
Recovering Device
Drivers

Mike Swift, Muthu Annamalai,
Brian Bershad, Hank Levy

University of Washington



Device Drivers Cause Crashes

! Device drivers are the most common
cause of system crashes
! 85% of Windows XP crashes caused by

drivers

! Linux drivers 7x buggier than other kernel
code

! System reliability will not improve until we
fix the driver problem



Driver Crashes

Kernel

Driver

ApplicationApplication



Kernel

Driver

SOSP 2003: Isolating Drivers

ApplicationApplication

Restarting failed drivers prevents system crashes
by reinitializing driver & kernel data structures

Driver



SOSP 2003: Isolating Drivers

Kernel

Application

Driver

Application

Restarting does not prevent application crashes
! Loses application state in driver

! Exposes application to errors during restart



Preventing Application Crashes

1. Rewrite driver to recover itself



Preventing Application Crashes

1. Rewrite driver to recover itself

2. Rewrite applications to handle driver
failures



Preventing Application Crashes

1. Rewrite driver to recover itself

2. Rewrite applications to handle driver
failures

3. Conceal driver failures with a generic
recovery service



Generalizations About Drivers

1. Rebooting fixes failures

! Focus on transient errors



Generalizations About Drivers

1. Rebooting fixes failures

! Focus on transient errors

2. They can be made to fail cleanly

! Recover by restarting driver



Generalizations About Drivers

1. Rebooting fixes failures

! Focus on transient errors

2. They can be made to fail cleanly

! Recover by restarting driver

3. Small # of common interfaces

! Leverage well-known behavior without
knowledge of implementation



Outline

! Introduction

! The Shadow Driver System

! Overview

! Components

! Evaluation

! Conclusion



Shadow Driver Overview

! Shadow drivers hide driver failures from
applications and the OS

! Generic service infrastructure

! Leverages existing driver/kernel interface

! One shadow driver handles recovery for an entire
class of device drivers



Shadow Driver Overview

! Shadow drivers hide driver failures from
applications and the OS

! Generic service infrastructure

! Leverages existing driver/kernel interface

! One shadow driver handles recovery for an entire
class of device drivers

! What shadow drivers do:

! Prepare

! Recover

! Conceal



Today’s Systems

Kernel

Device Driver

write
(…

)

reg
iste

r(…
)



w
rit

e(
…
)

write(…
)

Shadowing a Working Driver

Kernel

Device Driver

Tap

Shadow
Driver

write(…)



Shadowing a Working Driver

Kernel

Device Driver

Shadow
Driver

do
ne

(…
)

done(…
)

done(…)

Tap



Tap

Spoofing a Failed Driver

Kernel

Device Driver

Shadow
Driver

Tap
write(…

)

write(…)



Device DriverDevice Driver

Recovering a Failed Driver

Kernel

Shadow
Driver

TapTapTap

re
gi
st
er

(…
)

register(…
)



What Shadow Drivers Do

! Prepare:

! Monitor kernel-driver communication

! Recover:

! Restart driver after failure

! Conceal:

! Act as driver during recovery



Preparing for Recovery

! Monitor kernel-driver communication to
capture relevant state

! Configuration operations

! Active connections

! Outstanding requests



Recovering Driver

1. Reset driver

2. Repeat driver initialization calls

3. Transfer in state
! Reopen active connections

! Replay configuration requests from log

! Resubmit active requests



Recovering Driver

1. Reset driver

2. Repeat driver initialization calls

3. Transfer in state
! Reopen active connections

! Replay configuration requests from log

! Resubmit active requests

" Shadow responds to driver’s kernel requests
" Hide restart from kernel and driver

" Supply driver with existing resources



Concealing Failure

! Shadow acts as driver
! Applications and OS unaware that driver failed

! No device control

! General Strategies:
1. Answer request from log

2. Act busy

3. Block caller

4. Queue request

5. Drop request



Implementation

! Implemented in Linux 2.4.18 kernel

! Uses Nooks driver fault isolation system

! Supports three driver classes:

! Sound card

! Network interface card

! IDE storage



Outline

! Introduction

! Shadow Driver System

! Evaluation

! Can shadow drivers conceal failure?

! At what cost?

! Performance

! Complexity

! Conclusion



Drivers Tested

ide-disk, ide-cdIDE Storage

Intel Pro/1000 Gigabit Ethernet,
Intel Pro/100 10/100, 3Com
3c59x 10/100, AMD PCnet32,
SMC Etherpower 100

Network

SoundBlaster Audigy,
Soundblaster Live!, Intel 810
Audio, Ensoniq 1371, Crystal
Sound 4232

Sound

DriversClass



Evaluation

! Testing Methodology
! Add bugs to driver

! Port real bugs

! Inject synthetic bugs

! Run application using driver

! Platforms:
! Native: standard 2.4.18 kernel

! Shadow: fault isolation + shadow drivers



Possible Outcomes

XX

X

!

Total system crash

Application crashed

Everything kept working



!

!

!

!

!

!

!

!

!

!

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

Database

Encoder

Compiler

Packet Sniffer

Remote Window

Remote Copy

Game

Speech Synth.

Audio Recorder

Mp3 Player

ShadowNativeApp.

Sound

Network

Storage

XX

XX

XX

X

!

!

X

!

X

X

SOSP



Large-Scale Fault Injection

0

20

40

60

80

100

Mp3

Player

Audio

Recorder

Remote

Copy

Sniffer Compiler Database

P
e
rc

e
n
t 

o
f 

F
a
ilu

re
s

Recovered

Sound Net Storage



Large-Scale Fault Injection

0

20

40

60

80

100

Mp3

Player

Audio

Recorder

Remote

Copy

Sniffer Compiler Database

P
e
rc

e
n
t 

o
f 

F
a
ilu

re
s

Automatic Detection Manual Detection

Sound Net Storage



Large-Scale Fault Injection

0

20

40

60

80

100

Mp3

Player

Audio

Recorder

Remote

Copy

Sniffer Compiler Database

P
e
rc

e
n
t 

o
f 

F
a
ilu

re
s

Automatic Detection Manual Detection

Failed Recovery

Sound Net Storage



0

20

40

60

80

100

Mp3

Player

Audio

Recorder

Network

Send

Network

Receive

Compiler Database

R
el

at
iv

e 
P
er

fo
rm

an
ce

 (
%

)

Native Shadow

Relative Performance

Sound Net Storage



0

20

40

60

80

100

Mp3

Player

Audio

Recorder

Network

Send

Network

Receive

Compiler Database

R
el

at
iv

e 
P
er

fo
rm

an
ce

 (
%

)

Native Shadow

Relative Performance

Sound Net Storage



5,358

13,577

7,381

1 Device

Driver

L.O.C.

321

198

666

Shadow

Driver

L.O.C.

Storage

Network

Sound

Driver

Class

29,0008

264,500190

118,98148

All Drivers

L.O.C.

All Drivers

Count

Complexity

! Shadow Drivers: 3300 lines

! Nooks Fault Isolation: 23,000 lines

! Linux Kernel: 2.7 million lines



Conclusion

! Shadow drivers protect applications from
driver failures

! Shadow drivers leverage existing driver
interfaces for recovery

! Shadow drivers prevented 98% of application
failures in testing

! Shadow drivers have low cost



Want More Information?

mikesw@cs.washington.edu
nooks.cs.washington.edu

or
invite me for an interview


