
Improving the Reliability of
Commodity Operating

Systems
Mike Swift

University of Washington



High Level OS Problems

1. Performance
2. Features
3. Reliability



Previous Approaches to
Reliability

1. Fix the code
[Engler01, Slam, Blast]

2. Build a new system
[Multics, Hydra, Tandem, QuickSilver]

3. Add hardware
[VaxClusters, Borg89, Google]



Kernel

Device Drivers

ApplicationApplication

OS Today

Virtual Memory

File Systems

Networking

Exceptions

… 85% of crashes



Kernel

Device DriversDevice Drivers

ApplicationApplication

OS With Reliability

Virtual Memory

File Systems

Networking

Exceptions

…Reliability 85% of crashes



Contributions

• Prevents majority of driver-caused crashes
• Requires no changes to existing drivers
• Requires only minor changes to OS
• Minimally impacts performance

I designed and built a new kernel
subsystem that:



Outline

• Introduction
• Problem
• Design
• Evaluation
• Summary and Future Work



What Is a Driver?

• 10s of thousands exist
• 81 drivers running on this laptop!
• Run in the OS kernel
• Small # of common interfaces

A module that translates OS requests to
device requests



Why Do Drivers Fail?

• Complex and hard to write
– Must handle asynchronous events
– Must obey kernel programming rules
– Non-reproducible failures
– Difficult to test and debug

• Written by inexperienced programmers



OS Today

Kernel
Driver

ApplicationApplication



OS With Reliability

Kernel
Driver

Application

Driver

Application



Objectives

Eliminate downtime caused by drivers

1. Prevent system crashes - isolation
2. Keep applications running - recovery
3. Prevent maintenance reboots - update



Outline

• Introduction
• Problem
• Design
• Evaluation
• Summary and Future Work



Design of Nooks

• Standard Linux kernel and drivers
• Plus:

– Isolation
– Recovery
– Update

• Compatible with existing code



Nooks
Reliability

Layer

Lightweight 
Kernel 

Protection 
Domains

Kernel

Driver

ApplicationApplication

Shadow
DriversXPC

System Architecture

Driver Driver

WrappersObject
Table



Outline

• Introduction
• Problem
• Design

– Isolation
– Recovery

• Evaluation
• Summary and Future Work



Existing Kernels

Kernel
Driver

ApplicationApplication



Memory Isolation

Kernel
Driver
Stack
Heap

Lightweight Kernel Protection Domains

ApplicationApplication



Control Transfer

Kernel
Driver

ApplicationApplication



Control Transfer

Kernel
Driver

XPC

XPC

eXtension Procedure Call

ApplicationApplication



Data Access

Kernel
Driver

Object Table

Timer

ApplicationApplication

… …Buffer



Transparency

Kernel
Driver

Wrappers

ApplicationApplication

XPC

XPC



Outline

• Introduction
• Problem
• Design

– Isolation
– Recovery

• Evaluation
• Summary and Future Work



Recovery

• Goals:
– Restore driver state so it can process requests as

if it had never failed
– Conceal failure from applications

• Observation:
– Driver interface specifies how driver responds to

requests
• Approach: Model drivers as state machines



Drivers as State Machines

send complete



Drivers as State Machines

• Recovery:
– Advance driver

from initial state to
state at time of
crash

– Reply to requests
with valid
responses
according to driver
state

 

open close

config
 



Shadow Drivers

• Generic code that:
– Normally:

• Records state-changing inputs
– On failure:

• Restarts driver
• Replays inputs to recover
• Emulates driver to applications/OS

One shadow driver handles recovery for an
entire class of drivers



wr
ite
(…
)

write(…)

Shadow Driver Overview

Kernel

Device
Driver

Tap

Shadow
Driver

write(…)



Preparing for Recovery

Kernel

Device
Driver

Shadow
Driver

co
nfi
g(
…)

config(…)

config(…)

config
…

Tap



Tap

Device
Driver

Recovering a Failed Driver

Kernel

Shadow
Driver

Device
Driver

Tap
reg
ist
er(
…)

register(…
)

init(…
)

connect
config

config
…



Recovering a Failed Driver

• Summary:
– Reset driver
– Reinitialize driver
– Replay logged requests



Spoofing a Failed Driver

Kernel

Device
Driver

Shadow
Driver

Tap
write(…)

write(…)

return

return



Spoofing a Failed Driver

Shadow acts as driver -- replies to requests with valid
possible responses

– Applications and OS unaware that driver failed
– No device control

General Strategies:
1. Answer request from log
2. Act busy
3. Block caller
4. Queue request
5. Drop request



Completing Recovery

Kernel

Shadow
Driver

Tap

Device
Driver

TapTap



Design Summary

• Isolation
– Lightweight Kernel Protection Domains
– eXtension Procedure Call (XPC)
– Object Table
– Wrappers

• Recovery
– Shadow Drivers



Outline

• Introduction
• Problem
• Design
• Evaluation

– Implementation
– Benefit
– Cost

• Summary and Future Work



Drivers Tested

ide-disk, ide-cdIDE Storage

Intel Pro/1000 Gigabit Ethernet,
AMD PCnet32, Intel Pro/100
10/100, 3Com 3c59x 10/100,
SMC Etherpower 100

Network

Soundblaster Audigy,
Soundblaster 16, Soundblaster
Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Sound
DriversClass



Implementation Complexity

• Changes to existing code
– Kernel: 924 out of 1.1 million lines
– Device drivers: 0 out of 50,000 lines



5,358
13,577
7,381

1 Device
Driver
L.O.C.

321
198
666

Shadow
Driver
L.O.C.

29,0008
264,500190
118,98148

All Drivers
L.O.C.

All Drivers
Count

Storage
Network
Sound

Driver Class

Implementation Complexity
• New code

– Isolation: 23,000 lines
– Recovery: 3,300 lines



5,358
13,577
7,381

1 Device
Driver
L.O.C.

321
198
666

Shadow
Driver
L.O.C.

29,0008
264,500190
118,98148

All Drivers
L.O.C.

All Drivers
Count

Storage
Network
Sound

Driver Class

Implementation Complexity
• New code

– Isolation: 23,000 lines
– Recovery: 3,300 lines



Outline

• Introduction
• Problem
• Design
• Evaluation

– Implementation
– Benefit

• Isolation
• Recovery

– Cost
• Summary and Future Work



Reliability Test Methodology

Test

Inject bugs

Reboot

Load driver

Nothing Failure



Reliability Test Methodology

Test

Inject bugs

Reboot

Load driver

Nothing Failure Recovery



Isolation Works

No Nooks

Nooks119



Isolation Works

No Nooks

Nooks119

0



Isolation Works

No Nooks

Nooks119

0

52



Isolation Works

No Nooks

Nooks119

0

52

0



Isolation Works

No Nooks

Nooks119

0

52

0

152

0



Isolation Works

No Nooks

Nooks119

0

52

0
10

1

152

0



Recovery Works
Sound Net Storage



Relative Performance

Sound Net Storage



CPU Usage

Sound Net Storage



Summary
• I identified properties of drivers enabling

isolation and recovery
• I defined an architecture and a set of

components and techniques for improving
system reliability

• Our experiments demonstrate that:
– Nooks prevents 99% of the crashes caused by our

tests
– Nooks keeps applications running in 98% of tested

driver failures
– High leverage



Related Work
• Isolation

– Software Fault Isolation - Wahbe93
– Type-safe languages - SPIN, Cyclone, CCured
– Microkernels / Exokernels - Mach, L4, XOK
– Virtual Machines - Xen, LeVasseur04

• Recovery
– Checkpoint/restore - libckpt, FT-Mach, Discount Checking
– Transactions - Quicksilver, Vino
– Recovery Oriented Computing - Patterson02, Candea04

• Programming models
– Recovery blocks - Randell75
– N-version programming - Aviziensis85
– Wrappers - Healers, Mafalda, Safety kernels

• Bug finding
– Model checking/static analysis - Engler01, Slam, Blast
– Dynamic checking - Windows Driver Verifier, Fabry73



Conclusion

• I have taken a structural approach to
improving reliability

• I plan to take a similar approach to
other systems problems
– Reliability for extensible systems
– Security and configuration
– Complexity



Questions?

mikesw@cs.washington.edu
nooks.cs.washington.edu


