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High Level OS Problems

1. Performance
2. Features
3. Reliability



Previous Approaches to
Reliability

1. Fix the code
[Engler01, Slam, Blast]

2. Build a new system
[Multics, Hydra, Tandem, QuickSilver]

3. Add hardware
[VaxClusters, Borg89, Google]
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Contributions

• Prevents majority of driver-caused crashes
• Requires no changes to existing drivers
• Requires only minor changes to OS
• Minimally impacts performance

I designed and built a new kernel
subsystem that:
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What Is a Driver?

• 10s of thousands exist
• 81 drivers running on this laptop!
• Run in the OS kernel
• Small # of common interfaces

A module that translates OS requests to
device requests



Why Do Drivers Fail?

• Complex and hard to write
– Must handle asynchronous events
– Must obey kernel programming rules
– Non-reproducible failures
– Difficult to test and debug

• Written by inexperienced programmers
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Objectives

Eliminate downtime caused by drivers

1. Prevent system crashes - isolation
2. Keep applications running - recovery
3. Prevent maintenance reboots - update
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Design of Nooks

• Standard Linux kernel and drivers
• Plus:

– Isolation
– Recovery
– Update

• Compatible with existing code
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Memory Isolation
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Data Access
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Recovery

• Goals:
– Restore driver state so it can process requests as

if it had never failed
– Conceal failure from applications

• Observation:
– Driver interface specifies how driver responds to

requests
• Approach: Model drivers as state machines



Drivers as State Machines
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Drivers as State Machines

• Recovery:
– Advance driver

from initial state to
state at time of
crash

– Reply to requests
with valid
responses
according to driver
state
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Shadow Drivers

• Generic code that:
– Normally:

• Records state-changing inputs
– On failure:

• Restarts driver
• Replays inputs to recover
• Emulates driver to applications/OS

One shadow driver handles recovery for an
entire class of drivers
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Recovering a Failed Driver

• Summary:
– Reset driver
– Reinitialize driver
– Replay logged requests
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Spoofing a Failed Driver

Shadow acts as driver -- replies to requests with valid
possible responses

– Applications and OS unaware that driver failed
– No device control

General Strategies:
1. Answer request from log
2. Act busy
3. Block caller
4. Queue request
5. Drop request
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Design Summary

• Isolation
– Lightweight Kernel Protection Domains
– eXtension Procedure Call (XPC)
– Object Table
– Wrappers

• Recovery
– Shadow Drivers
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Drivers Tested

ide-disk, ide-cdIDE Storage

Intel Pro/1000 Gigabit Ethernet,
AMD PCnet32, Intel Pro/100
10/100, 3Com 3c59x 10/100,
SMC Etherpower 100

Network

Soundblaster Audigy,
Soundblaster 16, Soundblaster
Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Sound
DriversClass



Implementation Complexity

• Changes to existing code
– Kernel: 924 out of 1.1 million lines
– Device drivers: 0 out of 50,000 lines
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Reliability Test Methodology
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Recovery Works
Sound Net Storage
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Summary
• I identified properties of drivers enabling

isolation and recovery
• I defined an architecture and a set of

components and techniques for improving
system reliability

• Our experiments demonstrate that:
– Nooks prevents 99% of the crashes caused by our

tests
– Nooks keeps applications running in 98% of tested

driver failures
– High leverage



Related Work
• Isolation

– Software Fault Isolation - Wahbe93
– Type-safe languages - SPIN, Cyclone, CCured
– Microkernels / Exokernels - Mach, L4, XOK
– Virtual Machines - Xen, LeVasseur04

• Recovery
– Checkpoint/restore - libckpt, FT-Mach, Discount Checking
– Transactions - Quicksilver, Vino
– Recovery Oriented Computing - Patterson02, Candea04

• Programming models
– Recovery blocks - Randell75
– N-version programming - Aviziensis85
– Wrappers - Healers, Mafalda, Safety kernels

• Bug finding
– Model checking/static analysis - Engler01, Slam, Blast
– Dynamic checking - Windows Driver Verifier, Fabry73



Conclusion

• I have taken a structural approach to
improving reliability

• I plan to take a similar approach to
other systems problems
– Reliability for extensible systems
– Security and configuration
– Complexity



Questions?

mikesw@cs.washington.edu
nooks.cs.washington.edu


