power/power-performance-tuning
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/hardware/power/power-performance-tuning
https://github.com/r4m0n/ZenStates-Linux
https://github.com/r4m0n/ZenStates-Linux
https://patrickmn.com/projects/cpuburn/
https://patrickmn.com/projects/cpuburn/


[44] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar,
Zhikui Wang, and Xiaoyun Zhu. 2008. No "Power" Struggles: Co-
ordinated Multi-level Power Management for the Data Center. In Pro-
ceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems. 48–59.

[45] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David
Mazières, and Nickolai Zeldovich. 2011. EnergyManagement inMobile
Devices with the Cinder Operating System. In Proc. EuroSys.

[46] Robert Schöne, Daniel Molka, and Michael Werner. 2015. Wake-up
Latencies for Processor Idle States on Current x86 Processors. Comput.
Sci. 30, 2 (May 2015), 219–227.

[47] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and
Zhuan Chen. 2013. Power containers: an OS facility for fine-grained
power and energy management on multicore servers. In Proc. 18th
ASPLOS. 65–76.

[48] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot
Heiser. 2009. Koala: A Platform for OS-level Power Management. In
Proceedings of the 4th ACM European Conference on Computer Systems.
289–302.

[49] E. Del Sozzo, G. C. Durelli, E. M. G. Trainiti, A. Miele, M. D. Santam-
brogio, and C. Bolchini. 2016. Workload-aware Power Optimization
Strategy for Asymmetric Multiprocessors. In Proceedings of the 2016
Conference on Design, Automation & Test in Europe. 531–534.

[50] UEFI Forum. 2016. Advanced Configuration and Power Interface Speci-
fication, Version 6.1. http://www.uefi.org/sites/default/files/resources/
ACPI_6_1.pdf.

[51] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez,
and Joel Emer. 2012. Scheduling Heterogeneous Multi-cores Through
Performance Impact Estimation (PIE). In Proceedings of the 39th Annual
International Symposium on Computer Architecture. 213–224.

[52] Augusto Vega and Heather Hanson. 2013. Crank It Up or Dial It Down
: Coordinated Multiprocessor Frequency and Folding Control. Proceed-
ings of the 46th Annual International Symposium on Microarchitecture
(2013), 210–221.

[53] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster
management at Google with Borg. In Proceedings of the European
Conference on Computer Systems.

[54] Carl Waldspurger. 2002. Memory resource management in VMware
ESX server. In Proc. of the 2002 Symp. on Operating Systems Design and
Implementation.

[55] Carl A. Waldspurger and William E. Weihl. 1994. Lottery Scheduling:
Flexible Proportional-Share Resource Management. In Proceedings of
the Symposium on Operating Systems Design and Implementation. 1–11.

[56] Q. Wu, Q. Deng, L. Ganesh, C. H. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza,
and Y. J. Song. 2016. Dynamo: Facebook’s Data Center-Wide Power
Management System. In Proceedings of 43rd Annual International Sym-
posium on Computer Architecture. 469–480.

[57] Rafael J. Wysocki. 2017. intel_pstate CPU Performance Scaling Dri-
ver. https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_
pstate.html.

[58] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. 2002.
ECOSystem: Managing Energy As a First Class Operating System
Resource. In Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.

[59] Huazhe Zhang and H Hoffman. 2015. A quantitative evaluation of the
RAPL power control system.

16

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html

	Abstract
	1 Introduction
	2 Background
	2.1 Power Management
	2.2 Power capping

	3 Effectiveness of Power Management  Mechanisms
	3.1 Methodology and Experimental Setup
	3.2 Results

	4 Policy Design
	4.1 Priority Policy
	4.2 Proportional share policies
	4.3 Single-core Sharing Policy
	4.4 Discussion

	5 Policy Implementation
	5.1 Implementing priorities
	5.2 Implementing shares

	6 Policy Evaluation
	6.1 Priority Experiments
	6.2 Proportional Share Experiments
	6.3 Random Experiments
	6.4 Latency-Sensitive Experiments

	7 Related Work
	8 Conclusions
	References

