Improving the Reliability of
Commodity Operating
Systems

Mike Swift
University of Washington

High Level OS Problems

1. Performance
2. Features
3. Reliability

Previous Approaches to
Reliability

. Fix the code

[Engler01, Slam, Blast]

. Build a new system
[Multics, Hydra, Tandem, QuickSilver]

. Add hardware

[VaxClusters, Borg89, Google]

OS Today

Application

Application

Kernel

Virtual Memory

File Systems

Networking

Exceptions

Device Drivers

85% of crashes

OS With Reliability

Application

Application

Kernel

Virtual Memory

File Systems

Networking

Exceptions

Reliability

Device Drivers

85% of crashes

Contributions

| designed and built a new kernel

subsystem that:

* Prevents majority of driver-caused crashes
Requires no changes to existing drivers
Requires only minor changes to OS
Minimally impacts performance

Outline

 Introduction
* Problem

+ Design

« Evaluation

- Summary and Future Work

What Is a Driver?

A module that translates OS requests to
device requests

» 10s of thousands exist

» 81 drivers running on this laptop!
* Run in the OS kernel

- Small # of common interfaces

Why Do Drivers Fail?

- Complex and hard to write
— Must handle asynchronous events
— Must obey kernel programming rules
— Non-reproducible failures
— Difficult to test and debug

» Written by inexperienced programmers

OS Today

Application

river

Kernel *

OS With Reliability

Application Application

Driver
Kernel

Objectives

Eliminate downtime caused by drivers

1. Prevent system crashes - isolation
2. Keep applications running - recovery

Outline

 Introduction
* Problem

* Design

« Evaluation

- Summary and Future Work

Design of Nooks

« Standard Linux kernel and drivers
* Plus:

— Isolation
— Recovery

- Compatible with existing code

System Architecture

Application

Application

Kernel

__

| Lightweight

| Kernel

Protection
Domains

Shadow
Drivers

Nooksi
Reliability :
Layer !

Driver

Driver

Driver

Outline

Introduction
Problem
Design

— |solation

— Recovery

Evaluation
Summary and Future Work

Existing Kernels

Application

Application

Kernel

Driver

Memory Isolation

Application Application
Driver
Kernel Stack
Heap

Lightweight Kernel Protection Domains

Control Transfer

Application Application
Driver
Kernel e \A

o\

Control Transfer

Application Application
XPC Driver
Kernel / \A
\AC

eXtension Procedure Call

Data Access

Application Application
B Driver
Kernel \
Timer |\]
Buffer|...|...

Object Table

Transparency

Application Application
Driver
Kernel an’ xpC 4
xpc

Wrappers

Outline

Introduction
Problem
Design

— |solation

— Recovery

Evaluation
Summary and Future Work

Recovery

« Goals:

— Restore driver state so it can process requests as
if it had never failed

— Conceal failure from applications
 Observation:

— Driver interface specifies how driver responds to
requests

» Approach: Model drivers as state machines

Drivers as State Machines

send complete

Drivers as State Machines

* Recovery:

— Advance driver
from initial state to
state at time of
crash

— Reply to requests
with valid
responses
according to driver
state

Shadow Drivers

- Generic code that:
— Normally:
* Records state-changing inputs

— On failure:
- Restarts driver
- Replays inputs to recover
- Emulates driver to applications/OS

=» One shadow driver handles recovery for an
entire class of drivers

Shadow Driver Overview

Device
Driver

Kernel

Preparing for Recovery

Device
O Driver

Kernel

Recovering a Failed Driver

Device
Driver

Kernel

Recovering a Failed Driver

« Summary:

— Reset driver

— Reinitialize driver

— Replay logged requests

Spoofing a Failed Driver

Kernel

vetite. .

Device

Driv*

Spoofing a Failed Driver

Shadow acts as driver -- replies to requests with valid
possible responses
— Applications and OS unaware that driver failed
— No device control

General Strategies:
1. Answer request from log
Act busy
Block caller
Queue request
Drop request

Al i A

Completing Recovery

Kernel

Device
Driver

Design Summary

» Isolation
— Lightweight Kernel Protection Domains
— eXtension Procedure Call (XPC)
— Object Table
— Wrappers

* Recovery
— Shadow Drivers

Outline

Introduction
Problem

Design
Evaluation

— Implementation

— Benefit
— Cost

Summary and Future Work

Drivers Tested

Class Drivers

Sound Soundblaster Audigy
Soundblaster 16, Soundblaster
Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Network Intel Pro/1000 Gigabit Ethernet

AMD PCnet32, Intel Pro/100
10/100, 3Com 3c¢59x 10/100,
SMC Etherpower 100

<. |IDE Storage

ide-disk, ide-cd

Implementation Complexity

» Changes to existing code
— Kernel: 924 out of 1.1 million lines
— Device drivers: 0 out of 50,000 lines

Implementation Complexity

 New code
— Isolation: 23,000 lines
— Recovery: 3,300 lines

Driver Class | Shadow 1 Device | All Drivers | All Drivers
Driver Driver Count L.O.C.
L.O.C. L.O.C.

Sound 666 7,381 48| 118,981

Network 198| 13,577 190 | 264,500

Storage 321 5,358 8| 29,000

Implementation Complexity

 New code
— Isolation: 23,000 lines
— Recovery: 3,300 lines

Driver Class | Shadow 1 Device | All Drivers | All Drivers
Driver Driver Count L.O.C.
L.O.C. L.O.C.

Sound 666 7,381 48| 118,981

Network 198| 13,577 190 | 264,500

Storage 321 5,358 8| 29,000

Outline

Introduction
Problem
Design

Evaluation
— Implementation

— Benefit
* Isolation
* Recovery

— Cost
Summary and Future Work

Reliability Test Methodology

v
Load driver

v

Inject bugs

e

Nothing Failure

—

Reboot

Reliability Test Methodology

v
Load driver

v

Inject bugs
b
Nothing Failure Recovery

—

Reboot

Number of OS crashes

200

-t
g1
o

100

o1
o

|Isolation Works

119

pcnet32
Driver

Il No Nooks
Il Nooks

Number of OS crashes

200

-t
g1
o

100

o1
o

|Isolation Works

119

pcnet32
Driver

Il No Nooks
Il Nooks

Number of OS crashes

200

-t
g1
o

100

o1
o

|Isolation Works

119
52
0 I

pcnet32 e1000
Driver

Il No Nooks
Il Nooks

Number of OS crashes

200

-t
g1
o

100

o1
o

|Isolation Works

119
52
0 I 0

pcnet32 e1000
Driver

Il No Nooks
Il Nooks

Number of OS crashes

200

-t
g1
o

100

o1
o

|Isolation Works

152
119
52
0 I 0 0

pcnet32 e1000 ide-disk
Driver

Il No Nooks
Il Nooks

Number of OS crashes

200

-t
g1
o

100

o1
o

|Isolation Works

152
119
52
0 I 0 0

10

pcnet32

e1000

ide-disk

Driver

sb

Il No Nooks
Il Nooks

Number of failures

100

Recovery Works

Sound

Net

Storage

00]
@)

B Driver Failures
B Application Failures

(o))
o

LN
o

N
o

o
|

Mp3 Audio
Player Recorder

Remote

Copy

L]

Ll

Sniffer Compiler Database

Relative Performance (%)

o))
o

D
o

N
o

Relative Performance

Mp3
Player

Audio
Recorder

B No Nooks

I Nooks

Network Network Compiler Database
Send Receive

CPU Usage

100
B No Nooks B Nooks

80
e Sound Net Storage
_g 60
©
=
5 40
-
(al
@

20

0 B 1 1

Mp3 Audio Network Network Compiler Database
Player Recorder Send Receive

Summary

- | identified properties of drivers enabling
Isolation and recovery

* | defined an architecture and a set of
components and techniques for improving
system reliability

« Our experiments demonstrate that:
— Nooks prevents 99% of the crashes caused by our
tests

— Nooks keeps applications running in 98% of tested
driver failures

— High leverage

Related Work

|solation

— Software Fault Isolation - Wahbe93

— Type-safe languages - SPIN, Cyclone, CCured

— Microkernels / Exokernels - Mach, L4, XOK

— Virtual Machines - Xen, LeVasseur04

Recovery

— Checkpoint/restore - libckpt, FT-Mach, Discount Checking
— Transactions - Quicksilver, Vino

— Recovery Oriented Computing - Patterson02, Candea04
Programming models

— Recovery blocks - Randell75

— N-version programming - Aviziensis85

— Wrappers - Healers, Mafalda, Safety kernels

Bug finding

— Model checking/static analysis - Engler01, Slam, Blast
— Dynamic checking - Windows Driver Verifier, Fabry73

Conclusion

* | have taken a structural approach to
improving reliability

» | plan to take a similar approach to
other systems problems
— Reliability for extensible systems
— Security and configuration
— Complexity

Questions?

mikesw @ cs.washington.edu
nooks.cs.washington.edu

