Recovering Device Drivers

Mike Swift, Muthu Annamalai, Brian Bershad, Hank Levy

University of Washington

Device Drivers Cause Crashes

Device drivers are the most common cause of system crashes

- 85% of Windows XP crashes caused by drivers
- Linux drivers 7x buggier than other kernel code

System reliability will not improve until we fix the driver problem

Driver Crashes

SOSP 2003: Isolating Drivers

Restarting failed drivers prevents system crashes by reinitializing driver & kernel data structures

SOSP 2003: Isolating Drivers

Restarting does not prevent application crashes

- Loses application state in driver
- Exposes application to errors during restart

Preventing Application Crashes

1. Rewrite driver to recover itself

Preventing Application Crashes

- 1. Rewrite driver to recover itself
- 2. Rewrite applications to handle driver failures

Preventing Application Crashes

- 1. Rewrite driver to recover itself
- 2. Rewrite applications to handle driver failures
- 3. Conceal driver failures with a generic recovery service

Generalizations About Drivers

Rebooting fixes failures
 Focus on transient errors

Generalizations About Drivers

Rebooting fixes failures
 Focus on transient errors
 They can be made to fail cleanly
 Recover by restarting driver

Generalizations About Drivers

Rebooting fixes failures
 Focus on transient errors
 They can be made to fail cleanly
 Recover by restarting driver
 Small # of common interfaces
 Leverage well-known behavior without knowledge of implementation

Outline

Introduction
The Shadow Driver System
Overview
Components
Evaluation
Conclusion

Shadow Driver Overview

Shadow drivers hide driver failures from applications and the OS

- Generic service infrastructure
- Leverages existing driver/kernel interface
- One shadow driver handles recovery for an entire class of device drivers

Shadow Driver Overview

- Shadow drivers hide driver failures from applications and the OS
 - Generic service infrastructure
 - Leverages existing driver/kernel interface
 - One shadow driver handles recovery for an entire class of device drivers
- What shadow drivers do:
 - Prepare
 - Recover
 - Conceal

Today's Systems

Shadowing a Working Driver

Shadowing a Working Driver

Spoofing a Failed Driver

Recovering a Failed Driver

What Shadow Drivers Do

Prepare:
Monitor kernel-driver communication
Recover:
Restart driver after failure
Conceal:
Act as driver during recovery

Preparing for Recovery

Monitor kernel-driver communication to capture relevant state
 Configuration operations
 Active connections
 Outstanding requests

Recovering Driver

- 1. Reset driver
- 2. Repeat driver initialization calls
- **3.** Transfer in state
 - Reopen active connections
 - Replay configuration requests from log
 - Resubmit active requests

Recovering Driver

- 1. Reset driver
- 2. Repeat driver initialization calls
- **3.** Transfer in state
 - Reopen active connections
 - Replay configuration requests from log
 - Resubmit active requests
- Shadow responds to driver's kernel requests
 - Hide restart from kernel and driver
 - Supply driver with existing resources

Concealing Failure

Shadow acts as driver

- Applications and OS unaware that driver failed
- No device control
- General Strategies:
 - 1. Answer request from log
 - 2. Act busy
 - 3. Block caller
 - 4. Queue request
 - 5. Drop request

Implementation

Implemented in Linux 2.4.18 kernel
Uses Nooks driver fault isolation system
Supports three driver classes:

Sound card
Network interface card
IDE storage

Outline

Introduction Shadow Driver System Evaluation Can shadow drivers conceal failure? At what cost? Performance Complexity Conclusion

Drivers Tested

Class	Drivers
Sound	SoundBlaster Audigy, Soundblaster Live!, Intel 810 Audio, Ensoniq 1371, Crystal Sound 4232
Network	Intel Pro/1000 Gigabit Ethernet, Intel Pro/100 10/100, 3Com 3c59x 10/100, AMD PCnet32, SMC Etherpower 100
IDE Storage	ide-disk, ide-cd

Evaluation

Testing Methodology
 Add bugs to driver
 Port real bugs
 Inject synthetic bugs
 Run application using driver

Platforms:

Native: standard 2.4.18 kernel

Shadow: fault isolation + shadow drivers

Possible Outcomes

	App.	Native	Shadow	SOSP
	Mp3 Player	XX	~	X
Sound	Audio Recorder	XX	~	X
	Speech Synth.	XX	~	~
	Game	XX	V	X
	Remote Copy	XX	~	v
Network	Remote Window	XX	~	~
	Packet Sniffer	XX	v	X
	Compiler	XX	 ✓ 	XX
Storage	Encoder	XX	v	XX
	Database	XX	v	XX

Large-Scale Fault Injection

Recovered

Large-Scale Fault Injection

□ Automatic Detection

Manual Detection

Large-Scale Fault Injection

Relative Performance

Relative Performance

Complexity

Driver Class	Shadow Driver L.O.C.	1 Device Driver L.O.C.	All Drivers Count	All Drivers L.O.C.
Sound	666	7,381	48	118,981
Network	198	13,577	190	264,500
Storage	321	5,358	8	29,000

Shadow Drivers: 3300 lines
Nooks Fault Isolation: 23,000 lines
Linux Kernel: 2.7 million lines

Conclusion

- Shadow drivers protect applications from driver failures
 - Shadow drivers leverage existing driver interfaces for recovery
 - Shadow drivers prevented 98% of application failures in testing
- Shadow drivers have low cost

Want More Information?

mikesw@cs.washington.edu nooks.cs.washington.edu

or invite me for an interview

