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Modern superscalar processors rely heavily on speculative execution for performance. For exam-
ple, our measurements show that on a 6-issue superscalar, 93% of committed instructions for
SPECINT95 are speculative. Without speculation, processor resources on such machines would
be largely idle. In contrast to superscalars, simultaneous multithreaded (SMT) processors achieve
high resource utilization by issuing instructions from multiple threads every cycle. An SMT proces-
sor thus has two means of hiding latency: speculation and multithreaded execution. However, these
two techniques may conflict; on an SMT processor, wrong-path speculative instructions from one
thread may compete with and displace useful instructions from another thread. For this reason, it
is important to understand the trade-offs between these two latency-hiding techniques, and to ask
whether multithreaded processors should speculate differently than conventional superscalars.

This paper evaluates the behavior of instruction speculation on SMT processors using both mul-
tiprogrammed (SPECINT and SPECFP) and multithreaded (the Apache Web server) workloads. We
measure and analyze the impact of speculation and demonstrate how speculation on an 8-context
SMT differs from superscalar speculation. We also examine the effect of speculation-aware fetch and
branch prediction policies in the processor. Our results quantify the extent to which (1) speculation
is critical to performance on a multithreaded processor because it ensures an ample supply of par-
allelism to feed the functional units, and (2) SMT actually enhances the effectiveness of speculative
execution, compared to a superscalar processor by reducing the impact of branch misprediction.
Finally, we quantify the impact of both hardware configuration and workload characteristics on
speculation’s usefulness and demonstrate that, in nearly all cases, speculation is beneficial to SMT
performance.
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1. INTRODUCTION

Instruction speculation is a crucial component of modern superscalar proces-
sors. Speculation hides branch latencies and thereby boosts performance by
executing the likely branch path without stalling. Branch predictors, which
provide accuracies up to 96% (excluding OS code) [Gwennap 1995], are the
key to effective speculation. The primary disadvantage of speculation is that
some processor resources are invariably allocated to useless, wrong-path in-
structions that must be flushed from the pipeline. However, since resources on
superscalars are often underutilized because of low single-thread instruction-
level parallelism (ILP) [Tullsen et al. 1995; Cvetanovic and Kessler 2000], the
benefit of speculation far outweighs this disadvantage and the decision to spec-
ulate as aggressively as possible is an easy one.

In contrast to superscalars, simultaneous multithreading (SMT) proces-
sors [Tullsen et al. 1995, 1996] operate with high processor utilization, be-
cause they issue and execute instructions from multiple threads each cycle,
with all threads dynamically sharing hardware resources. If some threads
have low ILP, utilization is improved by executing instructions from addi-
tional threads; if only one or a few threads are executing, then all critical
hardware resources are available to them. Consequently, instruction through-
put on a fully loaded SMT processor is two to four times higher than on
a superscalar with comparable hardware on a variety of integer, scientific,
database, and web service workloads [Lo et al. 1997a,b; Redstone et al.
2000].

With its high hardware utilization, speculation on an SMT may harm
rather than improve performance. This would be particularly true for SMT’s
likely-targeted application domain: highly threaded, high-performance servers,
with all hardware contexts occupied. In this scenario, speculative (and poten-
tially wasteful) instructions from one thread may compete with useful, non-
speculative instructions from other threads for highly utilized hardware re-
sources, and in some cases displace them, lowering performance. This raises
the possibility that SMT might be able to capitalize on its inherent latency-
hiding abilities to reduce the need for speculation. If SMT could do with-
out speculation while maintaining the same level of performance, it might
dispense with the complicated control necessary to recover from mispecula-
tions. To resolve this issue, it is important to understand the behavior of
speculation on an SMT processor and the extent to which it helps or hinders
performance.

In investigating speculation on SMT, this paper makes three principle
contributions:

—A careful analysis of the interactions between speculation and multithread-
ing.

—A detailed simulation study of a wide range of alternative, speculation-aware
SMT fetch policies.

—A characterization of the conditions (both hardware configuration and work-
loads) under which speculation is helpful to SMT performance.
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Our analyses are based on five different workloads (including all operating
system code): SPECINT95, SPECFP95, a combination of the two, the Apache
Web server, and a synthetic workload that allows us to manipulate basic-block
length and available ILP. Using these workloads, we carefully examine how
speculative instructions behave on SMT, as well as how and when SMT should
speculate.

We attempt to improve speculation performance on SMT by reducing wrong-
path speculative instructions, either by not speculating at all or by using
speculation-aware fetch policies (including policies that incorporate confidence
estimators). To explain the results, we investigate which hardware structures
and pipeline stages are affected by speculation, and how speculation on SMT
processors differs from speculation on a traditional superscalar. Finally, we ex-
plore the boundaries of speculation’s usefulness on SMT by varying the number
of hardware threads, the number of functional units, and the cache capacities,
and by using synthetic workloads to change the branch frequency and ILP
within threads.

After describing the methodology for our experiments in the next section,
we present the basic speculation results and explain why and how speculation
benefits SMT performance; this section also discusses alternative fetch and pre-
diction schemes and shows why they fall short. Section 4 continues our analysis
of speculation, exploring the effects of software and microarchitectural param-
eters on speculation. Finally, Section 5 discusses related work and Section 6
summarizes our findings.

2. METHODOLOGY

2.1 Simulator

Our SMT simulator is based on the SMTSIM simulator [Tullsen 1996] and
has been ported to the SimOS framework [Rosenblum et al. 1995; Redstone
et al. 2000; Compaq 1998]. It simulates the full pipeline and memory hierarchy,
including bank conflicts and bus contention, for both the applications and the
operating system.

The baseline configuration for our experiments is shown in Table I. For most
experiments we used the ICOUNT fetch policy [Tullsen et al. 1996]. ICOUNT
gives priority to threads with the fewest number of instructions in the pre-
issue stages of the pipeline and fetches 8 instructions (or to the end of the cache
line) from each of the two highest priority threads. From these instructions,
it chooses to issue up to 8, selecting from the highest priority thread until a
branch instruction is encountered, then taking the remainder from the second
thread. In addition to ICOUNT, we also experimented with three alternative
fetch policies. The first does not speculate at all, that is, instruction fetching
for a particular thread stalls until the branch is resolved; instead, instruc-
tions are selected only from the non-speculative threads using ICOUNT. The
second favors non-speculating threads by fetching instructions from threads
whose next instructions are non-speculative before fetching from threads
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Table I. SMT Parameters

CPU

Thread Contexts 8
Pipeline 9 stages, 7 cycle misprediction penalty.
Fetch Policy 8 instructions per cycle from up to 2

contexts (the ICOUNT scheme of
Tullsen et al. [1996])

Functional Units 6 integer (including 4 load/store and 2
synchronization units) 4 floating point

Instruction Queues 32-entry integer and floating point
queues

Renaming Registers 100 integer and 100 floating point
Retirement bandwidth 12 instructions/cycle
Branch Predictor McFarling-style, hybrid predictor

[McFarling 1993] (shared among all
contexts)

Local Predictor 4K-entry prediction table, indexed by
2K-entry history table

Global Predictor 8K entries, 8K-entry selection table
Branch Target Buffer 256 entries, 4-way set associative

(shared among all contexts)

Cache Hierarchy

Cache Line Size 64 bytes
Icache 128KB, 2-way set associative, dual-

ported, 2 cycle latency
Dcache 128KB, 2-way set associative, dual-

ported (from CPU, r&w), single-ported
(from the L2), 2 cycle latency

L2 cache 16MB, direct mapped, 23 cycle latency,
fully pipelined (1 access per cycle)

MSHR 32 entries for the L1 cache, 32 entries
for the L2 cache

Store Buffer 32 entries
ITLB & DTLB 128-entries, fully associative
L1-L2 bus 256 bits wide
Memory bus 128 bits wide
Physical Memory 128MB, 90 cycle latency, fully pipelined

with speculative instructions. The third uses branch confidence estimators to
favor threads with high-confidence branches. In all cases, ICOUNT breaks
ties.

Our baseline experiments used the McFarling branch prediction algo-
rithm [McFarling 1993] used on modern processors from Hewlett Packard; for
some studies we augmented this with confidence estimators. Our simulator
speculates past an unlimited number of branches, although in practice it spec-
ulates only past 1.4 on average and almost never (less than 0.06% of cycles)
past more than 5 branches.

In exploring the limits of speculation’s effectiveness, we also varied the num-
ber of hardware contexts from 1 to 16. Finally, for the comparisons between
SMT and superscalar processors we use a superscalar with the same hardware
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components as our SMT model but with a shorter pipeline, made possible by
the superscalar’s smaller register file.

2.2 Workload

We use three multiprogrammed workloads: SPECINT95, SPECFP95 [Reilly
1995], and a combination of four applications from each suite, INT+FP. In
addition we used the Apache web server (version 1.3), an open source web
server run by the majority of web sites [Hu et al. 1999]. We drive Apache with
SPECWEB96 [System Performance Evaluation Cooperative 1996], a standard
web server performance benchmark, configured with two client machines each
running 64 client processes. Each workload serves a different purpose in the
experiments. The integer benchmarks are our dominant workload and were
chosen because their frequent, less predictable branches (relative to floating
point programs) provide many opportunities for speculation to affect perfor-
mance. Apache was chosen because over three-quarters of its execution oc-
curs in the operating system, whose branch behavior is also less predictable
[Agarwal et al. 1988; Gloy et al. 1996], and because it represents the server
workloads that constitute one of SMT’s target domains. We selected the float-
ing point suite because it contains loop-based code with large basic blocks and
more predictable branches than integer code, providing an important perspec-
tive on workloads where speculation is more beneficial. Finally, following the
example of Snavely and Tullsen [2000], we combined floating point and integer
code to understand how interactions between different types of applications
affect our results.

We also used a synthetic workload to explore how branch prediction accu-
racy, branch frequency, and the amount of ILP affect speculation on an SMT.
The synthetic program executes a continuous stream of instructions separated
by branches. We varied the average number and independence of instructions
between branches, and the prediction accuracy of the branches is set by a com-
mand line argument to the simulator.

We execute all of our workloads under the Compaq Tru64 Unix 4.0d operat-
ing system; the simulation includes all OS privileged code, interrupts, drivers,
and Alpha PALcode. The operating system execution accounts for only a small
portion of the cycles executed for the SPEC workloads (about 5%), while the
majority of cycles (77%) for the Apache Web server are spent inside the OS
managing the network and disk.

Most experiments include 200 million cycles of simulation starting from a
point 600 million instructions into each program (simulated in ‘fast mode’). The
synthetic benchmarks, owing to their simple behavior and small size (there is
no need to warm the L2 cache), were simulated for only 1 million cycles each.
Other researchers have demonstrated that, for SPECINT95 and Apache, our
segments are well past the beginning of steady-state execution [Redstone et al.
2000]. To ensure that the portions of execution for the other benchmarks are
representative, we performed some longer simulations and found they had no
significant effect on our results. For machine configurations with more than 8
contexts, we ran multiple instances of some of the applications.
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2.3 Metrics and Fairness

Changing the fetch policy of an SMT necessarily changes which and in what
order instructions execute. Different policies affect each thread differently and,
as a result, they may execute more or fewer instructions over a 200 million cycle
simulation. Consequently, directly comparing the total IPC with two different
fetch policies may not be fair, since a different mix of instructions is executed,
and the contribution of each thread to the bottom-line IPC changes.

We resolved this problem by following the example set by the SPECrate
metric [System Performance Evaluation Cooperative 2000] and averaging per-
formance across threads instead of cycles. The SPECrate is the percent increase
in throughput (IPC) relative to a baseline for each thread, combined using the
geometric mean. Following this example, we computed the geometric mean of
the threads’ speedups in IPC relative to their performance on a machine using
the baseline ICOUNT fetch policy and executing the same threads on the same
number of contexts. Finally, because our workload contains some threads (such
as interrupt handlers) that run for only a small fraction of total simulation cy-
cles, we weighted the per-thread speedups by the number of cycles the thread
was scheduled in a context.

Using this technique we computed an average speedup across all threads.
We then compared this value to a speedup calculated just using the total IPC
of the workload. We found that the two metrics produced very similar results,
differing on average by just 1% and at most by 5%. Moreover, none of the per-
formance trends or conclusions changed based on which metric was used. Con-
sequently, for the configurations we consider, using total IPC to compare per-
formance is accurate. Since IPC is a more intuitive metric to discuss than the
speedup averaged over threads, in this paper we report only the IPC for each
experiment.

3. SPECULATION ON SMT

This section presents the results of our simulation experiments on instruction
speculation for SMT. Our goal is to understand the trade-offs between two al-
ternative means of hiding branch delays: instruction speculation and SMT’s
ability to execute instructions from multiple threads each cycle. First, we com-
pare the performance of an SMT processor with and without speculation and
analyze the differences between these two options. Then we discuss the impact
of speculation-aware fetch policies and the use of branch prediction confidence
estimators on speculation performance.

3.1 The Behavior of Speculative Instructions

As a first task, we modified our SMT simulator to turn off speculation (i.e.,
the processor never fetches past a branch until it has resolved it) and com-
pared the throughput in instructions per cycle on our four workloads with a
speculative SMT CPU. The results of these measurements, seen in Table II,
show that speculation benefits SMT performance on all four workloads—the
speculative SMT achieves performance gains of between 9% and 32% over the
non-speculative processor. Apache, with its small basic blocks and poor branch
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Table II. Effect of Speculation on SMT. We Simulated Each of the Four Workloads on
Machines with and Without Speculation

SPECINT95 SPECFP95 INT+FP Apache

IPC with speculation 5.2 6.0 6.0 4.5
IPC without speculation 4.2 5.5 5.5 3.4
Improvement from speculation 24% 9% 9% 32%

prediction, derives the most performance from speculation, while the more
predictable floating benchmarks benefit least. SMT’s benefit from speculation is
far lower than the 3-fold increase in performance that superscalars derive from
speculation, but it falls on the same side of the trade-off between the increased
ILP that speculation provides and the resources it wastes.

Speculation can have different effects throughout the pipeline and the mem-
ory system. For example, speculation could pollute the cache with instructions
that will never be executed or, alternatively, prefetch instructions before they
are needed, eliminating future cache misses. None of these effects appear in our
simulations, and turning off speculation never altered the percentage of cache
hits by more that 0.4%.

To understand how speculative instructions execute on an SMT processor
and how they benefit its performance and resource utilization, we categorized
instructions according to their speculation behavior:

—non-speculative instructions are those fetched non-speculatively—they al-
ways perform useful work;

—correct-path-speculative instructions are fetched speculatively, are on the
correct path of execution, and therefore accomplish useful work;

—wrong-path-speculative instructions are fetched speculatively, but lie on
incorrect execution paths, are thus ultimately flushed from the execution
pipeline and consequently waste hardware resources.

Using this categorization, we followed all instructions through the execution
pipeline. At each pipeline stage we measured the average number of each of the
three instruction types that leaves that stage each cycle. We call these values
the correct-path-speculative, wrong-path-speculative, and non-speculative per-
stage IPCs. The overall machine IPC is the sum of the correct-path-speculative
and non-speculative commit IPCs.

Figures 1–4 depict these per-stage instruction categories for all four work-
loads. While bottom line IPC of the four workloads varies considerably, the
trends we describe in the next few paragraphs are remarkably consistent across
all of them. For instance, although the distribution of instructions between the
three categories changes, in all cases between 82 and 86% of wrong-path in-
structions leave the pipeline before they reach the functional units and no
more than 2% of instruction executed are on the wrong path. The similar-
ity implies that the conclusions for SPECINT95 are applicable to the other
three workloads, suggesting that the behavior is fundamental to SMT, rather
than being workload dependent. Because of this, we present data primarily for
SPECINT95, and discuss the other workloads only when it contributes to the
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Fig. 1. Per-pipeline-stage IPC for SPECINT95, divided between correct-path-, wrong-path-, and
non-speculative instructions. On top, (a) SMT with ICOUNT; on the bottom, (b) SMT with a fetch
policy that favors non-speculative instructions.
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Fig. 2. Per-pipeline-stage IPC for Apache, divided between correct-path-, wrong-path-, and non-
speculative instructions. On top, (a) SMT with ICOUNT; on the bottom, (b) SMT with a fetch policy
that favors non-speculative instructions.
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Fig. 3. Per-pipeline-stage IPC for SPECFP95, divided between correct-path-, wrong-path-, and
non-speculative instructions. On top, (a) SMT with ICOUNT; on the bottom, (b) SMT with a fetch
policy that favors non-speculative instructions.
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Fig. 4. Per-pipeline-stage IPC for INT+FP, divided between correct-path-, wrong-path-, and non-
speculative instructions. On top, (a) SMT with ICOUNT; on the bottom, (b) SMT with a fetch policy
that favors non-speculative instructions.
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analysis. Tables VII–X in the Appendix contain a summary of the data for all
fetch policies we investigated.

The upper portions of Figures 1–4 (labeled ‘A’) show why speculation is crucial
to high instruction throughput and explain why misspeculation does not waste
hardware resources. Speculative instructions on an SMT comprise the major-
ity of instructions fetched, executed, and committed. In the case of SPECINT95
(Figure 1), for example, 57% of fetch IPC, 53% of instructions issued to the func-
tional units, and 52% of commit IPC are speculative. (Comparable numbers
for the superscalar are between 90 and 93%.) SPECFP95 and INT+FP fetch
fewer speculative instructions, but they still account for a substantial portion
of the instruction stream. Apache speculates the most: 63% of fetched instruc-
tions and 60% of executed instructions are speculative. Given the magnitude of
these numbers and the accuracy of today’s branch prediction hardware, it is not
surprising that stalling until branches resolve failed to improved performance.

Speculation is particulary effective on SMT for two reasons, as SPECINT95
illustrates. First, since SMT fetches from each thread only once every 5.4 cy-
cles on average for this workload (as opposed to almost every cycle for the
single-threaded superscalar), it speculates less aggressively past branches (past
1.4 branches on average compared to 3.5 branches on a superscalar). This
causes the percentage of speculative instructions fetched to decline from 93%
on a superscalar to 57% on SMT. More important, it also reduces the percent-
age of speculative instructions on the wrong path; because an SMT processor
makes less progress down speculative paths, it avoids multiple levels of specula-
tive branches, which impose higher (compounded) misprediction rates. For the
SPECINT benchmarks, for example, 19% of speculative instructions on SMT
are wrong path, compared to 28% on a superscalar. Therefore, SMT receives
significant benefit from speculation at a lower cost, compared to a superscalar.

Second, the data show that speculation is not particularly wasteful on SMT.
Branch prediction accuracy for SPECINT95 is 88%,1 and only 11% of fetched
instructions were flushed from the pipeline. Eighty-three percent of these
wrong-path-speculative instructions were removed from the pipeline before
they reached the functional units, only consuming resources in the form of in-
teger instruction queue entries, renaming registers, and fetch bandwidth. Both
the instruction queue (IQ) and the pool of renaming registers are adequately
sized: the IQ is only full 4.3% of cycles and renaming registers are exhausted
only 0.3% of cycles. (Doubling the integer IQ for SPECINT95 reduced queue
overflow to 0.4% of cycles, but raised IPC by only 1.8%, confirming that the in-
teger IQ is not a serious bottleneck. Tullsen et al. [1996] report a similar result.)
Thus, IQ entries and renaming registers are not highly contended. This leaves
fetch bandwidth as the only resource that speculation wastes significantly and
suggests that modifying the fetch policy might improve performance. We ad-
dress this question in the next section.

Without speculation, only nonspeculative instructions use processor re-
sources and SMT devotes no processor resources to wrong-path instructions.

1The prediction rate is lower than the value found in Gwennap [1995] because we include operating
system code.
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However, in avoiding wrong-path instructions, SMT leaves many of its hard-
ware resources idle. For example, fetch stall cycles—cycles when no thread
was fetched, rose almost three-fold for Apache; consequently, its per-stage IPCs
dropped between 13% and 35%. Functional utilization dropped by 16% and com-
mit IPC, the bottom-line metric for SMT performance, was 3.9, a 32% loss com-
pared to an SMT that speculates. Our results for the other benchmarks show the
same phenomena, although the other workloads benefit less from speculation.
In summary, not speculating wastes more resources than mispeculating.

3.1.1 Fetch Policies. It is possible that more speculation-aware fetch poli-
cies might outperform SMT’s default fetch algorithm, ICOUNT, reducing the
number of wrong-path instructions while increasing the number of correct-path
and nonspeculative instructions. To investigate these possibilities, we compared
SMT with ICOUNT to an SMT with two alternative fetch policies: one that
favors nonspeculating threads and a family of fetch policies that incorporate
branch prediction confidence.

3.1.2 Favoring Nonspeculative Contexts. A fetch policy that favors non-
speculative contexts (see Figures 1–4) increased the proportion of nonspec-
ulative instructions fetched by an average of 44% and decreased correct-
path- and wrong-path-speculative instructions by an average of 33% and 39%,
respectively. Despite the moderate shift to useful instructions (wrong-path-
speculative instructions were reduced from 11% to 7% of the workload), the
effect on commit IPC was negligible. This lack of improvement in IPC will be
addressed again and explained in Section 3.2.

3.1.3 Using Confidence Estimators. Researchers have proposed several
hardware structures that assign confidence levels to branch predictions, with
the goal of reducing the number of wrong-path speculations [Jacobson et al.
1996; Grunwald et al. 1998]. Each dynamic branch receives a confidence rating,
a high value for branches that are usually predicted correctly and a low value for
misbehaving branches. Several groups have suggested using confidence estima-
tors on SMT to reduce wrong-path-speculative instructions and thus improve
performance [Jacobson et al. 1996; Manne et al. 1998]. In our study we exam-
ined three different confidence estimators discussed in Grunwald et al. [1998];
Jacobson et al. [1996]:

—The JRS estimator uses a table that is indexed by the PC xor-ed with the
global branch history register. The table contains counters that are incre-
mented when the predictor is correct and reset on an incorrect prediction.

—The strong-count estimator uses the counters in the local and global pre-
dictors to assign confidence. The confidence value is the number of coun-
ters for the branch (0, 1, or 2) that are in a strongly-taken or strongly-not-
taken state (this subsumes the both-strong and either-strong estimators in
Grunwald et al. [1998]).

—The distance estimator takes advantage of the fact that mispredictions are
clustered. The confidence value for a branch is the number of correct predic-
tions that a context has made in a row (globally, not just for this branch).
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Table III. Hard Confidence Performance for SPECINT95. Branch Prediction Accuracy was 88%

Wrong-path
Predictions Avoided

(true negatives)

Correct Predictions
Lost (false
negatives)

Confidence Estimator % of branch instructions IPC

No confidence estimation 0 0 5.2

JRS (threshold = 1) 2.0 6.0 5.2
JRS (threshold = 15) 7.7 38.3 4.8
Strong (threshold = 1: either) 0.7 3.9 5.1
Strong (threshold = 2: both) 5.6 31.9 4.8
Distance (threshold = 1) 1.5 6.6 5.2
Distance (threshold = 3) 3.8 16.2 5.1
Distance (threshold = 7) 5.8 27.9 4.9

There are at least two different ways to use such confidence information.
In the first, hard confidence, the processor stalls a thread on a low confidence
branch, fetching from other threads until the branch is resolved. In the second,
soft confidence, the processor assigns a fetch priority according to the confidence
of a thread’s most recent branch.

Hard confidence schemes use a confidence threshold to divide branches into
high- and low-confidence groups. If the confidence value is above the threshold,
the prediction is followed; otherwise, the issuing thread stalls until the branch
is resolved. Hard confidence uses ICOUNT to select among the high confidence
threads, so the confidence threshold controls how significantly ICOUNT affects
fetch. Low thresholds leave the choice almost entirely to ICOUNT, because
most threads will be high confidence. High thresholds reduce its influence by
providing fewer threads from which to select.

Using hard confidence has two effects. First, it reduces the number of wrong-
path-speculative instructions by keeping the processor from speculating on
some incorrect predictions (i.e., true negatives). Second, it increases the number
of correct predictions the processor ignores (false negatives).

Table III contains true and false negatives for the baseline SMT and an SMT
with several hard confidence schemes when executing SPECINT95. Since our
MacFarling branch predictor [McFarling 1993] has high accuracy (workload-
dependent predictions that range from 88% to 99%), the false negatives out-
number the true negatives by between 3 and 6 times. Therefore, although mis-
predictions declined by 14% to 88% (data not shown), this benefit was offset by
lost successful speculation opportunities, and IPC never rose significantly. In
the two cases when IPC did increase by a slim margin (less than 0.5%), JRS
and Distance each with a threshold of 1, there were frequent ties among many
contexts. Since ICOUNT breaks ties, these two schemes end up being quite
similar to ICOUNT.

In contrast to hard confidence, the priority that soft confidence calculates is
integrated into the fetch policy. We give priority to contexts that aren’t spec-
ulating, followed by those fetching past a high confidence branch; ICOUNT
breaks any ties. In evaluating soft confidence, we used the same three confi-
dence estimators. Table IV contains the results for SPECINT95. From the table,
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Table IV. Soft Confidence Performance for SPECINT95

Confidence Estimator IPC Wrong path instructions

No confidence estimation 5.2 9.7%
JRS 5.0 4.5%
Strong 5.0 5.9%
Distance 4.9 2.9%

we see that soft confidence estimators hurt performance, despite the fact that
they reduced wrong-path-speculative instructions to between 0.1% and 9% of
instructions fetched.

Overall, then, neither hard nor soft confidence estimators improved SMT
performance, and actually reduced performance in most cases.

3.2 Why Restricting Speculation Hurts SMT Performance

SMT derives its performance benefits from fetching and executing instructions
from multiple threads. The greater the number of active hardware contexts,
the greater the global (cross-thread) pool of instructions available to hide intra-
thread latencies. All the mechanisms we have investigated that restrict spec-
ulation do so by eliminating certain threads from consideration for fetching
during some period of time, either by assigning them a low priority or exclud-
ing them outright.

The consequence of restricting the pool of fetchable threads is a less diverse
thread mix in the instruction queue, where instructions wait to be dispatched
to the functional units. When the IQ holds instructions from many threads, the
chance of a large number of them being unable to issue instructions is greatly
reduced, and SMT can best hide intra-thread latencies. However, when fewer
threads are present, it is less able to avoid these delays.2

SMT with ICOUNT provides the highest average number of threads in the IQ
for all four workloads when compared to any of the alternative fetch policies or
confidence estimators. Executing SPECINT95 with soft confidence can serve as
a case in point. With soft confidence, the processor tends to fetch repeatedly from
threads that have high confidence branches, filling the IQ with instructions
from a few threads. Consequently, there are no issuable instructions between
2.8% and 4.2% of the time, which is 3 to 4.5 times more often than with ICOUNT.
The result is that the IQ backs up more often (12 to 15% of cycles versus 4% with
ICOUNT), causing the processor to stop fetching. This also explains why none of
the new policies improved performance—they all reduced the number of threads
represented in the IQ. In contrast to all these schemes, ICOUNT works directly
toward maintaining a good mix of instructions by favoring underrepresented
threads.

We attempted to accentuate this aspect of ICOUNT by modifying it to bound
the number of instructions in the IQ from each thread, but instruction diver-
sity and thus performance were unchanged. In fact, even perfect confidence

2The same effect was observed in Tullsen et al. [1996] for the BRCOUNT and MISSCOUNT policies.
These policies use the number of the thead-specific branches and cache misses, respectively, to
assign priority. Neither performed as well as ICOUNT.
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Fig. 5. The relationship between the average number of threads in the instruction queue and over-
all SMT performance. Each point represents a different fetch policy. The relative ordering from left
to right of fetch policies differs between workloads. For SPECINT95, no speculation performed
worst; the soft confidence schemes were next, followed by the distance estimator (thresh= 3), the
strong count schemes, and favoring non-speculative contexts. The ordering for SPECINT+FP is
the same. For SPECFP95, soft confidence and favoring nonspeculative contexts performed worst,
followed by no speculation and strong count, distance, and JRS hard confidence estimators. Finally,
for Apache, soft confidence outperformed no speculation (the worst) and the hard confidence dis-
tance estimator but fell short of the hard confidence JRS and strong count estimators. For all four
workloads, SMT with ICOUNT is the best performer, although, for SPECINT95 and SPECINT+FP,
the hard distance estimator (thresh= 1) obtains essentially identical performance.

estimation (i.e., the processor speculates if the branch prediction is correct and
stalls if it is incorrect) provides only a 5% improvement over ICOUNT in the
number of contexts represented in the IQ.

Figure 5 empirically demonstrates the effect of thread diversity on perfor-
mance for all the schemes discussed in this paper, on all workloads (see also
Tables VII–X). For all four workloads, there is a clear correlation between per-
formance and the number of threads present; ICOUNT achieves the largest
value for both metrics3 in most cases.

We draw two conclusions from this discussion. First, the key to specula-
tion’s benefit is its low cost compared to the benefit of the diverse thread mix
it provides in the IQ. If branch prediction was less accurate, speculation would
be more costly, and the diversity it adds would not compensate for resources
wasted on mispeculation. However, as we will see in Figure 6, branch predic-
tion accuracy generally has to be extremely poor to tip the balance against
speculation.

Second, although we investigated only a few of the many conceivable
speculation-aware fetch policies, there is little hope that a different speculation-
aware fetch policy could improve performance. An effective policy would have
to avoid significantly altering the distribution of fetched instructions among
the threads and, simultaneously, significantly reduce the number of useless

3The JRS and Distance estimators with thresholds of 1 acheive higher performance by miniscule
margins for some of the workloads. See Section 3.1.3.
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instructions fetched. Given the accuracy of modern predictors, devising such a
mechanism is unlikely.

3.3 Summary

In this section we examine the performance of SMT processors with specula-
tive instruction execution. Without speculation, an 8-context SMT is unable
to provide a sufficient instruction stream to keep the processor fully utilized,
and performance suffers. Although the fetch policies we examined reduce the
number of wrong-path instructions, they also limit thread diversity in the IQ,
leading to lower performance when compared to ICOUNT.

4. LIMITS TO SPECULATIVE PERFORMANCE

In the previous section, we showed that speculation benefits SMT performance
for our four workloads running on the hardware we simulated. However, spec-
ulation will not improve performance in every conceivable environment. The
goal of this section is to explore the boundaries of speculation’s benefit—to
characterize the transition between beneficial and harmful speculation. We do
this by perturbing the software workload and hardware configurations beyond
their normal limits to see where the benefits of speculative execution begin to
disappear.

4.1 Examining Program Characteristics

Three different workload characteristics determine whether speculation is prof-
itable on an SMT processor:

(1) As branch prediction accuracy decreases, the number of wrong-path instruc-
tions will increase, causing performance to drop. Speculation will become
less useful and at some point will no longer pay off.

(2) As the basic block size increases, branches become less frequent and the
number of threads with no unresolved branches increases. Consequently,
more nonspeculative threads will be available to provide instructions, re-
ducing the value of speculation. As a result, branch prediction accuracy will
have to be higher for speculation to pay off for larger basic block sizes.

(3) As ILP within a basic block increases, the number of unused resources
declines, causing speculation to benefit performance less.

Figure 6 illustrates the trade-offs in all three of these parameters. The hor-
izontal axis is the number of instructions between branches, that is, the basic
block size. The different lines represent varying amounts of ILP. The vertical
axis is the branch prediction accuracy required for speculation to pay off for a
given average basic block size4; that is, for any given point, speculation will pay
off for branch prediction accuracy values above the point but hurt performance

4The synthetic workload for a particular average basic block size contained basic blocks of a variety
of sizes. This helps to make the measurements independent of Icache block size, but does not remove
all the noise due to Icache interactions (for instance, the tail of ILP 1 line goes down).
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Fig. 6. Branch prediction accuracies at which speculating makes no difference.

for values below it. The higher this crossover point, the less benefit specula-
tion provides. The data was obtained by simulating a synthetic workload (as
described in Section 2.2) on the baseline SMT with ICOUNT (Section 2.1). For
instance, a thread with an ILP of 4 and a basic block size of 16 instructions
could issue all instructions in 4 cycles, while a thread with an ILP of 1 would
need 16 cycles; the former workload requires that branch prediction accuracy
be worse than 95% in order for speculation to hurt performance; the latter (ILP
1) requires that it be lower than 46%.

The four labeled points represent the average basic block sizes and branch
prediction accuracies for SPECINT95, SPECFP95, INT+FP, and Apache on
SMT with ICOUNT. SPECINT95 has a branch prediction accuracy of 88% and
6.6 instructions between branches. According to the graph, such a workload
would need branch prediction accuracy to be worse than 65% for speculation to
be harmful. Likewise, given the same information for SPECFP95 (18.2 instruc-
tions between branches,5 99% prediction accuracy), INT+FP (10.5 instructions
between branches, 90% prediction accuracy) and Apache (4.9 instructions be-
tween branches, 91% prediction accuracy), branch prediction accuracy would
have to be worse than 98%, 88% and 55%, respectively. SPECFP95 comes close
to hitting the crossover point; this is consistent with the relatively smaller
performance gain due to speculation for SPECFP95 that we saw in Section 3.

5Compiler optimization was set to -O5 on Compaq’s F77 compiler, which unrolls loops below a
certain size (100 cycles of estimated execution) by a factor of four or more. SPECFP benchmarks
have large basic blocks due to both unrolling and to large native loops in some programs.
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Similarly, Apache’s large distance from its crossover point coincides with the
large benefit speculation provides.

The data in Figure 6 show that for modern branch prediction hardware, only
workloads with extremely large basic blocks and high ILP benefit from not
speculating. While some scientific programs may have these characteristics,
most integer programs and operating systems do not. Likewise, it is doubtful
that branch prediction hardware (or even static branch prediction strategies)
will exhibit poor enough performance to warrant turning off speculation with
basic block sizes typical of today’s workloads. For example, our simulations
of SPECINT95 with a branch predictor one-sixteenth the size of our baseline
predictor correctly predicts only 70% of branches, but still experiences a 9.5%
speedup over not speculating.

4.2 Examining Hardware Characteristics

We examine three modifications to the SMT hardware that affect how specula-
tion behaves: the number of hardware contexts, the number of functional units,
and the size of the level-one caches. While some of these are aggressive, they
provide insights into design options and trade-offs surrounding the SMT mi-
croarchitecture and illuminate the boundaries of speculation performance. The
more conservative configurations are representative of machines that already
exist, for example, Marr et al. [2002]; Hinton et al. [2001], or might be built in
the near future.

4.2.1 Varying the Number of Hardware Contexts. Increasing the number of
hardware contexts (while maintaining the same number and mix of functional
units and number of issue slots) will increase the number of independent and
nonspeculative instructions, and thus will decrease the likelihood that spec-
ulation will benefit SMT. Conversely, reducing the number of contexts should
increase speculation’s value.

One metric that illustrates the effect of increasing the number of hardware
contexts is the number of cycles between two consecutive fetches from the same
context, or fetch-to-fetch delay. As the fetch-to-fetch delay increases, it becomes
more likely that the branch will resolve before the thread fetches again. This
causes individual threads to speculate less aggressively, and makes specula-
tion less critical to performance. For a superscalar, the fetch-to-fetch delay is
1.4 cycles. For an 8-context SMT with ICOUNT, the fetch-to-fetch delay is 5.0
cycles—3.6 times longer.

We can use fetch-to-fetch delay to explore the effects of varying the number
of contexts in our baseline configuration. With 16 contexts (running two copies
of each of the 8 SPECINT95 programs), the fetch-to-fetch delay rises to 10.0
cycles (3 cycles longer than the branch delay), and the difference between IPC
with and without speculation falls from 24% for 8 contexts to 0% with 16 (see
Figure 7), signaling the point at which speculation should start hurting SMT
performance.

At first glance, 16-context non-speculative SMTs might seem unwise, since
single-threaded performance still depends heavily on speculation. However,
recent chip multi-processor designs, such as Piranha [Barroso et al. 2000], make
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Fig. 7. The relationship between fetch-to-fetch delay and performance improvement due to
speculation.

a persuasive argument that single-threaded performance could be sacrificed in
favor of a simpler, thoughput-oriented design. In this light, a 16-context SMT
might indeed be a reasonable machine to build, despite the complexity of its
dynamic issue logic. Not only would it eliminate the speculative hardware,
but the large number of threads would make it much easier to hide the large
memory latency often associated with server workloads.

Still, forthcoming SMT architectures will most likely have a higher, rather
than a lower, ratio of functional units to hardware contexts than even our
SMT prototype, which has 6 integer units and 8 contexts. For example, the
recently canceled Compaq 21464 [Emer 1999] would have been an 8-wide
machine with only four contexts, suggesting that speculation would provide
much of its performance. Supporting this conclusion, our baseline configura-
tion with four contexts has a fetch-to-fetch delay of 2.5, and speculation doubles
performance.

The data for the 1-, 2-, and 4-context machines also correspond to an 8-
context machine running with fewer than 8 threads. Most workloads, with the
exception of heavily loaded servers, may not be able to keep all 8 contexts
continuously busy. In these cases, fetch-to-fetch delay will decrease as it did for
fewer contexts, and speculation will provide similar benefit.

4.2.2 Functional Units. We also varied the number of integer functional
units between 2 and 10. In each case, one FU can execute synchronization
instructions, while the others can perform loads and stores. All the units execute
normal ALU instructions. The machines are otherwise identical to the baseline
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Table V. Varying the Number of Functional Units

Speculation No Speculation
Benefit Avg.

from Spec. Branch FU
Integer Functional Units Speculation IPC IPC Delay Utilization

2 (1 Load/Store, 1 Synch) 0% 1.9 1.9 21.1 99%
4 (3 Load/Store, 1 Synch) 8% 3.9 3.6 11.7 90%
6 (5 Load/Store, 1 Synch) (baseline) 29% 5.2 4.2 9.4 70%
8 (7 Load/Store, 1 Synch) 22% 5.4 4.4 8.8 55%
10 (9 Load/Store, 1 Synch) 22% 5.4 4.4 8.8 44%

machine. We ran SPECINT95 with each configuration both with and without
speculation.

Table V contains the results. For two functional units speculation has no
effect, because there is more than enough nonspeculative ILP available and the
pipeline is highly congested (the IQ is full between 46% and 65% of cycles and
functional unit utilization is 99%). Benefit from speculation first appears with 4
functional units, as the issue width begins to tax the amount of nonspeculative
ILP available, but the benefit does not increase uniformly with issue width.

As the number of FUs rises there are two competing effects. First, the pro-
cessor needs to fetch more instructions to fill the additional functional units,
making speculation more important. Second, the instruction queue drains more
quickly, causing the average branch delay to decrease (9.4 cycles with 6 FUs,
8.8 with 8 FUs). As a result, threads on the nonspeculating machines spend less
time waiting for branches to resolve and can fetch more often, reducing the cost
of not speculating. The result is that speculation provides a 29% performance
boost with 6 FUs but only 22% with 8 and 10 FUs, although functional unit
utilization is lower (65% with 6 FUs, 55% with 8 FUs, and 44% with 10). As
the number of FUs climbs, the scarcity of available ILP will dominate, because
the average branch delay will approach a minimum value determined by the
pipeline (there are 7 stages between fetch and execute). However, for the range
of values we explore here, there is an interesting trade-off between the cost of
additional functional units and the complexity cost of speculation. For instance,
a nonspeculative machine with 6 functional units outperforms a speculative 4
FU machine by 7% and an 8 FU, nonspeculative machine outperforms the 4 FU
configuration by 12%.

4.2.3 Cache Size. The memory hierarchy is a significant source of the la-
tency that speculation attempts to hide. Therefore, the size of the instruction
and data caches might affect how important speculation is to SMT performance.
To quantify this effect we simulated level-1 data and instruction caches rang-
ing from 16KB to 128KB, with and without speculation. Table VI contains the
results.

The data show that increasing the size of the level-1 caches decreases the ben-
efit from speculation. There are two reasons for this: First, larger data caches
produce less memory latency that needs to be hidden during execution, and
therefore speculation is less necessary for good performance. Second, smaller
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Table VI. The Benefits of Speculation with Varying Instruction and Data Cache Sizes

Cache size Speculative IPC Non-speculative IPC Benefit From Speculation

16KB 4.0 3.2 33%
32KB 4.4 3.4 29%
64KB 4.9 3.8 28%
128KB 5.2 4.2 24%

instruction caches reduce the number of contexts that are eligible to fetch, that
are not waiting on a cache miss, each cycle. (For 128KB caches, an average
of 6.6 contexts are eligible, while for a 16KB cache the number drops to 3.9
contexts.) Frequent instruction cache misses have the same negative effect on
the IQ as restricting speculation: for the speculative configurations, the num-
ber of contexts represented falls from 5.3 with 128KB caches to 4.9 with 16KB
caches.

These results support our conclusion that speculation is desirable in the vast
majority of cases.

5. RELATED WORK

Several researchers have explored issues in branch prediction, confidence es-
timation, and speculation, both on superscalars and multithreaded processors.
Others have studied related topics, such as software speculation and value
prediction.

Wall [1994] examines the relationships between branch prediction and avail-
able parallelism on a superscalar and concludes that good branch predictors can
significantly enhance the amount of parallelism available to the processor. Hily
and Seznec [1996] investigate the effectiveness of various branch predictors un-
der SMT. They determine that both constructive and destructive interference
affect branch prediction accuracy on SMT, but they do not address the issue of
speculation.

Golla and Lin [1998] investigate a notion similar to fetch-to-fetch delay and
its effect on speculation in the context of fine-grained-multithreading architec-
tures. They find that as instruction queues became larger, the probability of a
speculative instruction being on the correct path decreases dramatically. They
solve the problem by fetching from several threads and thereby increasing the
fetch-to-fetch delay. We investigate the notion of fetch-to-fetch delay in the con-
text of SMT and demonstrate that high fetch-to-fetch delays can reduce the
need for speculation.

Jacobson et al. [1996], Grunwald et al. [1998], and Manne et al. [1998] sug-
gest using confidence estimators for a wide variety of applications, including
reducing power consumption and moderating speculation on SMT to increase
performance. Grunwald et al. [1998] provides a detailed analysis of confidence
estimator performance but does not address the loss of performance due to
false negatives. We demonstrate that false negatives are a significant danger
in hard confidence schemes. Both papers restrict their discussion to confidence
estimators that produce strictly high- or low-confidence estimates (by setting
thresholds), and do not consider soft confidence.
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Wallace et al. [1998] uses spare SMT contexts to execute down both possible
paths of a branch. They augment ICOUNT to favor the highest confidence path
as determined by a JRS estimator and only create new speculative threads
for branches on this path. Although they assume that there are one or more
unutilized contexts (while our work focuses on more heavily loaded scenarios),
their work complements our own. Both show that speculation pays off when few
threads are active, either because hardware contexts are available (their work)
or threads are not being fetched (ours). Klauser and Grunwald [1999] demon-
strate a similar technique, but they do not restrict the creation of speculative
threads to the highest confidence path. Instead, they use a confidence estimator
to determine when to create a new speculative thread. Because of this differ-
ence in their design, ICOUNT performs very poorly, while a confidence-based
priority scheme performs much better.

Seng et al. [2000] examine the effects of speculation on power consumption
in SMT. They observe that SMT speculates less deeply past branches, result-
ing in less power being spent on useless instructions. We examine the effect
of hardware configuration on SMT’s speculative performance and behavior in
more detail and demonstrate the connection between fetch policy, the number
of hardware contexts, and how aggressively SMT speculates.

Lo et al. [1997b] investigated the effect of SMT’s architecture on the design
of several compiler optimizations, including software speculation. They found
that software speculation on SMT was useful for loop-based codes, but hurt
performance on non-loop applications.

6. SUMMARY

This paper examined and analyzed the behavior of speculative instructions
on simultaneous multithreaded processors. Using both multiprogrammed and
multithreaded workloads, we showed that:

—speculation is required to achieve maximum performance on an SMT;
—fetch policies and branch confidence estimators that favor nonspeculative

execution succeed only in reducing performance;
—the benefits of correct-path speculative instructions greatly outweigh any

harm caused by hardware resources going to wrong-path speculative
instructions;

—multithreading actually enhances speculation, by reducing the percentage of
speculative instructions on the wrong path.

We also showed that multiple contexts provide a significant advantage for
SMT relative to a superscalar with respect to speculative execution; namely,
by interleaving instructions, multithreading reduces the distance that threads
need to speculate past branches. Overall, SMT derives its benefit from this fine-
grained interleaving of instructions from multiple threads in the IQ. Therefore,
policies that reduce the pool of participating threads (e.g., to favor nonspecu-
lating threads) tend to reduce performance.

These results hold for a broad range of hardware configurations and work-
loads. Only machines with a very high ratio of contexts to issue slots and
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functional units or workloads with very large basic block sizes warranted re-
ducing or eliminating speculation. Our results demonstrate that there are in-
teresting microarchitectural trade-offs between speculation, implementation
complexity, and single-threaded performance that make the decisions of how
and when to speculate on SMT processors more complex than they are on tra-
ditional superscalar processors.

APPENDIX

Tables VII–X contain a summary of data for all the fetch policies we investi-
gated.

Table VII. Summary of SPECINT95 Results for all Speculation Schemes

Fetch IPC Execute IPC
Wrong-path Wrong-path
Instructions Instructions Commit Contexts

Fetch Policy Total (% of total) Total (% of total) IPC in IQ
Baseline 6.2 0.7 (10.9) 5.3 0.09 (1.8) 5.2 5.8
Distance; hard (threshold = 1) 6.2 0.7 (10.9) 5.3 0.08 (1.8) 5.2 5.2
Distance; hard (threshold = 3) 5.8 0.3 (4.8) 5.2 0.06 (1.5) 5.1 4.9
Distance; hard (threshold = 7) 5.4 0.2 (3.5) 5.0 0.04 (0.8) 5.0 4.6
Distance; soft 5.5 0.2 (3.6) 5.1 0.05 (1.0) 4.9 4.5
Favor non-speculating contexts 5.9 0.4 (7.4) 5.2 0.6 (1.2) 5.1 4.9
JRS; hard (threshold = 1) 6.1 0.5 (8.9) 5.3 0.1 (1.6) 5.2 5.2
JRS; hard (threshold = 15) 4.9 0.1 (1.1) 4.7 <0.1 (0.2) 4.6 4.6
JRS; soft 5.6 0.3 (5.1) 5.1 0.1 (1.2) 5.0 4.6
Strong; hard (threshold = 1) 5.3 0.6 (11.4) 4.9 0.2 (3.5) 4.8 4.7
Strong; hard (threshold = 2) 4.3 0.2 (4.0) 3.9 0.5 (12.7) 3.8 4.2
Strong; soft 5.7 0.3 (5.8) 5.1 0.1 (1.3) 5.0 4.7
No speculation 4.5 0.0 (0.0) 4.2 0.0 (0.0) 4.2 3.9

Table VIII. Summary of all Apache Results

Fetch IPC Execute IPC
Wrong-path Wrong-path
Instructions Instructions Commit Contexts

Fetch Policy Total (% of total) Total (% of total) IPC in IQ
Baseline 5.2 0.6 (11.0) 4.6 0.1 (2.0%) 4.5 4.9
Distance; hard (threshold = 1) 5.1 0.5 (10.5) 4.5 0.1 (2.0) 4.4 4.7
Distance; hard (threshold = 3) 5.1 0.5 (10.5) 4.5 0.1 (2.0) 4.4 4.7
Distance; hard (threshold = 7) 5.1 0.5 (10.5) 4.5 0.1 (2.0) 4.4 4.7
Distance; soft 5.0 0.5 (9.7) 4.5 0.1 (1.7) 4.4 4.7
Favor non-speculating contexts 5.1 <0.01 (0.1) 5.1 <0.01 (0) 5.1 7.1
JRS; hard (threshold = 1) 5.1 0.5 (10.7) 4.5 0.1 (2.1) 4.4 4.7
JRS; hard (threshold = 15) 5.1 0.5 (10.7) 4.5 0.1 (2.1) 4.4 4.7
JRS; soft 5.1 0.5 (8.9) 4.5 0.1 (1.6) 4.4 4.7
Strong; hard (threshold = 1) 5.0 0.5 (9.9) 4.5 0.1 (1.8) 4.5 4.8
Strong; hard (threshold = 2) 5.0 0.5 (9.9) 3.3 0.1 (3.0) 3.2 3.7
Strong; soft 4.8 0.4 (8.1) 4.4 0.1 (1.8) 4.3 4.4
No speculation 3.5 0.0 (0.0) 3.4 0.0 (0.0) 3.4 3.5
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Table IX. Summary of all SPECFP Results

Fetch IPC Execute IPC
Wrong-path Wrong-path
Instructions Instructions Commit Contexts

Fetch Policy Total (% of total) Total (% of total) IPC in IQ
Baseline 6.3 0.1 (1.5) 6 0.01 (0.3) 5.9 5.1
Distance; hard (threshold = 1) 6.3 0.06 (1.1) 6.0 0.2 (0.3) 5.9 5.1
Distance; hard (threshold = 3) 6.3 0.06 (1.1) 6.0 0.1 (0.2) 5.9 5.1
Distance; hard (threshold = 7) 6.4 0.06 (1.1) 6.0 0.1 (0.2) 6.0 5.1
Distance; soft 5.8 <0.01 (0.0) 5.5 <0.01 (0.0) 5.5 4.5
Favor non-speculating contexts 5.8 <0.01 (0.0) 5.5 <0.01 (0.0) 5.5 4.5
JRS; hard (threshold = 1) 6.3 0.1 (1.5) 6.0 0.01 (0.3) 6.0 5.1
JRS; hard (threshold = 15) 6.3 0.1 (1.3) 6.0 0.01 (0.3) 6.0 5.1
JRS; soft 5.8 <0.01 (0.0) 5.5 <0.01 (0.0) 5.5 4.5
Strong; hard (threshold = 1) 6.3 0.05 (0.8) 6.0 <0.01 (0.1) 6.0 5.1
Strong; hard (threshold = 2) 5.1 0.3 (0.6) 5.8 <0.01 (0.2) 5.8 4.9
Strong; soft 5.8 <0.01 (0.0) 5.5 <0.01 (0.0) 5.5 4.5
No speculation 5.8 .00 (0.0) 5.5 0.0 (0.0) 5.5 4.5

Table X. Summary of all INT+FP Results

Fetch IPC Execute IPC
Wrong-path Wrong-path
Instructions Instructions Commit Contexts

Fetch Policy Total (% of total) Total (% of total) IPC in IQ
Baseline 6.7 0.3 (5.0) 6.0 0.05 (0.8) 6.0 4.8
Distance; hard (threshold = 1) 6.6 0.2 (2.8) 6.0 0.03 (0.5) 6.0 4.8
Distance; hard (threshold = 3) 6.4 0.1 (1.4) 5.9 0.02 (0.3) 6.0 4.6
Distance; hard (threshold = 7) 5.9 0.02 (0.3) 5.5 <0.01 (0.1) 5.9 4.2
Distance; soft 5.9 0.01 (0.1) 5.5 <0.01 (0.0) 5.5 4.2
Favor non-speculating contexts 5.9 0.02 (0.3) 5.5 <0.01 (0.0) 5.5 4.2
JRS; hard (threshold = 1) 6.7 0.3 (3.9) 6.0 0.04 (0.7) 6.0 4.8
JRS; hard (threshold = 15) 6.3 0.08 (1.3) 5.8 0.02 (0.0) 5.8 4.5
JRS; soft 5.9 0.01 (0.2) 5.5 <0.01 (0.0) 5.5 4.2
Strong; hard (threshold = 1) 5.9 0.01 (0.2) 5.6 <0.01 (0.0) 5.5 4.4
Strong; hard (threshold = 2) 6.3 0.1 (1.6) 5.7 0.02 (0.3) 5.8 4.5
Strong; soft 6.3 0.1 (1.6) 5.8 0.02 (0.3) 5.5 4.5
No speculation 5.8 0.0 (0.0) 5.5 0.0 (0.0) 5.5 4.2
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