
1

Solid-state Cache

Mohit Saxena and Michael M. Swift
Department of Computer Sciences
University of Wisconsin-Madison
{msaxena,swift}@cs.wisc.edu

1 Introduction

Solid-state drives (SSDs) composed of multiple flash
memory chips are often deployed as a cache in front of a
cheap and slow disks [5, 3, 6]. This provides the perfor-
mance of flash with the cost of disk for large data sets,
and is actively used by Facebook and others to provide
low-latency access to petabytes of data [4].

An SSD-backed cache, though, is limited by its nar-
row block interface and internal block management,
both of which are designed to serve as a disk replace-
ment [1, 7, 8]. Caches have at least three different be-
haviors than general-purpose storage. First, data in a
cache may be present elsewhere in the system, and hence
need not be durable. Thus, caches have more flexibility
in how they manage data than a device dedicated to stor-
ing data persistently. Second, a cache stores data from
a separate address space, the disks’, rather than at na-
tive addresses. Thus, using a standard SSD as a cache
requires an additional step to map block addresses from
the disk into SSD addresses for the cache. If the cache is
to survive crashes, this map must be persistent. Third, the
consistency requirements for caches differ from storage
devices. A cache must ensure it never returns stale data,
but can also return nothing if the data is not present. In
contrast, a storage device provides ordering guarantees
on when writes become durable.

FlashTieris a caching system designed for a new type
of device, asolid-state cache (SSC). A cache manager
in the operating system storage stack automatically mi-
grates data between the flash caching tier and disk stor-
age. This design provides a clean separation between
the caching device and its internal structures, the system
software managing the cache, and the disks storing data.

FlashTier exploits the three features of caching work-
loads to improve over SSD-based caches. First,
FlashTier provides aunified address spacethat allows
data to be written to the SSC at its disk address. This
removes the need for a separate table mapping disk ad-

dresses to SSD addresses. In addition, an SSC uses inter-
nal data structures tuned for large, sparse address spaces
to maintain the mapping of block number to physical lo-
cation in flash.

Second, FlashTier providescache consistency guar-
anteesto ensure correctness following a power failure or
system crash. It provides separate guarantees for clean
and dirty data to support both write-through and write-
back caching. In both cases, it guarantees that stale data
will never be returned. Furthermore, FlashTier intro-
duces new operations in the SSC interface,evictto inval-
idate data, andexiststo test whether a block is present,
andcleanto indicate that data is clean and may be safely
evicted. As a result, cache software can always use data
from the SSC without verifying its freshness. FlashTier
ensures that internal SSC metadata is always persistent
and recoverable after a crash, allowing cache contents to
be used after a failure.

Finally, FlashTier leverages its status as a cache to re-
duce the cost of garbage collection. Unlike a storage
device, which promises to never lose data, a cache can
evict blocks when it is beneficial. For example, flash
must be erased before being written, requiring a garbage
collection step to create free blocks. An SSD must copy
live data from blocks before erasing them, requiring ad-
ditional space for live data and time to write the data. In
contrast, an SSC may instead evict the data, freeing more
space faster.

This design allows an SSC to be adaptive to its work-
load: it may shift its internal use of flash resources
between capacity (storing more live data), endurance
(spreading less data over more cells), and write perfor-
mance (providing more pre-erased blocks to accept new
data). Thus, in a workload with a low churn, it can use
the full capacity of the device. For a workload with fre-
quent changes to the working set, it may shift resource to
provide less cache capacity but greater performance for
adding data to the cache.

While our first study of flash interfaces will be caches,



2we plan to then turn our attention to supporting other data
structures in flash. Our focus is on the uses of flash where
the existing block interface does not match the applica-
tion need, and a lower- or higher-level interface would be
superior. Specifically, we plan to investigate uses of flash
for high-performance key-value stores and as interme-
diate storage for map-reduce computations. Key-value
systems, such as FlashStore [2], already treat flash as a
log and perform compaction in the application to avoid
garbage collection and random writes in the device. We
believe that a better interface, such as large write-once
segments, which match the capabilities of flash, would
be a better for for these applications. However, we still
want to preserve the benefits of flash translation layer,
such as internal management of wear and bad blocks, as
well as the ability to use internal bandwidth to transfer
data between flash pages. Thus, we seek a design that
virtualizes flash at coarse granularity, to allow wear lev-
eling, and also provides an efficient DMA-like mecha-
nism to for application-directed compaction.

References

[1] AGRAWAL , N., PRABHAKARAN , V., WOBBER, T.,
DAVIS , J., MANASSE, M., AND PANIGRAHY, R.
Design tradeoffs for ssd performance. InUSENIX
(2008).

[2] DEBNATH, B., SENGUPTA, S., AND L I , J. Flash-
store: High throughput persistent key-value store. In
VLDB (2010).

[3] EMC. Fully Automated Storage Tiering (FAST)
Cache. http://www.emc.com/about/
glossary/fast-cache.htm .

[4] FACEBOOK INC. Facebook FlashCache.https:
//github.com/facebook/flashcache .

[5] K GIL , T., AND MUDGE, T. N. Flashcache: A nand
flash memory file cache for low power web servers.
In CASES(2006).

[6] OCZ. OCZ Synapse Cache SSD.
http://www.ocztechnology.com/
ocz-synapse-cache-sata-iii-2-5-ssd.
html .

[7] PRABHAKARAN , V., RODEHEFFER, T., AND
ZHOU, L. Transactional flash. InOSDI (2008).

[8] WU, M., AND ZWAENEPOEL, W. envy: A non-
volatile, main memory storage system. InASPLOS-
VI (1994).


