
CQSTR: Securing Cross-Tenant Applications
with Cloud Containers

Yan Zhai
University of Wisconsin Madison

yanzhai@cs.wisc.edu

Lichao Yin
Google, Inc.

lichaoy@google.com

Jeffrey Chase
Duke University

chase@cs.duke.edu

Thomas Ristenpart
Cornell Tech

ristenpart@cornell.edu

Michael Swift
University of Wisconsin Madison

swift@cs.wisc.edu

Abstract
Cloud providers are in a position to greatly improve the trust
clients have in network services: IaaS platforms can iso-
late services so they cannot leak data, and can help verify
that they are securely deployed. We describe a new system
called CQSTR that allows clients to verify a service’s se-
curity properties. CQSTR provides a new cloud container
abstraction similar to Linux containers but for VM clusters
within IaaS clouds. Cloud containers enforce constraints on
what software can run, and control where and how much
data can be communicated across service boundaries. With
CQSTR, IaaS providers can make assertions about the secu-
rity properties of a service running in the cloud.

We investigate implementations of CQSTR on both Ama-
zon AWS and OpenStack. With AWS, we build on virtual
private clouds to limit network access and on authorization
mechanisms to limit storage access. However, with AWS
certain security properties can be checked only by mon-
itoring audit logs for violations after the fact. We modi-
fied OpenStack to implement the full CQSTR model with
only modest code changes. We show how to use CQSTR to
build more secure deployments of the data analytics frame-
works PredictionIO, PacketPig, and SpamAssassin. In ex-
periments on CloudLab we found that the performance im-
pact of CQSTR on applications is near zero.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4525-5/16/10. . . $15.00.
DOI: http://dx.doi.org/10.1145/2987550.2987558

* Categories and Subject Descriptors: D.4.6 [Operating
System]: Security and Protection—Access Control
* General Terms: Design, Security
* Keywords: attestation, cloud containers

1. Introduction

An increasing fraction of computing services run on man-
aged infrastructure-as-a-service (IaaS) systems such as Ama-
zon AWS, Google GCE, or Microsoft Azure [36, 56].
They form an ecosystem of inter-connected tenant services
run on a common virtualized platform, sometimes shar-
ing data [33]. Despite a common underlying platform, safe
cross-tenant sharing generally requires blind trust: clients
with sensitive data must trust their partners to protect it.

Consider a motivating example from outsourced analyt-
ics: a mail provider contracts out spam filtering to a third-
party service. The mail provider would like some confidence
that its private email will not be released or abused. More
generally, any client may want specific assurance that a ser-
vice it uses is configured to protect its data.

We argue that cross-tenant security attestations about the
security properties of service deployments are critical ele-
ments to build this trust. Attesting to the properties of a sin-
gle program, VM instance, or physical machine is not suffi-
cient for modern cloud-based services; vulnerability in any
component of a service can compromise security of the en-
tire service. Rather, customers must be able to check the se-
curity properties of a distributed service as a whole.

We make three observations about IaaS platforms:
(1) Cloud providers already serve as a root of trust for

their tenants, as they provide trusted services such as
authentication and access control.

(2) A provider’s software can attest to a wide array of
security properties of their tenants from information
already available to the platform.

(3) IaaS platforms are managed by a single entity and pro-
vide a trusted communication and distribution infras-
tructure.

Thus, IaaS cloud platforms already provide most of what
is needed to enable safe cross-tenant sharing. In this work
we explore how to take advantage of this potential. We pro-
pose an extended IaaS-layer framework—called CQSTR1—
for managing contained execution, in which a group of
tenant instances (VMs) have their external connectivity re-
stricted according to a declared policy as a defense against
information leakage.

CQSTR introduces a new cloud container abstraction,
which extends the notion of a container on a local operating
system [7] to cloud-scale applications consisting of many
VM instances and other resources. A cloud container spec-
ifies immutable confinement properties that limit network
and storage access for computations in the container. In ad-
dition, the policy may specify a set of images that are allow-
able to boot VM instances into the cloud container. The IaaS
provider issues attestations of these properties to clients of
the service. For example, CQSTR can attest that a service
runs from known disk images containing a locked-down op-
erating system and a trusted application framework, and that
network access is limited.

Cloud containers provide a data owner with a verifiable
set of controls over outsourced private data. A client can ver-
ify that a service meets the its required security policies to
protect data from leakage and misuse. Security policy is de-
signed and specified separately from the application and is
enforced by the IaaS platform, which allows CQSTR to run
existing operating systems and applications without modi-
fication. Further, CQSTR provides a foundation for more
flexible control based on security mechanisms in the attested
VM images, such as privilege separation, least privilege or
defense-in-depth policies.

To explore how existing IaaS APIs support secure cross-
tenant sharing, we implemented CQSTR abstractions as
a layer above AWS. The implementation builds on the
rich support in AWS for role-based access controls [15],
fine-grained control over the network with Virtual Private
Clouds [20], and security logging. However, due to various
limitations (see Section 4), we cannot use AWS authoriza-
tion mechanisms alone to control all output paths available
to a service on the AWS platform at this time. As a result,
our AWS-based implementation enforces compliance with
a cloud container specification by monitoring audit logs to
detect violations after the fact.

To provide stronger assurances, we separately imple-
mented CQSTR as an extension to OpenStack. We made
modest changes to the OpenStack platform to add new func-

1 Read as sequester: verb, meaning “to isolate or hide away”.

tions missing from existing IaaS platforms, including the
ability to freeze container configurations, enforce access
control based on container security properties, and prevent
extraction of data from a closed container by abuse of IaaS-
level management services such as backups [18] and log
monitoring [17]. We believe that these extensions are practi-
cal for broader adoption.

We exercise CQSTR on OpenStack with outsourced an-
alytics scenarios using SpamAssassin, PacketPig, and Pre-
dictionIO. No changes to the application source code are
needed, although we did write small proxy services to en-
force additional access controls. Our performance measure-
ments show that CQSTR has essentially zero overhead in
these data analytics scenarios.

2. Background and Challenges
Our work focuses on infrastructure-as-a-service (IaaS) clouds
that provide customers with virtual machine instances and
other resources. Customers specify a disk image stored in
the cloud, and the IaaS cloud provider selects a physical ma-
chine and boots a virtual machine from the chosen image.
IaaS systems also provide customers with virtual disks, blob
storage and other services whose use are mediated by the
cloud provider.

Cloud applications are increasingly constructed as a mix
of IaaS-provided services and third-party services provided
by other tenants running on the same IaaS platform. The goal
of our work is to improve trust between components of such
systems. To set context, we outline an exemplary scenario
for which current solutions prove unsatisfactory.
An example problem: secure data analytics. Suppose a
cloud tenant Alice has shopping-cart data, and would like to
use an analytics service run by another cloud tenant Bob to
make shopping recommendations from the data. However,
the data has competitive value, so she would like to make
sure that Bob cannot use the data for anything but generating
recommendations.

The ideal workflow for this scenario would be:
(1) Alice pushes her data to Bob’s service every day.
(2) Bob’s service trains a prediction model based on the

data each day, which might require tens or even hun-
dreds of VM instances.

(3) The prediction service deploys the model to a web ser-
vice, to which Alice submits requests for shopping pre-
dictions. The web service may itself consist of many
instances and tiers.

Alice’s security requirement is that her history data and
queries for prediction are kept secret from Bob and any
third parties. Bob may have proprietary algorithms running
in his service, and will not expose his code to Alice, so Alice
cannot run the prediction service herself.

Note that the scenario above arises in practice already:
companies like Google, Amazon, and BigML offer such
machine-learning services and in many cases keep their al-

gorithms secret [19, 35]. This example represents a clien-
t/server setting, for which containment is sufficient: Alice,
the client, provides data to Bob’s contained computation ser-
vice, and the output is delivered only to Alice. In a delegated
setting, the output of the service may instead go to Bob or
an unrelated third party; in essence Alice delegates control
over the data to the service, so some trust in the service code
is required. For example, a hospital may allow researchers
to use the results of a data analysis. Beyond machine learn-
ing, many other applications fall into this setting of cross-
tenant sharing between a data provider (Alice) and a com-
pute provider (Bob). More examples are in Section 6.

These scenarios all prompt the key question faced in our
work: How can a trusted IaaS provider safely assure Alice
of Bob’s secure handling of her data?
On using existing IaaS features. Leading IaaS clouds
such as Amazon Web Services (AWS) are feature-rich, and
one might expect that such cross-tenant sharing scenar-
ios can be handled with existing functionality. In particu-
lar, AWS offers virtual private clouds (VPCs) [20], which
support a logically isolated network for a set of instances,
and AWS Identity and Access Management (IAM) provides
role-based access control over data and services. Bob could
launch his service within a VPC, and Alice could grant Bob
via IAM the permission to fetch her customer data (e.g.,
from an S3 bucket) after checking the service properties for
compliance with her policy.

However, there is no agreed-upon mechanism in current
IaaS clouds for services to expose security information to
clients. And, there are numerous individual services that
must be separately managed to ensure security. Section 4
discusses the challenges of implementing cloud containers
on AWS, and Section 8 discusses other approaches, such
as cryptographic multiparty computation, information flow
control, or trusted hardware.
Threat model. We view the IaaS provider as trusted, a rea-
sonable presumption for users of cloud systems today. We
therefore consider threats such as insider attacks by IaaS em-
ployees, cross-VM isolation boundary violations [39, 45, 55,
57, 60], or compromise of the IaaS control plane (e.g., ex-
ploits against hypervisors) to be out of scope. These threats
are important, but are not addressed by CQSTR.

Instead, we focus primarily on threats arising in applica-
tions running on top of the IaaS platform. We consider for
simplicity settings with two tenants, e.g., Alice and Bob in
our example above. We consider situations in which either
Alice or Bob behaves maliciously, because of (accidental)
misconfigurations or insider attacks, e.g., by application de-
velopers. We also consider remote attackers: one goal is to
attest to Alice that Bob is using best practices for defense.

3. CQSTR Abstractions
Our central hypothesis is that carefully chosen, but relatively
modest, extensions to IaaS platforms can provide a founda-

Figure 1. The logical view of CQSTR. (1) Alice places data
in bucket, and (2) publishes location of data and security properties
required for access. (3) Bob retrieves information, and (4) launches
service in cloud container with required restrictions. Service (5)
fetches data, (6) computes over it, and (7) publishes results to
allowed output server.
tion for constructing trustworthy cloud-hosted services. To
this end, we describe the design of CQSTR, which extends
IaaS cloud management platforms to enable tenants to share
data safely and assert more control over use of their data.
Overview. CQSTR comprises three central elements:
(1) Cloud containers are groupings of VM instances and

are the units of security policy management.
(2) State assertions are authenticated statements from the

cloud provider about the security properties of a ser-
vice’s container.

(3) API restrictions ensure that IaaS management APIs
cannot be abused to violate containment policies.

Cloud containers group the VM instances and related re-
sources comprising a service and allow attesting to their se-
curity properties collectively. State assertions provide clients
a mechanism to verify the configuration of a service, such as
the isolation policies of its container or the set of VM im-
ages used to boot instances in the service (i.e., a form of
remote attestation). Finally, API restrictions limit the use of
provider APIs that might compromise a container’s asserted
security properties. CQSTR leverages the IaaS provider’s
trusted network for secure cross-tenant communication; IaaS
providers already control their networks to prevent spoofing
and snooping by their tenants [14].

In client/server settings, the service is launched into a
cloud container. A client consumes state assertions to ver-
ify that the container’s security properties meet its policy re-
quirements for protection against data leakage. In delegated
settings, the client can pass the service provider a descrip-
tion of the required security properties, and then verify that
the service meets those properties before handing it data. A
data owner can also place security conditions on stored data
(e.g., storage buckets or objects) to limit access to only those
containers whose security properties comply with the condi-
tions. Figure 1 illustrates the use of the system.
3.1 Cloud Containers
The key new abstraction provided by CQSTR is the cloud
container, which is a set of VM instances sharing access to

a private network and cloud resources, with a common set
of networking, storage, and boot image restrictions. Thus,
a cloud container logically extends operating system con-
tainers (e.g., Linux containers [8]) to a cluster. Abstractly, a
container is described with a manifest that specifies a set of
security properties detailing explicitly what instances in the
container can do; anything not listed is prevented. Launch-
ing an instance into a cloud container restricts what code it
can run (described below), to whom it can communicate, and
where it can store and retrieve data.

Cloud containers build on existing virtual private network
functionality already available on AWS/EC2 and OpenStack
to limit the set of reachable hosts and to enforce firewall
rules. A cloud container policy may also enforce traffic con-
trols, such as limiting the ingress or egress bandwidth of a
container, and the total amount of data that can be trans-
ferred.

A service may consist of one or more cloud containers.
When a service has multiple instance types internally, such
as master and worker in Hadoop, cloud containers can fur-
ther secure a system by placing each class of VM in a sepa-
rate cloud container that has its own set of boot images and
accessible network/storage. We term this a cloud container
group.
Storage containment. Storage protection is enforced by
extending the mechanisms to control the resources accessi-
ble to a cloud container with existing IaaS services. In addi-
tion to access control lists on storage objects, CQSTR adds
sets of reachable objects to a cloud container description,
providing complete control over the storage and other ob-
jects accessible to a service. CQSTR allows controlling both
access to existing storage objects as well as what new stor-
age objects, such as disk images or blob storage buckets, can
be created from a container.
Trusted images. In delegated scenarios, a client may re-
quire trust in the code executing in the service before releas-
ing information to it. For example, a hospital may require
that a data-mining service uses a known and endorsed soft-
ware image that enforces an information disclosure policy.
A container manifest can therefore specify a set of trusted
images eligible to run in the container. In this scenario, the
client must trust the container’s images to behave correctly,
either through direct knowledge or endorsement by a trusted
third party. All other images are prevented from being used
to boot VMs within the container.
Cloud container API. A cloud container is created with
a manifest (see Figure 2 for an example) that specifies the
security properties of the container, or by creating a default
container and explicitly setting the properties. CQSTR pro-
vides APIs to create, read, update, and delete cloud contain-
ers. Once created, the owner of the container can launch VM
instances into the container from trusted images. However,
once an instance has been launched into a container, the con-

tainer properties are frozen, meaning they can no longer be
modified and clients are assured they will remain in force.
3.2 State Assertions
A client of a service using CQSTR can make access control
or usage decisions based on the security properties of the
service’s cloud container. There are two mechanisms for
verifying assertions over a cloud container’s state. First, a
client can directly query the provider for assertions about
a service, such as how the network is configured or what
storage objects are accessible. Second, a client can place
access control lists on storage objects that specify the desired
properties of services accessing those objects. We describe
in Sections 4 and 5 how to do this with small extensions to
existing IaaS capabilities.

Properties covered by state assertions are subject to two
conditions. First, a property must be knowable to the IaaS
provider: it is easily observed by the cloud management
plane. For example, CQSTR cannot assert properties that
would require introspection within VM images or inspection
of network traffic data contents. Second, the property must
be stable, meaning that once it is true it remains true. As an
example, “has an instance stored more than 1 MB of data?”
is a stable property, whereas the amount of data stored is
not stable, as it changes whenever an instance writes more
data. The reason for targeting stable properties is to avoid
TOCTOU bugs [28] and for efficiency: clients can cache the
results of most assertions.
Immutable configurations. Many useful properties al-
ready satisfy both conditions. One is “what image did an
instance boot from?” The provider knows this easily, since
the image was specified in the request to the provider, and it
is stable. But other useful security properties are not stable.
In AWS and OpenStack, configuration properties of an in-
stance, such as the network security group, can be modified
by the owner at any time. If a data owner granted access
based on one configuration (e.g., when the security settings
were compliant) but the configuration changed later (on pur-
pose or accidentally), then data could be released.

CQSTR addresses this concern by restricting the set of
management operations allowable on cloud containers once
they are frozen. Specifically, operations cannot change the
outcome of any state assertion. For example, an owner can-
not reconfigure the network to allow more access, or add
more trusted images. We call the properties of a cloud con-
tainer an immutable configuration.
Manifest templates. It may be expensive to check that
the manifest for a container meets all required restrictions.
CQSTR therefore supports manifest templates, which are pa-
rameterized manifests. A tenant specifies the template and its
parameters when launching an instance. For example, a com-
mon policy is to allow network traffic from a single client to
a single port; the manifest template specifies complete isola-
tion of network and storage except for this one port, with the
client’s IP address as the port parameter.

network:
 container: container2,
 direction: ingress,
 protocol: tcp,
 local_port: 8080
traffic:
 container: container2,
 out_quota: 100MB,
 bandwidth: 100KB/sec
volume:
 ro: public,
 rw: container
objectstore:
 bucket_name: dataprovider.hadoop
 visibility: public,
 write_quota: 100KB
images:
 hadoop_master, hadoop_slave

Figure 2. Sample manifest allowing container2 to receive
TCP packets on port 8080 with a download limit and band-
width cap, use two images, access public volumes read-
only, and write only to specified private volumes, with up
to 100KB writes to a specified public object store bucket.

To check that a cloud container complies with a given
parameterized template, a client first checks that the tem-
plate matches the expected template, and that the parameter
matches the expected parameter; this is much simpler than
checking that an arbitrary manifest enforces a superset of re-
quired restrictions.

3.3 API Restrictions

The final element of CQSTR is a set of restrictions on the
allowed management operations. As noted above, some op-
erations are prohibited to ensure that configurations are im-
mutable. In addition, IaaS APIs may leak information from
a running instance, or to modify its behavior. API restric-
tions on a cloud container prohibit use of APIs that violate
containment, such as creating a VPN tunnel or, more insidi-
ously, writing to a log monitored by the IaaS provider, such
as Amazon’s CloudWatch service [17]: log entries could ex-
pose private data outside the cloud container.

API restrictions limit what the owner of a container can
do. Any action that copies or transfers storage must apply
the same controls on the data after copy or transfer. Thus,
snapshots are given the same ACL as the source virtual
disk. This also applies to booting a VM instance: an image
generated within a cloud container cannot be used to boot
instances outside the container.

These restrictions cannot fully prevent covert channels.
For example, a service could intentionally vary its resource
usage to encode information through fine-grained billing
statements, or through monitoring APIs like AWS Cloud-
Trail that record every provider API call [16]. In our imple-
mentation we strive to limit high-bandwidth covert channels.

3.4 Security Analysis

We briefly discuss some of the security benefits of CQSTR.
We assume that an attacker cannot subvert the cloud provider’s

code, and hence cannot subvert network and storage restric-
tions. In addition, an attacker cannot spoof packets within
the cloud network. We address three threat cases: malicious
computation owners, malicious code, and remote attackers.
Malicious owners. A service owner may attempt to force
trusted code to leak data. This can be done by SSH’ing into
the VM, inspecting system logs, or using cloud APIs. Here,
firewall rules can restrict the ability of the owner to access in-
stances within the cloud container, and API restrictions pre-
vent bulk channels such as logs or volume snapshots. Finally,
a client may choose to trust only images with locked-down
configurations that prohibit remote console access, or im-
ages endorsed by trusted third parties.
Malicious code. The worst case of attack is when VM in-
stances run malicious code. Here, cloud containers can pre-
vent leaking through explicit network and storage channels,
but cannot prevent all covert channels through the IaaS API,
as in the billing and logging examples.

In a client/server setting, output is accessible only to
the client. In a delegated setting, though, output may go
elsewhere. For service-generated data, such as the program
output, logging, or performance metrics, traffic control on
cloud containers mitigates the risk by limiting the output size
and bandwidth. We show in Section 6 how an application-
specific proxy can be used to further check or sanitize output.
Remote attackers. For third-party attackers, the primary
defense is the network isolation and firewall rules. These net-
work defenses can largely prohibit public access to instances
within a cloud container.

4. Implementing Cloud Containers on AWS
To explore the potential for secure cross-tenant sharing with
current IaaS cloud APIs, we implemented elements of the
cloud container abstraction as a library above Amazon AWS.
AWS provides key building blocks for the cloud container
abstraction. Tenants may group instances in a virtual private
cloud (VPC), and use VPC primitives to restrict network
connectivity and access to some types of storage objects
(e.g., S3 buckets). Role-based access control (through AWS
IAM) can also limit access to storage objects. However,
AWS only provides partial support to control access to all
resources from a VPC, and it cannot freeze a VPC to prevent
configuration changes. For these reasons, the AWS cloud
container library uses auditing of VPC configurations and
data access.

The audit-based implementation for AWS monitors com-
pliance with a declarative policy description for a cloud con-
tainer. It serves as a case study of how to use AWS secu-
rity mechanisms for cross-tenant cooperation. However, the
reliance on auditing security logs necessarily implies that
the library cannot prevent non-compliant operations, but can
only detect abuses afterwards. In addition, the library has
shortcomings stemming from the limited control over log-
ging granularity in today’s AWS API. Most significantly, the

logs reveal unrelated information about the service owner’s
account to the client, and collusion with a third account can
open hidden channels for data leakage, as described below.
4.1 Implementing Containers over AWS
VPCs form the basis of a cloud container implementation
on AWS: CQSTR launches the instances comprising a con-
tainer within a VPC, which controls network reachability
and firewall rules. AWS does not yet support traffic shaping,
so there are no bandwidth limits or traffic caps.

To restrict access to storage, the VPC specifies in advance
any S3 buckets that the VPC writes to, so a client can check
compliance with its policy. The service owner configures
a VPC endpoint [23] that specifies a set of pre-existing S3
buckets accessible from the VPC; the endpoint denies write
access to all other S3 buckets. Contained services cannot
create new buckets.

When a client wants to grant a service access to its stored
data, additional VPC setup steps are necessary. The service
owner creates a VPC, and passes its ID to the client. The
client creates a new role with access to its data, restricts the
role for use only by the VPC, grants the service owner access
to the role, and passes the role’s name (ARN) to the service
owner. The service owner can then configure instances to
assume the role when accessing the data.

For other storage resources, such as EBS volumes or mes-
sage queues, AWS does not provide mechanisms to restrict
a VPC to access only a predefined set of objects: instances
within the VPC can reach a resource if any party grants the
VPC access to the resource. Restricting destination IP ad-
dresses is not enough, as AWS services may share a front-
end server. As we discuss below, CQSTR uses auditing to
verify that all resource accesses from the VPC are compliant
with the policy. Similarly, AWS does not have a mechanism
to limit the set of images bootable within a VPC, so CQSTR
checks audit logs to verify that all instances in a VPC were
booted with compliant images.
State Assertions. A client-side library checks compliance
with security properties using two mechanisms. First, the
client can contact the config service [22] to determine the
properties of a VPC and its service; the service owner must
grant clients access for this. In advance of contacting a
service, clients query the configuration service for relevant
security properties and verify that they meet requirements
(e.g., restricted networking).

Clients must also verify that instances within the VPC
do not transmit data to unapproved objects, such as EBS
volumes or SQS message queues. However, the config ser-
vice does not provide configurations of all objects, such as
volume snapshots, S3 buckets, and SQS queues. Therefore,
clients must retrieve audit logs for these resources to verify
that past operations did not violate container security poli-
cies.
API restrictions. Cloud containers require immutable se-
curity properties that prevent TOCTOU races. However,

AWS does not provide mechanisms to prevent management
operations from changing the configuration of a VPC. Thus,
it is not possible to freeze a configuration to make its prop-
erties immutable. As with storage access and attestations
above, CQSTR on AWS relies on auditing as a substitute for
the freeze operation: clients of a service must use the library
to scan audit logs both before and after using the service to
verify that the configuration never violated the client’s de-
sired policy. For example, the client must verify that VPC
configurations do not change.

4.2 Checking Audit Logs

AWS provides powerful features for auditing VPCs and their
configurations. The CloudTrail security event service [16]
can log operations within a tenant account on an ongoing
basis. We observed that the latency between an event and
a record showing up in CloudTrail was about 5 minutes.
While we were writing this paper, Amazon updated Cloud-
Watch [17] with sufficient functionality to implement audit-
ing at lower latency. As CloudWatch audits are functionally
equivalent to CloudTrail, we describe our implementation in
terms of CloudTrail.

We found that even when complete audit records are
available for AWS objects, such as VPCs, the security logs
do not always have complete information. For example,
some objects have default settings that are not provided in
CloudTrail logs, such as routing tables for VPCs. In these
cases, we augmented log processing with calls to the AWS
configuration service and use configuration histories to re-
trieve the complete settings.

Our audit log processing tool is about 700 lines of Python
code and monitors 24 types of AWS objects.
Auditing handshake. Normally, audit logs are available to
the account running a service. To allow clients of a service
to check compliance with CQSTR security properties, the
clients must be able to access the logs. Setting up a moni-
tored cross-tenant VPC takes a number of steps, as, the ser-
vice owner must make log events accessible to clients. The
client creates a log bucket, creates a role, grants the role ac-
cess to the log bucket, and grants the service owner’s account
access to the role. To make the log tamper-evident, the client
creates an SSE-KMS key and grants the service owner’s ac-
count permission to encrypt CloudTrail logs with the key. It
passes the names (ARNs) of the bucket, role, and key to the
service owner. The service owner enables CloudTrail log-
ging on its account using the received ARNs.
Limitations of AWS auditing. We found that the AWS
support for security logging is not well-matched to the needs
of secure cross-tenant sharing. Generally, CloudTrail log-
ging is designed to enable an account owner to monitor oper-
ations taken by identities associated with the account, rather
than all operations associated with a given group of instances
(e.g., a VPC). While a VPC is bound to account, its instances
can issue operations under roles from a different account.

Operations issued under a role are logged to the role owner
and not the VPC owner. If the service uses a role from a third
account other than the client or service owner, the audit logs
go to that third account and are not visible to the client.

CloudTrail logs also compromise privacy when used for
cross-tenant monitoring. The security log includes all events
in the service owner’s account, and not just the events per-
taining to a particular VPC of interest. If the service owner
regards its logs to be confidential, then this confidentiality
is violated. CloudWatch events can, in theory, filter out un-
related events involving non-target VPCs. However, in our
experiments we found that filters must be updated when ob-
jects are created or deleted. In an asynchronous setting such
as AWS, this can lead to lost audit records. Moreover, with
multiple clients, events from one client are exposed to all
others. One alternative is to use a third-party trusted audi-
tor to check a service’s compliance with the policies of its
clients; ideally the IaaS provider would play this role. Fur-
thermore, audit logs are a high-bandwidth covert channel
and can allow a service to export sensitive data out of the
VPC.

These limitations could be resolved by providing auditing
on the granularity of an instance or VPC, rather than per
account. In any case, the integrity of the auditing approach
depends on comprehensive logging and monitoring of all
data channels out of a VPC. As the default it so allow access
to unaudited resources, security depends on extending the
audit tool for each new resource introduced by AWS.

More generally, we conclude that adequate control of
cross-tenant sharing requires specific support within the
cloud provider API. Furthermore, it requires continued log-
ging after using a service to ensure there are not data subse-
quent breaches. While security logging and auditing can be
a basis for secure cross-tenant sharing, our premise is that
an authorization model is a stronger basis for secure shar-
ing. We therefore turn to an implementation of CQSTR on
OpenStack.

5. Implementing CQSTR on OpenStack
We implemented CQSTR as an extension to OpenStack. Un-
like the auditing based approach that is possible with current
IaaS APIs, our OpenStack CQSTR implementation provides
immutable cloud containers that allow only those resource
accesses that are enumerated explicitly as compliant with a
policy. This provides stronger guarantees.

We implemented CQSTR as an extension to OpenStack
Kilo (2015.1) [9]. In total, we added 15 new files with 3,096
lines of code and modified 2,386 lines of code across 52
files. For comparison, the original components we modify
comprise 455,247 lines of Python code. The added API
restrictions comprise less than 500 lines.
OpenStack overview. OpenStack provides a complete set
of software to implement a public or private cloud. It is
widely used both within enterprises and as the basis for

Components Functionality Modification
Nova Compute Service Container manager,

metadata service and
API Restrictions

KeyStone Authentication
Service

Attestation-based access
control

Neutron Network Service Network reachability
and traffic control

Swift Object Storage Storage containment
Cinder Volume Storage Storage containment

Table 1. Modified OpenStack components.

several public clouds including Rackspace and DreamHost.
Table 1 describes the key components we modify.

Recent versions of OpenStack provide a trusted comput-
ing pool built on TPMs and an attestation server [10]. The
server verifies measurements made by the TPMs, and allows
clients to query the attestations for specific machines. This
provides assurance about the code booted on a single ma-
chine, but not about the network configuration or use of man-
agement APIs. Furthermore, the goal of trusted computing
pools is to verify trust in the hypervisor, which is comple-
mentary to our focus.

Our implementation comprises several components:
• Container Manager: stores container information and

implements container APIs.
• Network Agent: enforces network control in Neutron.
• Storage Agent: isolates object namespace on Swift.
• Metadata Service: provide state assertions on Nova.

The crux of our implementation is to show how small mod-
ifications and extensions to existing services can provide a
much richer security platform.

5.1 Containers and Their Management

CQSTR implements the container manager as an extension
to the Nova compute service. All container and container
group management APIs (Create, Read, Update, Delete)
are provided as HTTP-based Nova APIs. Currently we re-
quire that a container be a member of exactly one container
group. Containers are mutable until the first instance is
launched into it; at that point they are frozen and become
immutable. CQSTR supports dynamically adding and re-
moving resources to/from a container, which can be impor-
tant for allowing the container to scale with the computation
dynamically.

For debugging purposes, CQSTR also provides a de-
bug mode that allows configuration changes after instance
launch. This allows an owner to extract debug logs or adjust
security properties while instances are running. We found
this to be critical when setting up containers. Debug mode
can only be enabled before a container is frozen, though,
and prevents the use of state assertions. When a container
is frozen, running instances are terminated, as their con-
figurations may have changed. Instances can then be (re-
)launched.

Network isolation is built on OpenStack’s tenant network.
Each container group is put in a shared layer-2 network,
and cloud containers have their own subnets. All these net-
works are fully managed by IaaS infrastructure, and cannot
be modified administratively. We built traffic control in Neu-
tron’s gateway to limit the aggregate bytes transferred using
IPTable’s quota module. We have not yet implemented band-
width limits.

CQSTR provides containers with private volume storage
using Cinder. Volumes that are used inside a cloud container
are marked as container-local unless they are explicitly al-
lowed to escape as listed in the manifest. Local volumes and
their copies/snapshots cannot be used outside the container.

The Swift object store lacks a few features of AWS S3,
such as VPC endpoints to restrict the set of accessible buck-
ets. To control storage access, we built a storage agent inside
the Swift server that implements a private namespace for
cloud containers. Object accesses are directed to this names-
pace unless the bucket name is explicitly listed on the con-
tainer manifest. The namespace is derived from the tenant
account ID and the container ID. This design allows contain-
ers in a container group to share objects through Swift with-
out exposing them outside the container. We use this feature
in Prediction IO (see Section 6).

5.2 Attestation-based Access Control on Sharing

We extend the OpenStack Metadata Service to provide state
assertions about cloud containers. A tenant using a cloud
container can explicitly grant access to designated services
for specific metadata properties. A client can contact the
metadata service with a container ID or its IP address for
state assertions about a service before using it.

CQSTR also introduces attestation-based access control,
which allows embedding state assertions on resources such
as Swift buckets: only services meeting required assertions
can access the resource. Here, the resource owner (e.g.,
client of a service) creates a role, grants it the desired ac-
cess, and specifies the required state assertions, which can be
either a container ID or a manifest template and parameter.
Upon receiving a request, the resource server (e.g., Swift)
consults the metadata service for the information about both
the requesting instance and its cloud container. Only if the
requester meets the security requirements is access granted.
We modified OpenStack to support dynamic creation and
sharing of such roles (similar to what AWS’s IAM mecha-
nism already provides).

These requests to the metadata service for state asser-
tions provide an IP address for the service. As IaaS net-
works prevent spoofing, the IP address identifies the client
of a resource server. To ensure uniqueness, requests to a re-
source server must use a globally unique IP address. These
addresses can float between instances, so CQSTR imposes
a configurable waiting period on reusing these addresses so
that assertions can be cached.

A tenant can implement their own storage service that
uses CQSTR services. We implemented a library for external
services to request and verify container manifests, so that
any tenant-implemented service can enforce the same types
of policies as platform services.

5.3 API Restrictions

We implement API restrictions by adding hooks in exist-
ing OpenStack services to change behavior when cloud con-
tainers are in use. We modified storage APIs to implement
mandatory access controls (i.e., private volumes or storage
objects cannot be made public) by setting initial ACLs on
objects or volumes created by a container to prevent access
from outside the container. OpenStack allows configuring a
VPN with an “allowed address pair” that bypasses network
security, so we disable the APIs for that feature on instances
in cloud containers.

We also patched many management APIs to prevent side
channels. As an example, we prevent snapshots on instances
in containers, prevent moving IP addresses between in-
stances, and prohibit most calls to management APIs from
within a container. We strove to limit covert channels that
would enable malicious instances within a container to vio-
late bandwidth limitations. A few such covert channels still
exist, such as the previously mentioned billing example.

6. Application Case Studies
We have applied CQSTR to three real applications: SpamAs-
sassin [13], a spam filter service; PacketPig [11], a network
trace analyzer; and PredictionIO [12], a machine learning
service. For each application, we describe how we configure
the container to maximally restrict the service from releas-
ing data. In this section, an operator is the one who sets up
the target containers, and a client is the one who receives the
output data from the service. Note that a client may or may
not be the data owner, and a client can also be an operator in
some application scenarios.

6.1 Basic Pattern

The basic pattern for deploying a service with CQSTR is to
identify the inputs, outputs, and storage requirements, and
instantiate a cloud container that restricts networking and
storage to just what is required. Two of the applications we
investigated follow a simple pattern we call “single output,
local storage,” meaning that they produce output to a single
endpoint, and require local storage for intermediate results.
The manifest template for this pattern is shown Figure 3.
Note in this context, the word “public” means external to
the container, rather than public to the world.

This template enables the service to receive connections
by network hosts parameter1 on TCP port parameter2,
which can be another container or a specific address, and to
read and write private local storage and read public read-
only data from outside the container. This template does
not restrict which images can be used to boot instances: the

network:
 public: <parameter1>,
 direction: ingress,
 protocol: tcp,
 local_port: <parameter2>

volume:
 ro: public,
 rw: container

objectstore:
 default: local

image:
 any

Figure 3. Basic Container Pattern

output and input are the same endpoint, so there is no need to
trust the service to make delegated access control decisions.
These restrictions are a limited form of mandatory access
control over the data passed to the target cloud container.
Once a contained service is launched, the service owner
cannot change these controls, so data inside will always be
contained as the manifest describes.

We will extend this basic pattern with additional con-
tainers in order to implement richer multi-container func-
tionalities. With CQSTR alone at least one separate con-
tainer is needed for each customer, which can be inefficient
for lightweight services. But, CQSTR can act as a platform
for building higher layers of trust, so finer-grained contain-
ment is possible. For example, a trusted OS running within
CQSTR could isolate instances of a service with containers.

6.2 SpamAssassin

SpamAssassin has a simple work flow: a client sends the
service a stream of emails, and the service scans each email
for spam. It adds an email header indicating the likelihood
that it is spam and then returns the message back to the
client. Our security requirement is that SpamAssassin should
not disclose emails to other parties, including the service’s
operator.

This workflow fits the pattern shown in Figure 3, with the
client’s address as parameter1. The client of SpamAssassin
queries the metadata server with the service’s address, and
verifies that the returned manifest uses the template with the
correct parameters.

We extend this basic design to allow the operator to pass
labeled training data to the service enabling it to learn addi-
tional spam patterns. Here, we ensure that the act of provid-
ing training sets does not leak any information: even TCP
ack packets from the service could be used to leak client
email content.

We solve this by extending SpamAssassin with a second
container including a single management proxy. A manage-
ment proxy is a small VM instance that contains only trusted
code and provides a limited set of management operations to

Figure 4. Configuration for SpamAssassin. Image name
with prefix “std-” means unmodified applications and OS
from official sources. Other images contain code that imple-
ments management functions.

an isolated service, much narrower than the service interface.
This proxy is comparable to AWS API Gateways [21]. Each
proxy in our deployments use a slightly modified Ubuntu
14.10 installation that includes a script to export desired
management functionality through an HTTP interface. The
functionality of a proxy should be simple and open source,
so that it can be trusted.

The SpamAssassin proxy allows a single management
operation, which is to accept training data from the operator.
The service passes the data to SpamAssassin, and returns a
fixed acknowledgment to the operator. It runs in a separate
container from the service, so the proxy cannot access or re-
turn any of the client’s email to the operator. The proxy’s
container allows access to the operator and to the service’s
container, and we allow the service’s container to commu-
nicate with the proxy, as shown in Figure 4. Because this
proxy could be a channel to leak information, we require a
locked-down trusted image for the proxy.

6.3 PacketPig

PacketPig is a distributed network trace analysis tool [11]
built on Apache Pig [25] and Hadoop. We use CQSTR to
allow untrusted users to submit scripts that analyze sensitive
network traces stored in a Swift bucket by ensuring that the
service cannot reveal much about the trace. Unlike SpamAs-
sassin, the data is not owned by the client; instead this is a
delegated setting and CQSTR is used to limit the informa-
tion clients extract rather than prevent release completely.

Our basic configuration follows the pattern described
above: PacketPig runs in a container that only allows ac-
cess to a single port to submit scripts and receive results. To
limit the amount of data released, we enforce a total down-
load limit on the container that is a small fraction of the
total trace size so the complete trace cannot be exposed. The
trace data is stored in a Swift bucket. It is not possible to
directly reference a Swift bucket without modifying the ap-

Figure 5. Configuration for PacketPig.

plication. Instead, we integrate the data importing function
into a management proxy described below. The data owner
sets an ACL on a trace bucket that only grants access to a
role from the management container.

We implemented a management proxy that, in addition to
providing network traces, allows dynamic addition and re-
moval of nodes in the service, and modifies query scripts
to add random noise. PacketPig can only communicate with
the proxy, and clients submit scripts and receive result from
the proxy. This configuration is shown in Figure 5. The set
of nodes is changed by providing the address of the new in-
stance to add or the existing instance to shut down; the proxy
modifies Hadoop’s configuration and restarts the cluster with
the new configuration. The script rewriter illustrates use of
a proxy to sanitize inputs and outputs for better security and
privacy. It adds uniformly distributed noise to the SUM func-
tion in scripts, with respect to the average and variance of
the data. More complex mechanisms like differential privacy
could be implemented [30], but are out of scope for this pa-
per. This use of a proxy demonstrates the more general idea
of an output proxy that checks or sanitizes results before re-
turning them to the client.

This configuration can also be used more generally as
a contained Hadoop/Pig cluster, where clients submit jobs
without worrying that the service owner may leak scripts or
data. The only modification to the above design is to change
the management to allow all scripts.

PacketPig demonstrates how CQSTR can restrict and iso-
late data flows. However, service-generated data, such as
program outputs and logs, might still carry sensitive infor-
mation. Hence, in deployment one would need to carefully
whitelist which scripts and supporting service code can be
allowed to run within the cloud container.

6.4 PredictionIO

PredictionIO is an open-source prediction service, and demon-
strates how CQSTR solves the example problem in Sec-
tion 2. PredictionIO reads a client’s data, with which it trains
a model based on a code template from the client. With the

Figure 6. Configuration for PredictionIO.

model, PredictionIO deploys a webserver to make online
predictions. Our security goal is that the training service
does not leak the client’s data; the data owner allows the
PredictionIO service to train on its data and make public
predictions from the resulting model but the training data
must stay private.

We created an image using the standard Prediction IO
codebase with a trusted prediction template. We install this
on a locked-down configuration of Linux with unnecessary
services (including sshd) disabled. In addition to the Predic-
tionIO code, the service also runs a standard Apache Spark
cluster [24] to provide the compute power needed to gener-
ate the prediction model.

As shown in Figure 6, we deploy the training service in a
cloud container with access to the client’s data source. The
web server for prediction queries runs in a separate container
that shares a Swift bucket with the training container, and
allows public access. We limit the quota of data that can be
written into the bucket to the model’s estimated size (1MB).

This configuration ensures that the training data is lim-
ited to the training service, and the publicly accessible web
server has no direct access to the data. Even if the web ser-
vice container is compromised due to an application or OS
vulnerability, the attacker cannot access the training data.

Our deployment of Prediction IO with CQSTR demon-
strates how an application can be decomposed into compo-
nents, each in a separate container. Using a similar decom-
position with rules allowing access to specific endpoints, an
application can contact trusted third-party services. If they
are deployed in cloud containers, CQSTR can also verify
their trustworthiness.

6.5 Experience

Porting the three applications to operate in CQSTR was
straightforward, requiring no source modification. The man-
agement proxies are small, simple services to code. We ran
into a few issues with services that assume open Internet
access: SpamAssassin looks up the hostname in all mes-
sages using DNS, but access to DNS can leak information

about what messages are being scanned. Some prediction
templates for PredictionIO access external services, which
may not be allowed in a cloud container. In both cases, we
disabled code that accessed external services without hinder-
ing the desired functionality.

7. Performance Evaluation
We evaluate the performance cost of CQSTR’s modifications
to OpenStack on our three applications.

7.1 Configuration

We run CQSTR with nine physical hosts on the Wisconsin
cluster of CloudLab [1]. One node is the cloud controller,
one is the network gateway, two serve as both volume and
object storage, and five are compute servers.

All nodes have two 8-core 2.40 GHz Intel E5-2630 CPUs
with hyperthreading enabled and 128GB memory. The code
is stored on a local SAS disk, while storage services (Swift
and Cinder) use an SSD. User VMs are connected through
a GRE tunnel over 10Gb Ethernet, with a separate 10Gb
Ethernet for storage requests. We multiplex the management
network with the data network, with address spaces isolated.

We used Ubuntu 14.04 LTS image for guests and ser-
vices. Both guests and services run in m1.large instances,
which have 4 virtual CPUs without usage caps, 8GB mem-
ory and 80GB file-backed storage on a SAS disk. Manage-
ment proxies are lightweight and run in m1.small instances
with 1 VCPU and 2GB memory.

7.2 Application Performance

Table 2 shows the workloads and average completion time
over 10 repetitions for PredictionIO, PacketPig, and Spa-
mAssassin. The Email dataset is the EDRM Email DataSet
V2 [2], the network trace comes from ISTS12 [5], and both
training and predictions use data from the Million Song
Dataset [27]. All results have standard deviations below 3%;
the prediction workload has a 1% deviation.

The performance of PredictionIO predicting and Packet-
Pig on CQSTR are 1.5% slower than the native versions.
The latency of predictions is unchanged. For SpamAssassin
CQSTR is 1% slower.

7.3 Microbenchmarks

We created a set of microbenchmarks to better understand
why application performances was unchanged.
Container management. We measured the cost of manage-
ment operations to create and launch a service in a container.
Creating a container takes 1.5 seconds and configuring its se-
curity properties takes 3 seconds, which is a fraction of the
time to instantiate and boot an instance (11 seconds).
Existing management APIs. CQSTR imposes additional
checks on existing IaaS management APIs, e.g., attaching
a volume or IP address to an instance. In measurements, we
found these checks add less than 2% overhead.

Network performance. CQSTR adds extra firewall and traf-
fic rules compared to normal instances. Using iperf to test
bandwidth and latency, we found no measurable difference.
Storage performance. For volume storage, additional checks
are only imposed when a volume is attached, so there is
no performance impact on data access. For object storage,
Swift must call the metadata service with the requester’s
IP address to verify state assertions, which takes 30ms on
average. The result is cached for the minimum IP address
reuse time (10 minutes). In our experiments, the average
latency of object storage requests is unchanged at 12ms,
but the 99th percentile latency increases from 250ms to
750ms, reflecting the time spent verifying the requester’s
capabilities. Bandwidth is unchanged.
External storage performance. External services must fetch
state assertions before granting access to data, which takes
approximately 700ms. However, the result of checking as-
sertions can be cached as with Swift, and hence has little
impact on overall performance.

These results explain why application performance is
largely unchanged: containment operations rely on the ex-
isting behavior of IaaS services, or are cacheable, so there is
effectively no performance overhead at runtime.

8. Related Work
A large number of works seek to improve control over sen-
sitive data. One solution for the data owners to run analysis
code only in instances (VMs) under their direct control. Mit-
tal et al. [43] describe such an approach for packet trace anal-
ysis. It precludes instances that run third-party proprietary
code or are managed by any party other than the data owner;
CQSTR allows both. Secure multiparty computation [38]
and fully homomorphic encryption [34] are promising solu-
tions for data analytics, but are not yet general and practical
enough for most computing problems.

Another approach is to build limited interfaces to code
that is trusted not to leak data. Bunker [42] creates a closed-
box for the specific case of network trace analysis on a
single node. Airavat [46] ensures privacy-preserving outputs
for MapReduce workloads by confining untrusted mappers
and running only trusted reducers. PINQ [41] implements
differential privacy mechanisms based on C# LINQ [6], and
provides a restricted programming language to compute on
sensitive information. These works are complementary to
CQSTR: one could for example set up the trusted code (e.g.,
Bunker, Airavat, or PINQ) in a CQSTR cloud container,
and obtain the benefits of both systems. Here the role of
CQSTR is to attest to clients of the service that it runs the
correct (trusted) code and is properly locked down. Brown
and Chase [29] proposed a similar idea for a PaaS service
that attests to the code running in an instance.

The cloud container abstraction can be viewed as a lim-
ited form of mandatory access control using Information
Flow Control, including Decentralized IFC (DIFC [44]). IFC

Application Workload Native CQSTR % diff.
SpamAssassin Filter 100,000 emails 598 sec 604 sec 1.0%
PacketPig Fingerprint 146GB trace 856 sec 869 sec 1.5%
PredictionIO Training Train on 10,000 songs (1.8GB) 26 sec 27 sec 3.1%
PredictionIO Prediction Perform 1,000,000 predictions 914 sec 925 sec 1.2%

Table 2. Application workloads and execution time.

systems track labels on data (a program’s inputs “taint” out-
puts they may have affected) and confine untrusted code by
blocking unsafe data flows to incompatible channels. DIFC
systems also provide a natural means to grant specific au-
thority to trusted code, e.g., to declassify its output data
by changing the label. Examples include Airavat and OS-
level systems including Histar [58], Flume [37], and As-
bestos [31]. DIFC has also been implemented for a dis-
tributed environment (e.g., [59]). CQSTR provides a less
flexible but simpler abstraction that meets the goals of spe-
cific uses of IFC (access control based on code identity, con-
finement of untrusted code) without the complexities and
overheads of data labeling, taint tracking, and label-based
access checks. At the IaaS layer what we seek is to pro-
vide a practical and deployable subset of IFC’s power and
flexibility—strong containment and attestation—as a foun-
dation for safer data sharing among tenants and richer trust
mechanisms (such as IFC) at higher layers. Because CQSTR
applies checks at the cloud container boundary, it is indepen-
dent of the guest operating systems and applications, and ex-
tends easily to containers with many instances: CQSTR can
attest that all instances within a cloud container are running
IFC software trusted by the client, to obtain strong defense-
in-depth and controlled data release.

CQSTR is complementary to trusted computing mecha-
nisms (e.g., TPM, TXT) that enable trusted execution based
on a hardware root of trust [32, 40, 47, 48, 52, 54]. CQSTR
is similar to these in that it attests code identity and allows
clients to verify that a service is running the proper version of
code in a proper configuration. However, in CQSTR the IaaS
cloud provider is the root of trust. We believe that this trust
assumption is reasonable and matches the practical realities
of cloud computing today; the goal of our work is to lever-
age this trust to bootstrap richer security controls for safe
cross-tenant data sharing in large-scale cloud services [33],
and not just in individual computers. In principle, future ad-
vances in trusted execution technology could extend the trust
chain down to the hardware by attesting the trusted cloud
stack itself.

Some systems advocate property-based attestation [47].
These are more convenient compared to the above TPM-
style interfaces. For example, Santos [49] builds a trusted-
computing-based runtime that seals data from malicious
cloud operators based on instance properties. However, these
do not protect one tenant from another.

To further protect trusted software, Intel’s SGX exten-
sion creates hardware-isolated environments (enclaves) for
trusted code and private data [4]. VC3 [51] and Haven [26]

use SGX to ensure private data is not released to untrusted
components (i.e., the programming framework, hypervisor
or OS). Enclaves enable protection against untrusted cloud
providers [50, 53]. These works view the cloud provider as a
threat to the guest rather than a root of trust that can facilitate
secure sharing among mutually distrusting tenants. But, the
security assumption behind these designs may be too restric-
tive for cross-tenant services. Without IaaS-level network re-
strictions, all enclaves in a service must be trusted to not leak
information. We see SGX-based enclaves as complementary
to the cloud container abstraction, where enclaves are used
for code confidentiality, and cloud containers are used to or-
ganize and enforce the high-level properties of a service.

Existing cloud providers offer rich authentication and au-
thorization to protect user data. AWS controls access based
on users, groups, and roles, (IAM [14]) and can assign a role
to an instance based on its boot image. CQSTR adds new
container-level mechanisms to control access by instances
(rather than by users) based on their code identity and/or
configuration, and to block data leakage even after access
is granted.

Platforms-as-a-Service(PaaS) also provide containment:
Heroku recently announced its private application names-
pace [3]. CQSTR can be seen as moving this viewpoint to the
IaaS level. As with other application frameworks, CQSTR
can also be used to establish trust in layered PaaS systems
and PaaS applications.

9. Conclusion
Controlling use of data is central to secure computing.
CQSTR is the first system to leverage existing IaaS infras-
tructure to provide control over data usage to clients of a
service, and to do so without TPMs or cryptographic pro-
tocols. CQSTR is directly applicable to a wide variety of
data-analysis applications, and can also be used as a general
application-structuring technique. It provides a basis for OS
and application-level mechanisms to further confine code.
However, CQSTR currently works for a single provider, as
it relies on IP addresses for authentication. How to extend
across multiple cloud platforms remains an open question.

Acknowledgements
This work was supported in part by NSF grant CNS-
1330308 and CNS-1330659.

References
[1] Cloudlab. https://www.cloudlab.us.

[2] Email data set. https://aws.amazon.com/
datasets/917205.

[3] Heroku private namespace. http://blog.heroku.
com/archives/2015/9/10/heroku_private_
spaces_private_paas_delivered_as_a_
service.

[4] Intel sgx. https://software.intel.com/en-us/
isa-extensions/intel-sgx.

[5] Ists competition 12. http://www.netresec.com/
?page=ISTS.

[6] Linq (language-integrated query). https://msdn.
microsoft.com/en-us/library/bb397926.
aspx.

[7] Linux containers. https://linuxcontainers.org/.

[8] Linux containers. http://linuxcontainers.org/.

[9] Openstack. http://www.OpenStack.org/.

[10] Openstack trusted computing pool. https://wiki.
OpenStack.org/wiki/TrustedComputingPools.

[11] Packetpig. http://blog.packetloop.com/
search/label/packetpig.

[12] Prediction io. http://prediction.io.

[13] Spamassassin. http://spamassassin.apache.
org/.

[14] Amazon Web Services. Amazon web services: Overview
of security processes, 2014. available at http://www.
utdallas.edu/˜muratk/courses/cloud11f_
files/AWS_Security_Whitepaper.pdf.

[15] I. Amazon Web Services. Aws identity and access manage-
ment (iam). https://aws.amazon.com/iam/.

[16] Amazon Web Services, Inc. Amazon cloudtrail. https:
//aws.amazon.com/cloudtrail/.

[17] Amazon Web Services, Inc. Amazon cloudwatch. https:
//aws.amazon.com/cloudwatch/.

[18] Amazon Web Services, Inc. Amazon glacier. https://
aws.amazon.com/glacier/.

[19] Amazon Web Services, Inc. Amazon machine learning.
https://aws.amazon.com/machine-learning/.

[20] Amazon Web Services, Inc. Amazon virtual private cloud.
https://aws.amazon.com/vpc/.

[21] Amazon Web Services, Inc. AWS api gateway. https:
//aws.amazon.com/api-gateway/.

[22] Amazon Web Services, Inc. AWS config. https://aws.
amazon.com/config/.

[23] Amazon Web Services, Inc. AWS vpc endpoint.
http://docs.aws.amazon.com/AmazonVPC/
latest/UserGuide/vpc-endpoints.html.

[24] Apache Foundation. Spark. https://spark.apache.
org/.

[25] Apache Foundation. Welcome to apache pig. https://
pig.apache.org/.

[26] A. Baumann, M. Peinado, and G. Hunt. Shielding applications
from an untrusted cloud with haven. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2014.

[27] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere.
The million song dataset. In Proceedings of the 12th Inter-
national Conference on Music Information Retrieval (ISMIR
2011), 2011.

[28] N. Borisov, R. Johnson, N. Sastry, and D. Wagner. Fixing
races for fun and profit: How to abuse atime. In Proceedings of
the 14th Conference on USENIX Security Symposium, pages
20–20, 2005.

[29] A. Brown and J. S. Chase. Trusted platform-as-a-service:
a foundation for trustworthy cloud-hosted applications. In
Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, pages 15–20. ACM, 2011.

[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proceedings of
the Third Conference on Theory of Cryptography, pages 265–
284, 2006.

[31] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazieres, F. Kaashoek, and R. Mor-
ris. Labels and event processes in the asbestos operating sys-
tem. ACM SIGOPS Operating Systems Review, 39(5):17–30,
2005.

[32] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A virtual machine-based platform for trusted comput-
ing. In Proc. Symposium on Operating Systems Principles,
2003.

[33] R. Geambasu, S. D. Gribble, and H. M. Levy. Cloudviews:
Communal data sharing in public clouds. In Proceedings
of the 2009 Conference on Hot Topics in Cloud Computing,
2009.

[34] C. Gentry. Fully homomorphic encryption using ideal lattices.
In Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing, STOC ’09, pages 169–178, New York,
NY, USA, 2009. ACM.

[35] Google, Inc. Google prediction api. https://cloud.
google.com/prediction/.

[36] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and T. Ris-
tenpart. Next stop, the cloud: Understanding modern web ser-
vice deployment in ec2 and azure. In Proceedings of the 2013
conference on Internet measurement conference, pages 177–
190. ACM, 2013.

[37] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for stan-
dard os abstractions. ACM SIGOPS Operating Systems Re-
view, 41(6):321–334, 2007.

[38] Y. Lindell and B. Pinkas. Secure multiparty computation
for privacy-preserving data mining. Journal of Privacy and
Confidentiality, 1(1):5, 2009.

[39] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level
cache side-channel attacks are practical. In IEEE Symposium
on Security and Privacy, pages 605–622, 2015.

[40] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for tcb min-

https://www.cloudlab.us
https://aws.amazon.com/datasets/917205
https://aws.amazon.com/datasets/917205
http://blog.heroku.com/archives/2015/9/10/heroku_private_spaces_private_paas_delivered_as_a_service
http://blog.heroku.com/archives/2015/9/10/heroku_private_spaces_private_paas_delivered_as_a_service
http://blog.heroku.com/archives/2015/9/10/heroku_private_spaces_private_paas_delivered_as_a_service
http://blog.heroku.com/archives/2015/9/10/heroku_private_spaces_private_paas_delivered_as_a_service
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions/intel-sgx
http://www.netresec.com/?page=ISTS
http://www.netresec.com/?page=ISTS
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://linuxcontainers.org/
http://linuxcontainers.org/
http://www.OpenStack.org/
https://wiki.OpenStack.org/wiki/TrustedComputingPools
https://wiki.OpenStack.org/wiki/TrustedComputingPools
http://blog.packetloop.com/search/label/packetpig
http://blog.packetloop.com/search/label/packetpig
http://prediction.io
http://spamassassin.apache.org/
http://spamassassin.apache.org/
http://www.utdallas.edu/~muratk/courses/cloud11f_files/AWS_Security_Whitepaper.pdf
http://www.utdallas.edu/~muratk/courses/cloud11f_files/AWS_Security_Whitepaper.pdf
http://www.utdallas.edu/~muratk/courses/cloud11f_files/AWS_Security_Whitepaper.pdf
https://aws.amazon.com/iam/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/glacier/
https://aws.amazon.com/glacier/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/vpc/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/config/
https://aws.amazon.com/config/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://spark.apache.org/
https://spark.apache.org/
https://pig.apache.org/
https://pig.apache.org/
https://cloud.google.com/prediction/
https://cloud.google.com/prediction/

imization. In Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008, pages 315–
328, 2008.

[41] F. Mcsherry. Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis. In Proceedings of
the 2009 ACM SIGMOD International Conference on Man-
agement of Data, pages 19–30. acm, 2009.

[42] A. G. Miklas, S. Saroiu, A. Wolman, and A. D. Brown.
Bunker: A privacy-oriented platform for network tracing. In
Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, pages 29–42, 2009.

[43] P. Mittal, V. Paxson, R. Sommer, and M. Winterrowd. Secur-
ing mediated trace access using black-box permutation analy-
sis. In HotNets. Citeseer, 2009.

[44] A. C. Myers and B. Liskov. A decentralized model for in-
formation flow control. In Proc. Symposium on Operating
Systems Principles (SOSP), 1997.

[45] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security, pages
199–212. ACM, 2009.

[46] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel.
Airavat: Security and privacy for mapreduce. In Proceedings
of the 7th USENIX Symposium on Networked Systems Design
and Implementation, pages 297–312, 2010.

[47] A.-R. Sadeghi and C. Stüble. Property-based attestation for
computing platforms: caring about properties, not mecha-
nisms. In Proceedings of the 2004 workshop on New security
paradigms, pages 67–77. ACM, 2004.

[48] R. Sailer, T. Jaeger, X. Zhang, and L. Van Doorn. Attestation-
based policy enforcement for remote access. In Proceedings
of the 11th ACM conference on Computer and communica-
tions security, pages 308–317. ACM, 2004.

[49] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu.
Policy-sealed data: A new abstraction for building trusted
cloud services. In USENIX Security Symposium, pages 175–
188, 2012.

[50] J. Schiffman, Y. Sun, H. Vijayakumar, and T. Jaeger. Cloud
verifier: Verifiable auditing service for iaas clouds. In IEEE
Ninth World Congress on Services, pages 239–246, 2013.

[51] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. Vc3: Trustworthy data
analytics in the cloud using sgx. In 36th IEEE Symposium on
Security and Privacy, May 2015.

[52] E. Shi, A. Perrig, and L. Van Doorn. Bind: A fine-grained
attestation service for secure distributed systems. In 2005
IEEE Symposium on Security and Privacy, pages 154–168,
2005.

[53] R. Sinha, S. Rajamani, S. A. Seshia, and K. Vaswani.
Moat: Verifying confidentiality of enclave programs. In The
ACM Conference on Computer and Communications Security
(CCS), October 2015.

[54] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical attestation: an au-
thorization architecture for trustworthy computing. In Pro-

ceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 249–264, 2011.

[55] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and
M. M. Swift. Resource-freeing attacks: improve your cloud
performance (at your neighbor’s expense). In Proceedings of
the 2012 ACM conference on Computer and communications
security, pages 281–292. ACM, 2012.

[56] L. Wang, A. Nappa, J. Caballero, T. Ristenpart, and A. Akella.
Whowas: A platform for measuring web deployments on iaas
clouds. In Proceedings of the 2014 Conference on Internet
Measurement Conference, pages 101–114. ACM, 2014.

[57] Y. Yarom and K. Falkner. Flush+ reload: a high resolution,
low noise, l3 cache side-channel attack. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 719–732,
2014.

[58] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proc. 7th
USENIX Symposium on Operating Systems Design and Im-
plementation, pages 263–278, 2006.

[59] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Securing
distributed systems with information flow control. In Pro-
ceedings of the 5th USENIX Symposium on Networked Sys-
tems Design and Implementation, volume 8, pages 293–308,
2008.

[60] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
vm side channels and their use to extract private keys. In
Proceedings of the 2012 ACM conference on Computer and
communications security, pages 305–316. ACM, 2012.

