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1. INTRODUCTION

Operating systems crash. Whether due to software bugs [Engler et al. 2001] or
hardware bit-flips [Milojicic et al. 2000], the reality is clear: large code bases
are brittle, and the smallest problem in software implementation or hardware
environment can lead the entire monolithic operating system to fail.

Recent research has made great headway in operating-system crash toler-
ance, particularly in surviving device driver failures [Erlingsson et al. 2006;
Fraser et al. 2004; Herder et al. 2006; Herder et al. 2007; LeVasseur et al.
2004; Swift et al. 2003, 2004; Williams et al. 2008; Zhou et al. 2006. Many of
these approaches achieve some level of fault tolerance by building a hard wall
around OS subsystems using address-space-based isolation and microrebooting
[Candea and Fox 2003; Candea et al. 2004] said drivers upon fault detection. For
example, Nooks (and follow-on work with Shadow Drivers) encapsulate device
drivers in their own protection domain, thus making it challenging for errant
driver code to overwrite data in other parts of the kernel [Swift et al. 2003;
Swift et al. 2004]. Other approaches are similar, using variants of microkernel-
based architectures [David et al. 2008; Herder et al. 2006; Williams et al. 2008]
or virtual machines [Fraser et al. 2004; LeVasseur et al. 2004] to isolate drivers
from the kernel.

Device drivers are not the only OS subsystem, nor are they necessarily where
the most important bugs reside. Many recent studies have shown that file sys-
tems contain a large number of bugs [Chou et al. 2001; Engler et al. 2001,
Gunawi et al. 2008; Prabhakaran et al. 2005; Yang et al. 2006; Yang et al.
2004]. Perhaps this is not surprising, as file systems are one of the largest
and most complex code bases in the kernel; for example, modern file systems
such as Sun’s Zettabyte File System (ZFS) [Bonwick and Moore 2007]; SGI’s
XFS [Sweeney et al. 1996]; and older code bases such as Sun’s UFS [McVoy and
Kleiman 1991] contain nearly 100,000 lines of code [Schrock 2005]. Further,
file systems are still under active development, and new ones are introduced
quite frequently. For example, Linux has many established file systems, in-
cluding ext2 [Ts’o 2001]; ext3 [Ts’o and Tweedie 2002]; reiserfs [Reiser 2004],
and still there is great interest in next-generation file systems such as Linux
ext4 [Mathur et al. 2007] and btrfs [Wikipedia 2009]. Thus, file systems are
large, complex, and under development, the perfect storm for numerous bugs to
arise.

Because of the likely presence of flaws in their implementation, it is criti-
cal to consider how to recover from file system crashes as well. Unfortunately,
we cannot directly apply previous work from the device-driver literature to
improving file-system fault recovery. File systems, unlike device drivers, are
extremely stateful, as they manage vast amounts of both in-memory and per-
sistent data; making matters worse is the fact that file systems spread such
state across many parts of the kernel, including the page cache, dynamically-
allocated memory, and so forth. On-disk state of the file system also needs to be
consistent upon restart to avoid any damage to the stored data. Thus, when a
file system crashes, a great deal more care is required to recover while keeping
the rest of the OS intact.
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In this article, we introduce Membrane, an operating system framework to
support lightweight, stateful recovery from file system crashes. During normal
operation, Membrane logs file system operations, tracks file system objects,
and periodically performs lightweight checkpoints of file system state. If a file
system crash occurs, Membrane parks pending requests, cleans up existing
state, restarts the file system from the most recent checkpoint, and replays the
in-memory operation log to restore the state of the file system. Once finished
with recovery, Membrane begins to service application requests again; applica-
tions are unaware of the crash and restart, except for a small performance blip
during recovery.

Membrane achieves its performance and robustness through the applica-
tion of a number of novel mechanisms. For example, a generic checkpointing
mechanism enables low-cost snapshots of file system-state that serve as re-
covery points after a crash with minimal support from existing file systems.
A page-stealing technique greatly reduces logging overheads of write opera-
tions, which would otherwise increase time and space overheads. Finally, an
intricate skip /trust unwind protocol is applied to carefully unwind in-kernel
threads through both the crashed file system and kernel proper. This process re-
stores kernel state while preventing further file-system-induced damage from
taking place.

Interestingly, file systems already contain many explicit error checks
throughout their code. When triggered, these checks crash the operating sys-
tem (e.g., by calling panic) after which the file system either becomes unusable
or unmodifiable. Membrane leverages these explicit error checks and invokes
recovery instead of crashing the file system. We believe that this approach will
have the propaedeutic side-effect of encouraging file system developers to add
a higher degree of integrity-checking in order to fail quickly, rather than run
the risk of further corrupting the system. If such faults are transient (as many
important classes of bugs are [Lu et al. 2008]), crashing and quickly restarting
is a sensible manner in which to respond to them.

As performance is critical for file systems, Membrane only provides a
lightweight fault-detection mechanism and does not place an address-space
boundary between the file system and the rest of the kernel. Hence, it is pos-
sible that some types of crashes (e.g., wild writes [Chapin et al. 1995]) will
corrupt kernel data structures and thus prohibit complete recovery, an inher-
ent weakness of Membrane’s architecture. Users willing to trade performance
for reliability could use Membrane on top of stronger protection mechanism
such as Nooks [Swift et al. 2003].

We evaluated Membrane with the ext2, VFAT, and ext3 file systems. Through
experimentation, we find that Membrane enables existing file systems to crash
and recover from a wide range of fault scenarios (around 50 fault injection
experiments). We also find that Membrane has less than 2% overhead across a
set of file system benchmarks. Membrane achieves these goals with little or no
intrusiveness to existing file systems: only five lines of code were added to make
ext2, VFAT, and ext3 restartable. Finally, Membrane improves robustness with
complete application transparency; even though the underlying file system has
crashed, applications continue to run.
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The rest of this article is organized as follows. Section 2 places Membrane in
the context of other relevant work. Sections 3 and 4 present the design and im-
plementation, respectively, of Membrane. Section 5 discusses the consequence
of having Membrane in the operating system; finally, we evaluate Membrane
in Section 6 and conclude in Section 7.

2. BACKGROUND

Before presenting Membrane, we first discuss previous systems that have a
similar goal of increasing operating system fault resilience. We classify previous
approaches along two axes: overhead and statefulness.

We classify fault isolation techniques that incur little overhead as
lightweight, while more costly mechanisms are classified as heavyweight.
Heavyweight mechanisms are not likely to be adopted by file systems, which
have been tuned for high performance and scalability [Hitz et al. 1994;
Sweeney et al. 1996; Bonwick and Moore 2007], especially when used in server
environments.

We also classify techniques based on how much system state they are de-
signed to recover after failure. Techniques that assume the failed component
has little in-memory state is referred to as stateless, which is the case with
most device-driver recovery techniques. Techniques that can handle compo-
nents with in-memory and even persistent storage are stateful; when recover-
ing from file-system failure, stateful techniques are required.

We now examine three particular systems, as they are exemplars of three
previously explored points in the design space. Membrane, described in greater
detail in subsequent sections, represents an exploration into the fourth point
in this space, and hence its contribution.

2.1 Nooks and Shadow Drivers

The renaissance in building isolated OS subsystems is found in Swift et al.’s
work on Nooks, and subsequently shadow drivers [Swift et al. 2003, 2004].
In these works, the authors use memory-management hardware to build an
isolation boundary around device drivers; not surprisingly, such techniques
incur high overheads [Swift et al. 2003]. The kernel cost of Nooks (and related
approaches) is high, in this one case spending nearly 6x more time in the
kernel.

The subsequent shadow driver work shows how recovery can be transpar-
ently achieved by restarting failed drivers and diverting clients by passing them
error codes and related tricks. However, such recovery is relatively straight-
forward: only a simple reinitialization must occur before reintegrating the
restarted driver into the OS.

2.2 SafeDrive

SafeDrive takes a different approach to fault resilience [Zhou et al. 2006]. In-
stead of address-space-based protection, SafeDrive automatically adds asser-
tions into device drivers. When an assert is triggered (e.g., due to a null pointer
or an out-of-bounds index variable), SafeDrive enacts a recovery process that
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Table I. Summary of Approaches

Heavyweight Lightweight
Xen[Fraser et al. 2004] SafeDrive[Zhou et al. 2006]*
Stateless | L4[LeVasseur et al. 2004] Singularity[ Larus 2005]

Nexus[Williams et al. 2008]
Minix[Herder et al. 2006, 2007]
Nooks/Shadow[Swift et al. 2003, 2004 ]*
CuriOS[David et al. 2008]
EROS[Shapiro and Hardy 2002]

Stateful Membrane*

The table performs a categorization of previous approaches that handle OS subsystem crashes.
Approaches that use address spaces or full-system checkpoint/restart are too heavyweight; other
language-based approaches may be lighter-weight in nature but do not solve the stateful recovery
problem as required by file systems. Finally, the table marks (with an asterisk) those systems that
integrate well into existing operating systems, and thus do not require the widespread adoption
of a new operating system or virtual machine to be successful in practice.

restarts the driver and thus survives the would-be failure. Because the as-
sertions are added in a C-to-C translation pass and the final driver code is
produced through the compilation of this code, SafeDrive is lightweight and
induces relatively low overheads (up to 17% reduced performance in a network
throughput test and 23% higher CPU utilization for the USB driver [Zhou et al.
2006], Table 6.).

However, the SafeDrive recovery machinery does not handle stateful subsys-
tems; as a result, the driver will be in an initial state after recovery. Thus, while
currently well-suited for a certain class of device drivers, SafeDrive recovery
cannot be applied directly to file systems.

2.3 CuriOS

CuriOS, a recent microkernel-based operating system, also aims to be resilient
to subsystem failure [David et al. 2008]. It achieves this end through classic
microkernel techniques (i.e., address-space boundaries between servers) with
an additional twist: instead of storing session state inside a service, it places
such state in an additional protection domain where it can remain safe from
a buggy service. However, the added protection is expensive. Frequent kernel
crossings, as would be common for file systems in data-intensive environments,
would dominate performance.

As far as we can discern, CuriOS represents one of the few systems that
attempt to provide failure resilience for more stateful services such as file
systems; other heavyweight checkpoint/restart systems also share this prop-
erty [Shapiro and Hardy 2002]. In the paper there is a brief description of an
“ext2 implementation”; unfortunately it is difficult to understand exactly how
sophisticated this file service is or how much work is required to recover from
failures. It also seems that there is little shared state as is common in modern
systems (e.g., pages in a page cache).

2.4 Summary

We now classify these systems along the two axes of overhead and statefulness,
as shown in Table I. From the table, we can see that many systems use meth-
ods that are simply too costly for file systems; placing address-space boundaries
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between the OS and the file system greatly increases the amount of data copy-
ing (or page remapping) that must occur and thus is untenable. We can also
see that fewer lightweight techniques have been developed. Of those, we know
of none that work for stateful subsystems such as file systems. Thus, there is a
need for a lightweight, transparent, and stateful approach to fault recovery.

3. DESIGN

Membrane is designed to transparently restart the affected file system upon a
crash, while applications and the rest of the OS continue to operate normally.
A primary challenge in restarting file systems is to correctly manage the state
associated with the file system (e.g., file descriptors, locks in the kernel, and
in-memory inodes and directories).

In this section we first outline the high-level goals for our system. Then,
we discuss the nature and types of faults Membrane will be able to detect
and recover from. Finally, we present the three major pieces of the Membrane
system: fault detection, fault anticipation, and recovery.

3.1 Goals

We believe there are five major goals for a system that supports restartable file
systems.

Fault tolerant. A large range of faults can occur in file systems. Failures
can be caused by faulty hardware and buggy software, can be permanent or
transient, and can corrupt data arbitrarily or be fail-stop. The ideal restartable
file system recovers from all possible faults.

Lightweight. Performance is important to most users, and most file systems
have had their performance tuned over many years. Thus, adding significant
overhead is not a viable alternative: a restartable file system will only be used
if it has comparable performance to existing file systems.

Transparent. We do not expect application developers to be willing to rewrite
or recompile applications for this environment. We assume that it is difficult for
most applications to handle unexpected failures in the file system. Therefore,
the restartable environment should be completely transparent to applications;
applications should not be able to discern that a file system has crashed.

Generic. A large number of commodity file systems exist and each has its
own strengths and weaknesses. Ideally, the infrastructure should enable any
file system to be made restartable with little or no changes.

Maintain file-system consistency. File systems provide different crash con-
sistency guarantees, and users typically choose their file system depending on
their requirements. Therefore, the restartable environment should not change
the existing crash consistency guarantees.

Many of these goals are at odds with one another. For example, higher levels
of fault resilience can be achieved with heavier-weight fault-detection mecha-
nisms. Thus in designing Membrane, we explicitly make the choice to favor per-
formance, transparency, and generality over the ability to handle a wider range
of faults. We believe that heavyweight machinery to detect and recover from
relatively-rare faults is not acceptable. Finally, although Membrane should be
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as generic a framework as possible, a few file system modifications can be
tolerated.

3.2 Fault Model

Membrane’s recovery does not attempt to handle all types of faults. Like most
work in subsystem fault detection and recovery, Membrane best handles fail-
ures that are transient and fail-stop [Qin et al. 2005; Swift et al. 2004; Zhou
et al. 2006].

Deterministic faults, such as memory corruption, are challenging to recover
from without altering file-system code. We assume that testing and other stan-
dard code-hardening techniques have eliminated most of these bugs. Faults
such as a bug that is triggered on a given input sequence could be handled
by failing the particular request. Currently, we return an error (-EIO) to the
requests triggering such deterministic faults, thus preventing the same fault
from being triggered again and again during recovery. Transient faults, on the
other hand, are caused by race conditions and other environmental factors [Ta-
lagala and Patterson 1999]. Thus, our aim is to mainly cope with transient
faults, which can be cured with recovery and restart.

We feel that many faults and bugs can be caught with lightweight hard-
ware and software checks. Other solutions, such as extremely large address
spaces [Koldinger et al. 1992], could help reduce the chances of wild writes
causing harm by hiding kernel objects (“needles”) in a much larger addressable
region (“the haystack”).

Recovering a stateful file system with lightweight mechanisms is especially
challenging when faults are not fail-stop. For example, consider buggy file-
system code that attempts to overwrite important kernel data structures. If
there is a heavyweight address-space boundary between the file system and
kernel proper, then such a stray write can be detected immediately; in effect,
the fault becomes fail-stop. If, in contrast, there is no machinery to detect
stray writes, the fault can cause further silent damage to the rest of the kernel
before causing a detectable fault; in such a case, it may be difficult to recover
from the fault.

We strongly believe that once a fault is detected in the file system, no aspect
of the file system should be trusted: no more code should be run in the file
system and its in-memory data structures should not be used.

The major drawback of our approach is that the boundary we use is soft:
some file system bugs can still corrupt kernel state outside the file system and
recovery will not succeed. However, this possibility exists even in systems with
hardware boundaries: data is still passed across boundaries, and no matter
how many integrity checks one makes, it is possible that bad data is passed
across the boundary and causes problems on the other side.

3.3 Overview

The main design challenge for Membrane is to recover file-system state in a
lightweight, transparent fashion. At a high level, Membrane achieves this goal
as follows.
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Fig. 1. Membrane overview. The figure shows a file being created and written to on top of a
restartable file system. Halfway through, Membrane creates a checkpoint. After the checkpoint, the
application continues to write to the file; the first succeeds (and returns success to the application)
and the program issues another write, which leads to a file system crash. For Membrane to operate
correctly, it must (1) unwind the currently-executing write and park the calling thread; (2) clean
up file system objects (not shown), restore state from the previous checkpoint; and (3) replay
the activity from the current epoch (i.e., write w1). Once file-system state is restored from the
checkpoint and session state is restored, Membrane can (4) unpark the unwound calling thread
and let it reissue the write, which (hopefully) will succeed this time. The application should thus
remain unaware, only perhaps noticing the timing of the third write (w2) was a little slow.

Once a fault has been detected in the file system, Membrane rolls back
the state of the file system to a point in the past that it trusts: this trusted
point is a consistent file-system image that was checkpointed to disk. This
checkpoint serves to divide file-system operations into distinct epochs; no file-
system operation spans multiple epochs.

To bring the file system up to date, Membrane replays the file-system opera-
tions that occurred after the checkpoint. In order to correctly interpret some op-
erations, Membrane must also remember small amounts of application-visible
state from before the checkpoint, such as file descriptors. Since the purpose of
this replay is only to update file-system state, nonupdating operations such as
reads do not need to be replayed.

Finally, to clean up the parts of the kernel that the buggy file system inter-
acted with in the past, Membrane releases the kernel locks and frees memory
the file system allocated. All of these steps are transparent to applications and
require no changes to file-system code. Applications and the rest of the OS are
unaffected by the fault. Figure 1 gives an example of how Membrane works
during normal file-system operation and upon a file system crash.

Thus, there are three major pieces in the Membrane design. First, fault-
detection machinery enables Membrane to detect faults quickly. Second, faul¢-
anticipation mechanisms record information about current file-system opera-
tions and partition operations into distinct epochs. Finally, the fault-recovery
subsystem executes the recovery protocol to clean up and restart the failed file
system.
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3.4 Fault Detection

The main aim of fault detection within Membrane is to be lightweight while
catching as many faults as possible. Membrane uses both hardware and soft-
ware techniques to catch faults. The hardware support is simple: null pointers,
divide-by-zero, and many other exceptions are caught by the hardware and
routed to the Membrane recovery subsystem. More expensive hardware ma-
chinery, such as address-space-based isolation, is not used.

The software techniques leverage the many checks that already exist in file
system code. For example, file systems contain assertions as well as calls to
panic() and similar functions. We take advantage of such internal integrity
checking and transform calls that would crash the system into calls into our
recovery engine. An approach such as that developed by SafeDrive [Zhou et al.
2006] could be used to automatically place out-of-bounds pointer and other
checks in the file system code.

Membrane provides further software-based protection by adding extensive
parameter checking on any call from the file system into the kernel proper.
These lightweight boundary wrappers protect the calls between the file system
and the kernel and help ensure such routines are called with proper arguments,
thus preventing the file system from corrupting kernel objects through bad
arguments. Sophisticated tools (e.g., Ballista[Kropp et al. 1998]) could be used
to generate many of these wrappers automatically.

3.5 Fault Anticipation

As with any system that improves reliability, there is a performance and space
cost to enabling recovery when a fault occurs. We refer to this component as
fault anticipation. Anticipation is pure overhead, paid even when the system
is behaving well; it should be minimized to the greatest extent possible while
retaining the ability to recover.

In Membrane, there are two components of fault anticipation. First, the
checkpointing subsystem partitions file system operations into different epochs
(or transactions) and ensures that the checkpointed image on disk represents a
consistent state. Second, updates to data structures and other state are tracked
with a set of in-memory logs and parallel stacks. The recovery subsystem (de-
scribed below) utilizes these pieces in tandem to restart the file system after
failure.

File system operations use many core kernel services (e.g., locks, memory
allocation), are heavily intertwined with major kernel subsystems (e.g., the
page cache), and have application-visible state (e.g., file descriptors). Careful
state-tracking and checkpointing are thus required to enable clean recovery
after a fault or crash.

3.5.1 Checkpointing. Checkpointing is critical because a checkpoint rep-
resents a point in time to which Membrane can safely roll back and initiate
recovery. We define a checkpoint as a consistent boundary between epochs
where no operation spans multiple epochs. By this definition, file-system
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state at a checkpoint is consistent, as no file system operations are in
flight.

We require such checkpoints for the following reason: file-system state is
constantly modified by operations such as writes and deletes, and file systems
lazily write back the modified state to improve performance. As a result, at any
point in time, file system state is comprised of (i) dirty pages (in memory); (ii)
in-memory copies of its metadata objects (that have not been copied to its on-
disk pages); and (iii) data on the disk. Thus, the file system is in an inconsistent
state until all dirty pages and metadata objects are quiesced to the disk. For
correct operation, one needs to ensure that the file system is in a consistent
state at the beginning of the mount process (or the recovery process in the case
of Membrane).

Modern file systems take a number of different approaches to the consis-
tency management problem: some group updates into transactions (as in jour-
naling file systems [Hagmann 1987; Reiser 2004; Sweeney et al. 1996; Ts’o and
Tweedie 2002]); others define clear consistency intervals and create snapshots
(as in shadow-paging file systems [Bonwick and Moore 2007; Hitz et al. 1994;
Rosenblum and Ousterhout 1992]). All such mechanisms periodically create
checkpoints of the file system in anticipation of a power failure or OS crash.
Older file systems do not impose any ordering on updates at all (as in Linux
ext2 [Ts’o 2001] and many simpler file systems). In all cases, Membrane must
operate correctly and efficiently.

The main challenge with checkpointing is to accomplish it in a lightweight
and nonintrusive manner. For modern file systems, Membrane can leverage the
in-built journaling (or snapshotting) mechanism to periodically checkpoint file
system state; as these mechanisms atomically write back data modified within
a checkpoint to the disk. To track file-system-level checkpoints, Membrane only
requires that these file systems explicitly notify the beginning and end of the
file-system transaction (or snapshot) to it, so that it can throw away the log
records before the checkpoint. Upon a file system crash, Membrane uses the
file system’s recovery mechanism to go back to the last known checkpoint and
initiate the recovery process. Note that the recovery process uses on-disk data
and does not depend on the in-memory state of the file system.

For file systems that do not support any consistent-management scheme
(e.g., ext2), Membrane provides a generic checkpointing mechanism at the VFS
layer. Membrane’s checkpointing mechanism groups several file-system opera-
tions into a single transaction and commits it atomically to the disk. A transac-
tion is created by temporarily preventing new operations from entering into the
file system for a small duration in which dirty metadata objects are copied back
to their on-disk pages, and all dirty pages are marked copy-on-write. Through
copy-on-write support for file-system pages, Membrane improves performance
by allowing file system operations to run concurrently with the checkpoint
of the previous epoch. Membrane associates each page with a checkpoint (or
epoch) number to prevent pages dirtied in the current epoch from reaching the
disk. It is important to note that the checkpointing mechanism in Membrane
is implemented at the VFS layer; as a result, it can be leveraged by all file
systems with little or no modifications.
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3.5.2 Tracking State with Logs and Stacks. Membrane must track changes
to various aspects of file system state that transpired after the last checkpoint.
This is accomplished with five different types of logs or stacks handling: file
system operations, application-visible sessions, mallocs, locks, and execution
state.

First, an in-memory operation log (op-log) records all state-modifying file
system operations (such as open) that have taken place during the epoch or are
currently in progress. The op-log records enough information about requests to
enable full recovery from a given checkpoint.

Membrane also requires a small session log (s-log). The s-log tracks which
files are open at the beginning of an epoch and the current position of the file
pointer. The op-log is not sufficient for this task, as a file may have been opened
in a previous epoch; thus, by reading the op-log alone, one can only observe
reads and writes to various file descriptors without the knowledge of which
files such operations refer to.

Third, an in-memory malloc table (m-table) tracks heap-allocated memory.
Upon failure, the m-table can be consulted to determine which blocks should
be freed. If failure is infrequent, an implementation could ignore memory left
allocated by a failed file system; although memory would be leaked, it may leak
slowly enough not to impact overall system reliability.

Fourth, lock acquires and releases are tracked by the lock stack (I-stack).
When a lock is acquired by a thread executing a file system operation, infor-
mation about said lock is pushed onto a per-thread l-stack; when the lock is
released, the information is popped off. Unlike memory allocation, the exact
order of lock acquires and releases is critical; by maintaining the lock acquisi-
tions in LIFO order, recovery can release them in the proper order as required.
Also note that only locks that are global kernel locks (and hence survive file
system crashes) need to be tracked in such a manner; private locks internal to
a file system will be cleaned up during recovery and therefore require no such
tracking.

Finally, an unwind stack (u-stack) is used to track the execution of code
in the file system and kernel. By pushing register state onto the per-thread
u-stack when the file system is first called on kernel-to-file-system calls, Mem-
brane records sufficient information to unwind threads after a failure has been
detected in order to enable restart.

Note that the m-table, 1-stack, and u-stack are compensatory [Weimer and
Necula 2004]; they are used to compensate for actions that have already taken
place and must be undone before proceeding with restart. On the other hand,
both the op-log and s-log are restorative in nature; they are used by recovery
to restore the in-memory state of the file system before continuing execution
after restart.

3.6 Fault Recovery

The fault recovery subsystem is likely the largest subsystem within Membrane.
Once a fault is detected, control is transferred to the recovery subsystem, which
executes the recovery protocol. This protocol has the following phases:
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Halt execution and park threads. Membrane first halts the execution of threads
within the file system. Such “in-flight” threads are prevented from further
execution within the file system in order to both prevent further damage as
well as to enable recovery. Late-arriving threads (i.e., those that try to enter
the file system after the crash takes place) are parked as well.

Unwind in-flight threads. Crashed and any other in-flight threads are un-
wound and brought back to the point where they are about to enter the file
system; Membrane uses the u-stack to restore register values before each call
into the file system code. During the unwind, any held global locks recorded on
lI-stack are released.

Commit dirty pages from previous epoch to stable storage. Membrane moves
the system to a clean starting point at the beginning of an epoch; all dirty pages
from the previous epoch are forcefully committed to disk. This action leaves the
on-disk file system in a consistent state. Note that this step is not needed for
file systems that have their own crash consistency mechanism.

“Unmount” the file system. Membrane consults the m-table and frees all in-
memory objects allocated by the the file system. The items in the file system
buffer cache (e.g., inodes and directory entries) are also freed. Conceptually,
the pages from this file system in the page cache are also released, mimicking
an unmount operation.

“Remount” the file system. In this phase, Membrane reads the super block
of the file system from stable storage and performs all other necessary work to
reattach the F'S to the running system.

Roll forward. Membrane uses the s-log to restore the sessions of active pro-
cesses to the state they were at the last checkpoint. It then processes the op-log,
replays previous operations as needed, and restores the active state of the file
system before the crash. Note that Membrane uses the regular VFS interface
to restore sessions and to replay logs. Hence, Membrane does not require any
explicit support from file systems.

Restart execution. Finally, Membrane wakes all parked threads. Those that
were in-flight at the time of the crash begin execution as if they had not entered
the file system; those that arrived after the crash are allowed to enter the file
system for the first time, both remaining oblivious of the crash.

4. IMPLEMENTATION

We now present the implementation of Membrane. We first describe the operat-
ing system (Linux) environment, and then present each of the main components
of Membrane. Much of the functionality of Membrane is encapsulated within
two components: the checkpoint manager (CPM) and the recovery manager
(RM). Each of these subsystems is implemented as a background thread and is
needed during anticipation (CPM) and recovery (RM). Beyond these threads,
Membrane also makes heavy use of interposition to track the state of various
in-memory objects and to provide the rest of its functionality. We ran Membrane
with ext2, VFAT, and ext3 file systems.

In implementing the functionality described above, Membrane employs
three key techniques to reduce overheads and make lightweight restart of
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stateful file systems feasible. The techniques are (i) page stealing: for low-cost
operation logging; (ii) COW-based checkpointing: for fast in-memory partition-
ing of pages across epochs using copy-on-write techniques for file systems that
do not support transactions; and (iii) control-flow capture and skip /trust un-
wind protocol: to halt in-flight threads and properly unwind in-flight execution.

4.1 Linux Background

Before delving into the details of Membrane’s implementation, we first pro-
vide some background on the operating system in which Membrane was built.
Membrane is currently implemented inside Linux 2.6.15.

Linux provides support for multiple file systems via the VFS inter-
face [Kleiman 1986], much like many other operating systems. Thus, the VFS
layer presents an ideal point of interposition for a file system framework such
as Membrane.

Like many systems [Cranor and Parulkar 1999], Linux file systems cache
user data in a unified page cache. The page cache is thus tightly integrated
with file systems and there are frequent crossings between the generic page
cache and file system code.

Writes to disk are handled in the background (except when forced to disk by
applications). A background I/O daemon, known as pdflush, wakes up, finds
old and dirty pages, and flushes them to disk.

4.2 Fault Detection

There are numerous fault detectors within Membrane, each of which, when
triggered, immediately begins the recovery protocol. We describe the detectors
Membrane currently uses; because they are lightweight, we imagine more will
be added over time, particularly as file-system developers learn to trust the
restart infrastructure.

4.2.1 Hardware-Based Detectors. The hardware provides the first line of
fault detection. In our implementation inside Linux on x86 (64-bit) architecture,
we track the following runtime exceptions: null-pointer exception, invalid op-
eration, general protection fault, alignment fault, divide error (divide by zero),
segment not present, and stack segment fault. These exception conditions are
detected by the processor; software fault handlers, when run, inspect system
state to determine whether the fault was caused by code executing in the file
system module (i.e., by examining the faulting instruction pointer). Note that
the kernel already tracks these runtime exceptions, which are considered ker-
nel errors and triggers panic as it doesn’t know how to handle them. We only
check if these exceptions were generated in the context of the restartable file
system to initiate recovery, thus preventing kernel panic.

4.2.2 Software-Based Detectors. A large number of explicit error checks
are extant within the file system code base; we interpose on these macros
and procedures to detect a broader class of semantically-meaningful faults.
Specifically, we redefine macros such as BUG(), BUG_ON(), panic(), and assert ()
so that the file system calls our version of said routines.
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Table II. Software-Based Fault Detectors

File System | assert() BUG() panic()
xfs 2119 18 43
ubifs 369 36 2
ocfs2 261 531 8
gfs2 156 60 0
jbd 120 0 0
jbd2 119 0 0
afs 106 38 0
ifs 91 15 6
ext4 42 182 12
ext3 16 0 11
reiserfs 1 109 93
jffs2 1 86 0
ext2 1 10 6
ntfs 0 288 2
nfs 0 54 0
fat 0 10 16

The table depicts how many calls each file system
makes to assert(), BUG(), and panic() routines.
The data was gathered simply by searching for var-
ious strings in the source code. A range of file sys-
tems and the ext3 journaling devices (jbd and jbd2)
are included in the microstudy. The study was per-
formed on the latest stable Linux release (2.6.26.7).

These routines are commonly used by kernel programmers when some un-
expected event occurs and the code cannot properly handle the exception. For
example, Linux ext2 code that searches through directories often calls BUG()
if directory contents are not as expected; see ext2_add_link() where a failed
scan through the directory leads to such a call. Other file systems, such as
reiserfs, routinely call panic() when an unanticipated I/O subsystem failure
occurs [Prabhakaran et al. 2005]. Table II presents a summary of calls present
in existing Linux file systems.

In addition to those checks within file systems, we have added a set of checks
across the file-system/kernel boundary to help prevent fault propagation into
the kernel proper. Overall, we have added roughly 100 checks across various
key points in the generic file system and memory management modules as well
as in twenty or so header files. As these checks are low-cost and relatively easy
to add, we will continue to “harden” the file-system/kernel interface as our work
continues.

4.3 Fault Anticipation

We now describe the fault-anticipation support within the current Membrane
implementation. We begin by presenting our approach to reducing the cost of
operation logging via a technique we refer to as page stealing.

4.3.1 Low-Cost Op-Logging via Page Stealing. Membrane interposes at
the VFS layer in order to record the necessary information about file-system
operations to the op-log during an epoch. Thus, for any restartable file system
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op-log (naive) op-log (with page stealing)

- B (not needed)
write(A) to blk 0 write(A) to blk 0] L0220 Page Cache

Fig. 2. Page stealing. The figure depicts the op-log both with and without page stealing. Without
page stealing (left side of the figure), user data quickly fills the log, thus exacting harsh penalties
in both time and space overheads. With page stealing (right), only a reference to the in-memory
page cache is recorded with each write; further, only the latest such entry is needed to replay the
op-log successfully.

that is mounted, the VFS layer records an entry for each operation that updates
the file system state in some way.

One key challenge of logging is to minimize the amount of data logged in
order to keep interpositioning costs low. A naive implementation (including our
first attempt) might log all state-updating operations and their parameters;
unfortunately, this approach has a high cost due to the overhead of logging
write operations. For each write to the file system, Membrane has to not only
record that a write took place but also log the data to the op-log, an expensive
operation both in time and space.

Membrane avoids the need to log this data through a novel page-stealing
mechanism. Because dirty pages are held in memory before checkpointing,
Membrane is assured that the most recent copy of the data is already in memory
(in the page cache). Thus, when Membrane needs to replay the write, it steals
the page from the cache (before it is removed from the cache by recovery) and
writes the stolen page to disk. In this way, Membrane avoids the costly logging of
user data. Figure 2 shows how page stealing helps in reducing the size of op-log.

When two writes to the same block have taken place, note that only the last
write needs to be replayed. Earlier writes simply update the file position cor-
rectly. This strategy works because reads are not replayed (indeed, they have al-
ready completed); hence, only the current state of the file system, as represented
by the last checkpoint and current op-log and s-log, must be reconstructed.

4.3.2 Other Logging and State Tracking. Membrane also interposes at
the VF'S layer to track all necessary session state in the s-log. There is little
information to track here: simply which files are open (with their pathnames)
and the current file position of each file.

Membrane also needs to track memory allocations performed by a
restartable file system. We added a new allocation flag, GFP_RESTARTABLE, in
Membrane. We also provide a new header file to include in file-system code
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to append GFP_RESTARTABLE to all memory allocation calls. This enables the
memory allocation module in the kernel to record the necessary per-file-system
information into the m-table and thus prepare for recovery.

Tracking lock acquisitions is also straightforward. As we mentioned earlier,
locks that are private to the file system will be ignored during recovery, and
hence need not be tracked; only global locks need to be monitored. Thus, when
a thread is running in the file system, the instrumented lock function saves
the lock information in the thread’s private l-stack for the following locks: the
global kernel lock, super-block lock, and the inode lock.

Finally, Membrane must also track register state across certain code bound-
aries to unwind threads properly. To do so, Membrane wraps all calls from the
kernel into the file system; these wrappers push and pop register state, return
addresses, and return values onto and off of the u-stack.

4.3.3 COW-based Checkpointing. Our goal of checkpointing was to find a
solution that is lightweight and works correctly despite the lack of transactional
machinery in file systems such as Linux ext2, many UFS implementations, and
various FAT file systems; these file systems do not include journaling or shadow
paging to naturally partition file system updates into transactions.

One could implement a checkpoint using the following strawman protocol.
First, during an epoch, prevent dirty pages from being flushed to disk. Second,
at the end of an epoch, checkpoint file-system state by first halting file system
activity and then forcing all dirty pages to disk. At this point, the on-disk state
would be consistent. If a file-system failure occurred during the next epoch,
Membrane could rollback the file system to the beginning of the epoch, replay
logged operations, and thus recover the file system.

The obvious problem with the strawman is performance: forcing pages to
disk during checkpointing makes checkpointing slow, which slows applications.
Further, update traffic is bunched together and must happen during the check-
point, instead of being spread out over time; as is well known, this can reduce
1/0 performance [Mogul 1994].

Our lightweight checkpointing solution instead takes advantage of the page-
table support provided by modern hardware to partition pages into different
epochs. Specifically, by using the protection features provided by the page table,
the CPM implements a copy-on-write-based checkpoint to partition pages into
different epochs. This COW-based checkpoint is simply a lightweight way for
Membrane to partition updates to disk into different epochs. Figure 3 shows
an example of how COW-based checkpointing works.

We now present the details of the checkpoint implementation. First, at the
time of a checkpoint, the checkpoint manager (CPM) thread wakes and in-
dicates to the session manager (SM) that it intends to checkpoint. The SM
parks new VF'S operations and waits for in-flight operations to complete; when
finished, the SM wakes the CPM so that it can proceed.

The CPM then walks the lists of dirty objects in the file system, starting at
the superblock, and finds the dirty pages of the file system. The CPM marks
these kernel pages copy-on-write; further updates to such a page will induce a
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Fig. 3. COW-based checkpointing. The picture shows what happens during COW-based check-
pointing. At time = 0, an application writes to block 0 of a file and fills it with the contents “A”.
At time=1, Membrane performs a checkpoint, which simply marks the block copy-on-write. Thus,
Epoch 0 is over and a new epoch begins. At time = 2, block 0 is overwritten with the new contents
“B”; the system catches this overwrite with the COW machinery and makes a new in-memory page
for it. At time = 3, Membrane decides to flush the previous epoch’s dirty pages to disk, and thus
commits block 0 (with “A” in it) to disk.

copy-on-write fault and thus direct subsequent writes to a new copy of the page.
Note that the copy-on-write machinery is present in many systems, to support
(among other things) fast address-space copying during process creation. This
machinery is either implemented within a particular subsystem (e.g., file sys-
tems such as ext3cow [Peterson and Burns 2005], WAFL [Hitz et al. 1994]
manually create and track their COW pages) or inbuilt in the kernel for ap-
plication pages. To our knowledge, copy-on-write machinery is not available
for kernel pages. Hence, we explicitly added support for copy-on-write machin-
ery for kernel pages in Membrane, thereby avoiding extensive changes to file
systems to support COW machinery.

The CPM then allows these pages to be written to disk (by tracking a
checkpoint number associated with the page), and the background I/O dae-
mon (pdflush) is free to write COW pages to disk at its leisure during the
next epoch. Checkpointing thus groups the dirty pages from the previous epoch
and allows only said modifications to be written to disk during the next epoch;
newly dirtied pages are held in memory until the complete flush of the previous
epoch’s dirty pages.

There are a number of different policies that can be used to decide when to
checkpoint. An ideal policy would likely consider a number of factors, including
the time since the last checkpoint (to minimize recovery time); the number of
dirty blocks (to keep memory pressure low); and current levels of CPU and
I/0 utilization (to perform checkpointing during relatively-idle times). Our cur-
rent policy is simpler, and just uses time (5 secs) and a dirty-block threshold
(40MB) to decide when to checkpoint. Checkpoints are also initiated when an
application forces data to disk.

ACM Transactions on Storage, Vol. 6, No. 3, Article 11, Publication date: September 2010.



11:18 . S. Sundararaman et al.

4.4 Fault Recovery

We now describe the last piece of our implementation that performs fault re-
covery. Most of the protocol is implemented by the recovery manager (RM),
which runs as a separate thread. The most intricate part of recovery is how
Membrane gains control of threads after a fault occurs in the file system and
the unwind protocol that takes place as a result. We describe this component
of recovery first.

4.4.1 Gaining Control with Control-Flow Capture. The first problem en-
countered by recovery is how to gain control of threads already executing within
the file system. The fault that occurred (in a given thread) may have left the
file system in a corrupt or unusable state; thus, we would like to stop all other
threads executing in the file system as quickly as possible to avoid any further
execution within the now-untrusted file system.

Membrane, through the RM, achieves this goal by immediately marking
all code pages of the file system as non-executable, and thus ensnaring other
threads with a technique that we refer as control-flow capture. When a thread
that is already within the file system next executes an instruction, a trap is
generated by the hardware; Membrane handles the trap and then takes appro-
priate action to unwind the execution of the thread so that recovery can proceed
after all these threads have been unwound. File systems in Membrane are in-
serted as loadable kernel modules, this ensures that the file system code is in a
4KB page and not part of a large kernel page which could potentially be shared
among different kernel modules. Hence, it is straightforward to transparently
identify code pages of file systems.

4.4.2 Intertwined Execution and The Skip / Trust Unwind Protocol. Unfor-
tunately, unwinding a thread is challenging, as the file system interacts with
the kernel in a tightly-coupled fashion. Thus, it is not uncommon for the file
system to call into the kernel, which in turn calls into the file system, and so
forth. We call such execution paths intertwined.

Intertwined code puts Membrane into a difficult position. Ideally, Membrane
would like to unwind the execution of the thread to the beginning of the first
kernel-to-file-system call, as described above. However, the fact that (nonfile-
system) kernel code has run complicates the unwinding; kernel state will not
be cleaned up during recovery, and thus any state modifications made by the
kernel must be undone before restart.

For example, assume that the file system code is executing (e.g., in function
£1()) and calls into the kernel (function k1 () ); the kernel then updates kernel-
state in some way (e.g., allocates memory or grabs locks) and then calls back
into the file system (function £2()); finally, £2() returns to k1 () which returns
to £1() which completes. The tricky case arises when £2() crashes; if we simply
unwound execution naively, the state modifications made while in the kernel
would be left intact, and the kernel could quickly become unusable.

To overcome this challenge, Membrane employs a careful skip /trust unwind
protocol. The protocol skips over file system code but trusts the kernel code
to behave reasonably in response to a failure and thus manage kernel state
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Fig. 4. The Skip/Trust Unwind Protocol. The figure depicts the call path from the open() system
call through the ext2 file system. The first sequence of calls (through vfs_create()) are in the
generic (trusted) kernel; then the (untrusted) ext2 routines are called; then ext2 calls back into
the kernel to prepare to write a page, which in turn may call back into ext2 to get a block to write
to. Assume a fault occurs at this last level in the stack; Membrane catches the fault, and skips
back to the last trusted kernel routine, mimicking a failed call to ext2_get_block(); this routine
then runs its normal failure recovery (marked by the circled “3” in the diagram), and then tries to
return again. Membrane’s control-flow capture machinery catches this and then skips back all the
way to the last trusted kernel code (vfs_create), thus mimicking a failed call to ext2_create().
The rest of the code unwinds with Membrane’s interference, executing various cleanup code along
the way (as indicated by the circled 2 and 1).

correctly. Membrane coerces such behavior by carefully arranging the return
value on the stack, mimicking an error return from the failed file-system rou-
tine to the kernel; the kernel code is then allowed to run and clean up as it
sees fit. We found that the Linux kernel did a good job of checking return val-
ues from the file-system function and in handling error conditions. In places
where it did not (12 such instances), we explicitly added code to do the required
check.

In the example above, when the fault is detected in £2(), Membrane places
an error code in the appropriate location on the stack and returns control imme-
diately to k1 (). This trusted kernel code is then allowed to execute, hopefully
freeing any resources that it no longer needs (e.g., memory, locks) before re-
turning control to £1(). When the return to £1() is attempted, the control-flow
capture machinery again kicks into place and enables Membrane to unwind
the remainder of the stack. A real example from Linux is shown in Figure 4.

Throughout this process, the u-stack is used to capture the necessary state
to enable Membrane to unwind properly. Thus, both when the file system is
first entered as well as any time the kernel calls into the file system, wrapper
functions push register state onto the u-stack; the values are subsequently
popped off on return, or used to skip back through the stack during unwind.
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4.4.3 Other Recovery Functions. There are many other aspects of recovery
which we do not discuss in detail here for sake of space. For example, the RM
must orchestrate the entire recovery protocol, ensuring that once threads are
unwound (as described above), the rest of the recovery protocol to unmount the
file system, free various objects, remount it, restore sessions, and replay file
system operations recorded in the logs, is carried out. Finally, after recovery,
RM allows the file system to begin servicing new requests.

4.4.4 Correctness of Recovery. We now discuss the correctness of our recov-
ery mechanism. Membrane throws away the corrupted in-memory state of the
file system immediately after the crash. Since faults are fail-stop in Membrane,
on-disk data is never corrupted. We also prevent any new operation from being
issued to the file system while recovery is being performed. The file-system
state is then reverted to the last known checkpoint (which is guaranteed to
be consistent). Next, successfully completed op-logs are replayed to restore the
file-system state to the crash time. Finally, the unwound processes are allowed
to execute again.

Nondeterminism could arise while replaying the completed operations. The
order recorded in op-logs need not be the same as the order executed by the
scheduler. This new execution order could potentially pose a problem, while
replaying completed write operations as applications could have observed the
modified state (via read) before the crash. On the other hand, operations that
modify the file-system state (such as create, unlink, etc.) would not be a prob-
lem, as conflicting operations are resolved by the file system through locking.

Membrane avoids nondeterministic replay of completed write operations
through page stealing. While replaying completed operations, Membrane reads
the final version of the page from the page cache and re-executes the write
operation by copying the data from it. As a result, write operations while
being replayed will end up with the same final version no matter what order
they are executed. Lastly, as the in-flight operations have not returned to the
application, Membrane allows the scheduler to execute them in arbitrary order.

5. DISCUSSION

The major negative of the Membrane approach is that, without address-space-
based protection, file system faults may corrupt other components of the sys-
tem. If the file system corrupts other kernel data or code or data that resides
on disk, Membrane will not be able to recover the system. Thus, an important
factor in Membrane’s success will be minimizing the latency between when a
fault occurs and when it is detected.

An assumption we make is that kernel code is trusted to work properly, even
when the file system code fails and returns an error. We found that this is
true in most of the cases across the kernel proper code. But in twenty or so
places, we found that the kernel proper did not check the return value from
the file system, and additional code was added to clean up the kernel state and
propagate the error back to the callee.

A potential limitation of our implementation is that, in some scenarios, a
file system restart can be visible to applications. For instance, when a file is
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created, the file system assigns it a specific inode number, which an application
may query (e.g., rsync and similar tools may use this low-level number for
backup and archival purposes). If a crash occurs before the end of the epoch,
Membrane will replay the file create; during replay, the file system may assign
a different inode number to the file (based on in-memory state). In this case,
the application would possess what it thinks is the inode number of the file,
but what may be in fact either unallocated or allocated to a different file. Thus,
to guarantee that the user-visible inode number is valid, an application must
sync the file system state after the create operation.

On the brighter side, we believe Membrane will encourage two positive fault-
detection behaviors among file-system developers. First, we believe that quick-
fix bug patching will become more prevalent. Imagine a scenario where an
important customer has a workload that is causing the file system to occa-
sionally corrupt data, thus reducing the reliability of the system. After some
diagnosis, the development team discovers the location of the bug in the code,
but unfortunately there is no easy fix. With the Membrane infrastructure, the
developers may be able to transform the corruption into a fail-stop crash. By
installing a quick patch that crashes the code instead of allowing further cor-
ruption to continue, the deployment can operate correctly while a longer-term
fix is developed. Even more interestingly, if such problems can be detected, but
would require extensive code restructuring to fix, then a patch may be the best
possible permanent solution. As Tom West said: not all problems worth solving
are worth solving well [Kidder 1981].

Second, with Membrane, file-system developers will see significant benefits
to putting integrity checks into their code. Some of these lightweight checks
could be automated (as was nicely done by SafeDrive [Zhou et al. 2006]), but we
believe that developers will be able to place much richer checks, as they have a
deep knowledge about expectations at various locations. For example, develop-
ers understand the exact meaning of a directory entry and can signal a problem
if one has gone awry; automating such a check is a great deal more compli-
cated [Demsky and Rinard 2003]. The motivation to check for violations is low
in current file systems, since there is little recourse when a problem is detected.
The ability to recover from the problem in Membrane gives greater motivation.

6. EVALUATION

We now evaluate Membrane in the following three categories: transparency,
performance, and generality. All experiments were performed on a machine
with a 2.2 GHz Opteron processor, two 80GB WDC disks, and 2GB of memory
running Linux 2.6.15. We evaluated Membrane using ext2, VFAT, and ext3. The
ext3 file system was mounted in data journaling mode in all the experiments.

6.1 Transparency

We employ fault injection to analyze the transparency offered by Membrane in
hiding file system crashes from applications. The goal of these experiments is
to show the inability of current systems in hiding faults from application and
how using Membrane can avoid them.
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Table III. Fault Study of ext2

ext2+ ext2+
ext2 boundary Membrane

2E2%| 2525|8543

5O 2| RO | FAYR
ext2_Function Fault Eo<% 2 E EO <% E E Eo<% E E
create null-pointer oxx x| 0 xx x| dyJJd
create mark._inodedirty | o x x x| 0o x x x| d/+/
writepage write_full_page ox /N d s xS dJSVY
writepages  write_full_page ox x* d s x| dJJVV
free_inode mark buffer dirty| o x x x| o® x x /| d/VV
mkdir d-instantiate oxx x| dsJJ| dJVV
get_block map_bh 0 x X/ 0 xx x| dJJ
readdir page_address Gxx x| Gxx x| dJJV
get_page kmap ox x| o xyx|dJvV
get_page wait_page_locked | o x / x o x x| dy Vv
get_page read_cachepage | o x/ x| 0 x4/ x| dJ /v
lookup iget ox x| o xy x| dyJV
add_nondir  d.instantiate oxx x| deyJ|dJVV
find_entry page_address Gx x| G xyx|dJdJ
symlink null-pointer 0xx x| 0o x4 x| dJJV
rmdir null-pointer ox4/ x| 0 x4y x| dJSY
empty_dir page_address Gx x| Gx x| dJJSV
make_empty grab_cache_page 0 X4/ X o x x x| dy v
commit_chunk unlock_page ox x| dexx|dJJV
readpage mpagereadpage | o X/ /| 1 X/ /| dJVV

The table shows the results of fault injections on the behavior of Linux ext2.
Each row presents the results of a single experiment, and the columns show (in
left-to-right order) which routine the fault was injected into the nature of the
fault, how/if it was detected, how it affected the application, whether the file
system was consistent after the fault, and whether the file system was usable.
Various symbols are used to condense the presentation. For detection, “0”: ker-
nel oops; “G”: general protection fault; “i”: invalid opcode; “d”: fault detected,
say by an assertion. For application behavior, “x”: application killed by the OS;

R

“J/”: application continued operation correctly; “s”: operation failed but applica-

@ »,

tion ran successfully (silent failure); “e”: application ran and returned an error.
Footnotes: ?- file system usable, but un-unmountable; ® - late oops or fault, e.g.,
after an error code was returned.

Our injection study is quite targeted; we identify places in the file system
code where faults may cause trouble, inject faults there, and observe the result.
These faults represent transient errors from three different components: vir-
tual memory (e.g., kmap, d_alloc_anon), disks (e.g., write_full_page, sb_bread),
and kernel-proper (e.g., clear_inode, iget). In all, we injected 47 faults in differ-
ent code paths in three file systems. We believe that many more faults could be
injected to highlight the same issue.

Tables III, IV, and V present the results of our study. The caption explains
how to interpret the data in the table. In all experiments, the operating system
was always usable after fault injection (not shown in the table). We now discuss
our major observations and conclusions.
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Table IV. Fault Study of VFAT

vfat+ viat+

boundary Membrane

<
QO
o+

vfat_Function Fault

ASEE|A8E8|A8ES

A0 | ERO R FRYR

EEE| E<EE| S<EE
create null-pointer 0xX X X| 0xx x| dyJ
create d-instantiate oxx x| 0xx x| dyJ
writepage blk_write_fullpage| o x x /*| d s x /| d/
mkdir d-instantiate oxy x| dsyJ|dJVV
rmdir null-pointer 0x4 x| 0oxJ/J dJ vV
lookup d_find_alias oxy x| de | dJVV
get_entry sb_bread o0x.4 x| 0x4y x| dJJV
get_block map_bh 0x x /% 0 x x| dJVV
remove_entries mark buffer dirty | o x x /| d s x /| d/
writeiinode  mark buffer dirty| o x x | d s / /| dV/V
clear_inode is_bad_inode ox x /N ds V| dJVY
get_dentry d_alloc_anon 0 x X/ o xx x| dy VA
readpage mpage_readpage | o x /| 0 x /| dJ/ VAV

The table shows the results of fault injections on the behavior of Linux VFAT.
Each row presents the results of a single experiment, and the columns show (in
left-to-right order) which routine the fault was injected into, the nature of the
fault, how/if it was detected, how it affected the application, whether the file
system was consistent after the fault, and whether the file system was usable.
Various symbols are used to condense the presentation. For detection, “0”: kernel

wn,

oops; “G”: general protection fault; “i”: invalid opcode; “d”: fault detected, say by
an assertion. For application behavior, “x”: application killed by the OS; “/”:
application continued operation correctly; “s”: operation failed but application

“ .

ran successfully (silent failure); “e”: application ran and returned an error. Foot-
notes: ?- file system usable, but un-unmountable; ® - late oops or fault, e.g., after
an error code was returned.

First, we analyzed the vanilla versions of the file systems on standard Linux
kernel as our base case. The results are shown in the leftmost result column
in Tables III, IV, and V. We observed that Linux does a poor job in recov-
ering from the injected faults; most faults (around 91%) triggered a kernel
“oops” and the application (i.e., the process performing the file system opera-
tion that triggered the fault) was always killed. Moreover, in one-third of the
cases, the file system was left unusable, thus requiring a reboot and repair
(fsck).

Second, we analyzed the usefulness of fault detection without recovery by
hardening the kernel and file-system boundary through parameter checks.
The second result column (denoted by +boundary) of Tables III, IV, and V
shows the results. Although assertions detect the bad argument passed to the
kernel proper function, in the majority of cases, the returned error code was
not handled properly (or propagated) by the file system. The application was
always killed and the file system was left inconsistent, unusable, or both.

Finally, we focused on file systems surrounded by Membrane. The results of
the experiments are shown in the rightmost column of Tables III, IV, and V;
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Table V. Fault Study of ext3

ext3+ ext3+

boundary Membrane

o
a8
)

X X L L A & X X x x x X|FS:Consistent?

ext3_Function Fault
create null-pointer
get_blk_handle bh_result
follow link nd_set_link

mkdir d-instantiate
symlink null-pointer
readpage mpage_readpage

add_nondir d_instantiate
prepare_write blk_prepare_write
read_blk_bmap sb_bread
new_block dquot_alloc_blk

fcraoeaa oo a e o ol How Detected?

2R AR R & & & & 2 < | Application?
LA A A A & & | FS:Consistent?
LA A A A A A A A &L & &L & |FSUsable?

©c o Qo o oo oo o o o o ofHowDetected?,

X X X X X X X X X X X x x x|Application?

X X & X X X x x & x x & x x|FS:Usable?

=0 =0 0 0o = o & e e o How Detected?
X X ®X XX ®X X X w o an X|Application?

XL AL A& & & & X (| FS:Consistent?
a X AU X X X &y X - & & x| FS:Usable?

readdir null-pointer

file_write file_aio_write

free_inode clear_inode

new_inode null-pointer dJ vV

The table shows the results of fault injections on the behavior of Linux ext3.
Each row presents the results of a single experiment, and the columns show (in
left-to-right order) which routine the fault was injected into, the nature of the
fault, how/if it was detected, how it affected the application, whether the file
system was consistent after the fault, and whether the file system was usable.
Various symbols are used to condense the presentation. For detection, “0™:
kernel oops; “G”: general protection fault; “i”: invalid opcode; “d”: fault detected,
say by an assertion. For application behavior, “x”: application killed by the

R

0OS; “/”: application continued operation correctly; “s”: operation failed but
application ran successfully (silent failure); “e”: application ran and returned
an error. Footnotes: ¢- file system usable, but un-unmountable; ® - late oops or
fault, e.g., after an error code was returned.

faults were handled, applications did not notice faults, and the file system
remained in a consistent and usable state.

In summary, even in a limited and controlled set of fault injection experi-
ments, we can easily realize the usefulness of Membrane in recovering from file
system crashes. In a standard or hardened environment, a file system crash is
almost always visible to the user and the process performing the operation is
killed. Membrane, on detecting a file system crash, transparently restarts the
file system and leaves it in a consistent and usable state.

6.2 Performance

To evaluate the performance of Membrane, we run a series of both microbench-
mark and macrobenchmark workloads where ext2, VFAT, and ext3 are run in a
standard environment and within the Membrane framework. Tables VI and VII
show the results of our microbenchmark and macrobenchmark experiments re-
spectively. From the tables, one can see that the performance overheads of our
prototype are quite minimal; in all cases, the overheads were between 0% and
2%.
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Table VI. Microbenchmarks

ext2+ VFAT+ ext3+
Benchmark ext2 Membrane | VFAT Membrane ext3 Membrane
Seq. read 17.8 17.8 17.7 17.7 17.8 17.8
Seq. write 25.5 25.7 18.5 20.2 56.3 56.3
Rand. read 163.2 163.5 163.5 163.6 163.2 163.2
Rand. write 20.3 20.5 18.9 18.9 65.5 65.5
create 34.1 34.1 324 34.0 33.9 34.3
delete 20.0 20.1 20.8 21.0 18.6 18.7

This table compares the execution time (in seconds) for various benchmarks for restartable
versions of ext2, VFAT, and ext3 (on Membrane) against their regular versions on the unmod-
ified kernel. Sequential read/writes are 4 KB at a time to a 1-GB file. Random reads/writes
are 4 KB at a time to 100 MB of a 1-GB file. Create/delete copies/removes 1000 files each of
size 1MB to/from the file system respectively. All workloads use a cold file-system cache.

Table VII. Macrobenchmarks

ext2+ VFAT+ ext3+
Benchmark | ext2 Membrane | VFAT  Membrane ext3 Membrane
Sort 142.2 142.6 146.5 146.8 152.1 152.5
OpenSSH 28.5 28.9 30.1 30.8 28.7 29.1
PostMark 46.9 47.2 43.1 43.8 478.2 484.1

11:25

The table presents the performance (in seconds) of different benchmarks running on
both standard and restartable versions of ext2, VFAT, and ext3. The sort benchmark
(CPU intensive) sorts roughly 100MB of text using the command-line sort utility. For the
OpenSSH benchmark (CPU+I/O intensive), we measure the time to copy, untar, configure,
and make the OpenSSH 4.51 source code. PostMark (I/O intensive) parameters are: 3,000
files (sizes 4KB to 4MB), 60,000 transactions, and 50/50 read/append and create/delete
biases.

Recovery time. Beyond baseline performance under no crashes, we were in-
terested in studying the performance of Membrane during recovery. Specifi-
cally, how long does it take Membrane to recover from a fault? This metric is
particularly important as high recovery times may be noticed by applications.

We measured the recovery time in a controlled environment by varying the
amount of state, kept by Membrane and found that the recovery time grows
sub-linearly with the amount of state, and is only a few milliseconds in all the
cases. Table VIII shows the result of varying the amount of state in the s-log,
op-log, and the number of dirty pages from the previous checkpoint.

We also ran microbenchmarks and forcefully crashed ext2, ext3, and VFAT
file systems during execution to measure the impact in application throughput
inside Membrane. Figure 5 shows the results for performing recovery during
the random-read microbenchmark for the ext2 file system. From the figure, we
can see that Membrane restarts the file system within 10ms from the point of
crash. Subsequent read operations are slower than the regular case because
the indirect blocks, which were cached by the file system, are thrown away at
recovery time in our current prototype, and have to be read back again after
recovery (as shown in the graph).

In summary, both micro and macrobenchmarks show that the fault antici-
pation in Membrane almost comes for free. Even in the event of a file system
crash, Membrane restarts the file system within a few milliseconds.
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Table VIII. Recovery Time

Data| Recovery Open | Recovery Log Recovery
(MB)| time (ms) Sessions| time (ms) Records| time (ms)
10 12.9 200 11.4 1K 15.3
20 13.2 400 14.6 10K 16.8
40 16.1 800 22.0 100K 25.2
(a) (b) (c)

Tables a, b, and ¢ show recovery time as a function of dirty pages (at checkpoint), s-log, and
op-log respectively. Dirty pages are created by copying new files. Open sessions are created
by getting handles to files. Log records are generated by reading and seeking to arbitrary
data inside multiple files. The recovery time was 8.6ms when all three states were empty.

= Average Response Time
12 - — Response Time
. CrQhA Indirect Blocks
(2]
13 2
5 8
o]

2 160 5
3 o
o 4 0T
3 <
o 20

O T T T T HHITh_”_”_‘ T T T 0

15 25 35 45 55

Elapsed time (s)

Fig. 5. Recovery overhead. The figure shows the overhead of restarting ext2 while running
random-read microbenchmark. The x axis represents the overall elapsed time of the microbench-
mark in seconds. The primary y axis contains the execution time per read operation as observed
by the application in milliseconds. A file-system crash was triggered at 34s, as a result the total
elapsed time increased from 66.5s to 67.1s. The secondary y axis contains the number of indirect
blocks read by the ext2 file system from the disk per second.

6.3 Generality

We chose ext2, VFAT, and ext3 to evaluate the generality of our approach.
ext2 and VFAT were chosen for their lack of crash consistency machinery and
for their completely different on-disk layout. ext3 was selected for its journal-
ing machinery which provides better crash consistency guarantees than ext2.
Table IX shows the code changes required in each file system.

From the table, we can see that the file system-specific changes required
to work with Membrane are minimal. For ext3, we also added four lines of
code to JBD to notify the beginning and the end of transactions to the check-
point manager, which could then discard the operation logs of the committed
transactions. All of the additions were straightforward, including adding a new
header file to propagate the GFP_RESTARTABLE flag and code to write back the
free block/inode/cluster count when the write_super method of the file system
was called. No modification (or deletions) of existing code were required in any
of the file systems.
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Table IX. Implementation Complexity

File System Added Modified
ext2 4 0
VFAT 5 0
ext3 1 0
JBD 4 0

Individual File-system Changes

No Checkpoint With Checkpoint

Components | Added | Modified | Added | Modified
FS 1929 30 2979 64
MM 779 5 867 15
Arch 0 0 733 4
Headers 522 6 552 6
Module 238 0 238 0
Total 3468 41 5369 89
Kernel Changes

The table presents the code changes required to transform a ext2,
VFAT, ext3, and vanilla Linux 2.6.15 x86_64 kernel into their
restartable counterparts. Most of the modified lines indicate places
where the vanilla kernel did not check/handle errors propagated by
the file system. As our changes were nonintrusive in nature, none of
existing code was removed from the kernel.

In summary, Membrane represents a generic approach to achieve file system
restartability; existing file systems can work with Membrane with minimal
changes of adding a few lines of code.

7. CONCLUSIONS

File systems fail. With Membrane, failure is transformed from a show-stopping
event into a small performance issue. The benefits are many: Membrane en-
ables file-system developers to ship file systems sooner, as small bugs will not
cause massive user headaches. Membrane similarly enables customers to in-
stall new file systems, knowing that it won’t bring down their entire operation.

Membrane further encourages developers to harden their code and catch
bugs as soon as possible. This fringe benefit will likely lead to more bugs being
triggered in the field (and handled by Membrane, we hope); if so, diagnos-
tic information could be captured and shipped back to the developer, further
improving file system robustness.

We live in an age of imperfection, and software imperfection seems a fact
of life rather than a temporary state of affairs. With Membrane, we can learn
to embrace that imperfection instead of fearing it. Bugs will still arise, but
those that are rare and hard to reproduce will remain where they belong,
automatically “fixed” by a system that can tolerate them.
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