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Abstract

An increasing number of applications, such as elec-
tronic mail servers, web servers, and personal infor-
mation managers, handle large amounts of homo-
geneous data. This data can be effectively repre-
sented as records and manipulated through simple
operations, e.g., record reading, writing, and search-
ing. Unfortunately, modern storage systems are in-
appropriate for the needs of these applications. On
one side, file systems store only unstructured data
(byte strings) with very limited reliability guaran-
tees. On the other side, relational databases store
structured data and provide both concurrency con-
trol and transactions; but relational databases are
often too slow, complex, and difficult to manage for
many applications.

This paper presents a transactional record store
that directly addresses the needs of modern applica-
tions. The store combines the simplicity and man-
ageability of the file system interface with a select
few features for managing record-oriented data. We
describe the principles guiding the design of our
transactional record store as well as its design. We
also present a prototype implementation and its per-
formance evaluation.

1 Introduction

With the success of the Internet, the last few years
have seen a proliferation of networked data services,
such as electronic mail servers, web servers, and
personal information managers. Such applications
manage data that are regular in structure and eas-
ily represented as records with distinct fields, e.g.,
contacts, schedules, user preferences, or customer
orders. Electronic mail messages or merchandise de-
scriptions are less regular, but can also be organized
as a set of well-defined fields, such as sender, sub-
ject, or order number. Internet applications also
exhibit fairly simple workloads. For a given task,

they sequentially access only a small number of
data sources, for example, when a user browses mer-
chandise descriptions or when a server processes a
customer order. As a result, they perform a rela-
tively simple set of operations: they read, modify,
or search small records. Finally, these applications
typically require replication for availability or relia-
bility.

In the future, we expect to see an increasing
number of such data-centric applications and a
wider range of computing devices running them [13,
44]. On the hardware side, non-traditional comput-
ing devices, such as palm-sized computers or cell
phones, are already in wide-spread use and provide
access to a user’s contacts and messages. Newer de-
vices such as pads are about to be commercially
released as well. On the software side, cluster-
based services implement highly available and scal-
able networked servers [14, 39], while replication
schemes specifically designed for a mobile environ-
ment automate the synchronization of data between
remote and mobile nodes [1, 18, 25, 37].

Despite this diversity of existing and future ap-
plications with common data storage needs, the
management of persistent storage remains a chal-
lenge. Currently, an application has two choices—
file systems or databases—each of which fails to
meet application needs in one or more dimensions.
File systems typically store only unstructured data
and provide limited (if any) failure atomicity, mak-
ing them ill-suited for reliably storing large num-
bers of homogeneous records. Object stores and re-
lational databases manage objects and records, re-
spectively, and provide concurrency control and reli-
ability through transactions. However, object stores
are optimized for maintaining heterogeneous objects
and their linked relationships. Relational databases
are often far too complex and difficult to manage
as they provide considerable functionality, e.g., sup-
port for a query language, joins, and batch process-
ing. These functions are often overkill for modern
networked data services, and they come at a high



cost.
To address this lack of appropriate storage solu-

tions, we present a transactional record store that
combines the simplicity and manageability of the file
system interface with select features for managing
record-oriented data. Records are stored in tables,
and all records in a table share the same field names
and types. The records are the rows of the table and
the fields are the columns. Tables, in turn, are orga-
nized in directories, resulting in a hierarchical name
space similar to that of a file system. To simplify
replication, the store exposes globally unique iden-
tifiers [28] (GUIDs) for individual records as well as
tables and directories. To ensure good performance,
it uses a simple yet expressive hinting system. Fi-
nally, to provide reliability across failures, all oper-
ations are atomic and transactions can be used to
group several operations into one atomic unit.

Record storage as a system service is not a new
idea. For example, IBM’s VSAM [34], Compaq’s
RMS [10], and Palm Computing’s Palm OS [6] all
provide record storage at the system level. This
raises the question of why it is necessary to revisit
the topic of structured storage. We believe that
record storage as a system service is important for
three reasons. First, a relatively new class of ap-
plications, as discussed above, requires it. Second,
the most common computing platforms do not offer
record storage. As a result, many commercial appli-
cations either (1) ship with an application-specific
solution, thus leading to unnecessary application
complexity and a considerable duplication of func-
tionality, or (2) build on top of a relational database,
which has its own performance, cost, and complex-
ity implications. Third and most important, build-
ing a viable record store is hard, because it is not
obvious how to make the right trade-offs between
scalability, flexibility, complexity, and performance.
The primary contribution of this paper is a thorough
exploration of these trade-offs.

The rest of this paper is structured as follows.
Section 2 develops the principles guiding the de-
sign of our transactional record store and Section 3
presents the actual design. Section 4 describes a
prototype implementation and Section 5 reflects on
our experiences in building the prototype as well
as its performance. Section 6 reviews related work.
Finally, Section 7 concludes.

2 Principles

A practical record store for data-centric applications
should meet three requirements. First, it should

be reliable, i.e., its operations should be atomic
in the face of failures. This is particularly cru-
cial given the economic significance of Internet ser-
vices. Second, the record store should be scalable; it
must be implementable across a wide range of com-
puting platforms, from wearable devices to large-
scale clusters. Third, it should effectively support
application-specific replication, providing both flex-
ibility and performance of replication mechanisms.

Relational databases use tables to store large
numbers of records and provide transactions for reli-
ability. Techniques for implementing both efficiently
are well known. For this reason, we also base our
record store on tables and transactions. However,
relational databases provide complex functionality,
such as a query language, joins, and batch process-
ing, that are of limited use to networked data ser-
vices. Furthermore, databases typically implement
replication internally [32, 35] and thus lack effective
support for application-specific replication schemes.
The key issues for the record store are therefore
which features to provide and how to structure its
various interfaces.

To guide our design, we have used three funda-
mental principles:

1. Limit global knowledge. Knowledge should be
locally generated and managed whenever possi-
ble. The primary purpose of this principle is to
ensure an efficient implementation and scalabil-
ity by limiting the need for global coordination
of system state.

2. Don’t hide power. The abstraction barrier be-
tween applications and the record store should
not hide expressive power. The primary pur-
pose of this principle is to ensure that the
record store provides sufficient functionality.

3. Separate independent concerns. Different de-
sign aspects, such as data layout, data ac-
cess, performance, or access control, should be
clearly separated by using distinct operations
and abstractions. The primary purpose of this
principle is to ensure that the record store is
easy to use and replicate.

These principles are not absolutes, as clearly use-
ful features may follow one principle but violate oth-
ers. The three principles thus need to be carefully
weighed against the requirements of data-centric ap-
plications, as discussed above. When principles con-
flict, we typically favor limiting global knowledge to
aid scalability.



3 Design

In our design, records are stored in tables, which are
collections of identically-structured records. Each
record in a table thus has the same fields with the
same name and type (for a given record, though,
not every field needs to store a value). Operations
on tables affect only one table. In addition, a ta-
ble has distinct operations to manage its schema
(i.e., fields), its performance hints, its access con-
trol information, and its data. These operations are
straight-forward and either access or modify a ta-
ble’s meta-data or data. For example, the schema
operations allow an application to add and change
individual fields, lookup a field by name, and re-
trieve a list of all of a table’s fields.

Tables are organized in directories, which sup-
port typical directory operations such as entry
lookup or move. Directories facilitate the logical
grouping of related tables, and the resulting hierar-
chical name space provides a convenient and proven
interface for managing persistent storage. Adding
files as a separate storage abstraction in addition to
tables makes it possible to integrate record and byte
string storage into a single storage system. To fur-
ther aid manageability, the store also supports sym-
bolic links in the form of aliases, which can reference
other aliases, directories, and tables and are auto-
matically resolved during lookup. We call aliases,
directories, and tables store objects.

To provide reliability, all store operations are
atomic and applications can specify a transaction
to group several operations into one atomic unit.
To provide consistency, all transactions are fully se-
rializable by default. Transactions combine two sep-
arate concerns, atomicity and concurrency control,
which violates one of our principles. As a result, ap-
plications that only need reliability, such as a single-
threaded contact manager running on a cell phone,
also pay the overhead for concurrency control. The
record store thus includes the option to set a differ-
ent isolation level for individual transactions.

We have specified our record store in the form
of a set of Java interfaces and exceptions. The
specification does not rely on features unique to
Java; it simply serves as a concise description of
the record store’s application programming inter-
face (API). The store consists of 15 interfaces, most
of which represent simple descriptors such as fields,
queries, or hints, with a total of 82 methods. It
also contains 16 exceptions that represent specific
exceptional conditions and are subclasses of class
StorageException. For transactions, we rely on
Jini’s transaction specification [2]. Figure 1 pro-

Guid add(Guid g,List fields,List data,Txn t);

/* Add a new record with GUID g and data for

fields and return its GUID. If g is null,

the GUID is automatically generated. */

void write(Guid g,List fields,List data,Txn t);

/* Write data to fields for the record with

GUID g. */

List read(Guid g, List fields, Txn t);

/* Read fields from the record with GUID g

and return that data. */

Results query(Query q, List values, Txn t);

/* Instantiate query q with values, perform

the instantiated query, and return an

iterator over the results. */

void delete(Guid g, Txn t);

/* Delete the record with GUID g. */

Figure 1: The five methods for accessing a table’s
records. Records are added, written, read, and deleted
one at a time by GUID. In contrast, queries can search
records according to application-specific criteria and re-
turn more than one result. Applications can group sev-
eral operations into an atomic unit by passing a transac-
tion through the Txn (short for Transaction) parameter.
All five methods may throw a StorageException or a
TransactionException. GUIDs are explained in detail
in 3.1 and queries in 3.2.

vides a flavor of our interfaces by showing the five
operations used to access a table’s data.

The rest of this section is structured as follows.
We describe the motivation for and the use of glob-
ally unique identifiers in 3.1, followed by queries
(3.2), hints (3.3), and access control (3.4). We con-
clude this section with a summary of our design
in 3.5.

3.1 Globally Unique Identifiers

A primary challenge for implementing an
application-specific replication scheme on a
structured store is the identification of records
and collections of records across node boundaries.
In general, database implementations require an
internal identifier to uniquely name records [19];
our record store formalizes this identifier and
associates globally unique identifiers [28] (GUIDs)
with records as well as store objects (i.e., aliases,
directories, and tables). GUIDs represent an
attractive choice for such an identifier, because the



specification for GUIDs includes an algorithm for
generating them autonomously on every node while
also guaranteeing that they are globally unique.

GUIDs are associated with store objects and
records during creation and are immutable after-
wards. Applications can either let the record store
create a fresh GUID or explicitly specify the GUID.
Typically, applications allow the record store to cre-
ate the GUID when a store object or record is orig-
inally created on a node. They specify the corre-
sponding GUID when a store object or record is
propagated to a replica. Following our principle
of limiting global knowledge, the record store en-
forces the uniqueness of GUIDs only within a lim-
ited scope. In particular, the store guarantees the
uniqueness of GUIDs for records within a single ta-
ble and the uniqueness of GUIDs for store objects
within its local name space.

For store objects, GUIDs provide an alternative
name space: store objects can be looked up (and
deleted) by name as well as GUID. This makes it
possible to locate replicated store objects across dif-
ferent nodes, even if they have different names on
different nodes, as long as the store objects share
a common GUID. As a result, store objects can be
effectively replicated, even though different nodes
may have different policies for organizing the local
store.

For records, GUIDs provide the only name space.
Every table has a field representing its records’
GUIDs; this is comparable to the primary key in a
relational database. As shown in Figure 1, records
can be added, written, read, and deleted by GUID
only. Furthermore, operations manipulate only one
record at a time. The simplicity and regularity of
these operations simplifies logging for replication.
We believe that it does not represent an undue lim-
itation, because many tasks need to access only a
small number of records. However, access to records
by GUID alone is not sufficient, because most appli-
cations have external identifiers, such as user names
or book titles, that also need to be searched.

3.2 Queries

Applications search the records of a table using
queries, for example, when searching for all mail
messages sent by a particular user. A query is not
limited to GUID-based record access and it can re-
turn more than one record. A query has three parts:
(1) a select clause that specifies which records to se-
lect, (2) a (possibly empty) list of sort clauses that
specifies the sort order for the selected records, and
(3) a list of fields that specifies which fields to return

of the selected and sorted records. The select clause
consists of one or more subclauses that compare a
field to a value. This value may be specified at either
of two times: query creation time or query execution
time. In the latter case, the record store creates a
query template, which is instantiated with the actual
value at execution time (see Figure 1). Comparisons
may be negated and are combined using conjunc-
tions and disjunctions. The result of a query is an
iterator over the selected and sorted records.

The challenge in designing a query facility for
record storage is to balance expressiveness against
implementation complexity and performance. To
be consistent with the principle of limiting global
knowledge, queries, just like other operations on ta-
bles, are restricted to a single table, thus avoid-
ing the complexities associated with supporting
joins [19, 33]. Furthermore, to be consistent with
the principle of not hiding power, queries support
sort clauses and templates. Sort clauses ensure that
a query’s results are ordered. Applications thus
do not need to sort the returned data themselves
and the record store can effectively schedule the
prefetching of query results. Templates let applica-
tions express the structure of common queries, for
example, those resulting from users filling out search
forms. The record store can thus optimize table lay-
out and indexes for performing these queries well.

3.3 Hints

Application-specific hints have been successfully
used to optimize the caching and prefetching be-
havior of file systems [27, 42], thus suggesting that
they can be an effective mechanism for optimizing
the performance of record storage as well. For file
systems, hints are dynamically issued by applica-
tions because they primarily control the dynamic
behavior of the file system cache. To perform well,
however, a record store not only needs to optimize
the management of its cache, but also optimize the
on-disk layout of tables (i.e., the on-disk order of
records) as well as the generation of indexes (i.e.,
for which fields to generate which indexes).

Our record store consequently uses sets of hints
to characterize dominant access patterns for tables.
Hints are explicitly created for a specific table and
statically associated with it. We expect them to
only change when workloads change. Individual
hints describe either an add, write, read, query, or
delete operation. They have a name to simplify pro-
grammatic access and a weight specifying that hint’s
relative importance. Hints for add, write, and read
operations also specify the fields to be added, writ-



Hint createHint(int type,String name,int weight,

List fields, Query q);

/* Create a new hint with type, name, and

weight. fields specifies the fields for

add, write, and read hints. q specifies

the query for query hints. */

void setHints(List hints, Txn t);

/* Set a table’s hints. */

List getHints(Txn t);

/* Get a table’s hints. */

Figure 2: A table’s operations on hints. Hints
are created for a specific table and always ac-
cessed as a set. All three methods may throw a
StorageException; setHints() and getHints() may
also throw a TransactionException.

ten, or read. Hints for queries specify the query to
be performed. Figure 2 illustrates the interface for
managing hints.

Based on these hints, the record store can opti-
mize the creation of indexes as well as the physical
layout of a table. For example, if the workload spec-
ified by the hints is dominated by reads, the record
store should create indexes for all fields searched
by queries. At the same time, if the workload is
more balanced between reads and writes, it should
only create indexes for the most frequently searched
fields. Finally, if the majority of queries search on
a particular field or are sorted by a particular field,
it should store the records ordered by that field.

3.4 Access Control

Choosing an appropriate access control model for
the record store is difficult. Common file systems,
such as those on Unix or Windows NT, typically use
a form of access control list (ACL) that is stored
with a file’s meta-data and maintained by the file
system. At the same time, an increasing number
of systems base access control on the name of a
resource and not on its meta-data. For example,
Java security [17], distributed virtual machines [41],
and domain and type enforcement [3] rely on cen-
tral policy descriptions that are based on resource
names. Similarly, SPKI [12] uses authorization cer-
tificates that specify the name of a resource. It has
already been shown that merging file system per-
mission models is difficult [23]. So, settling on any
of these models or developing our own is not viable
as we want the record store to scale across a wide

Permission Corresponding Rights

add To add to a directory or to a table.

write To change a directory or a record.

read To read data and meta-data.

delete To delete a store object or record.

control To change a store object’s or record’s
ACL.

layout To change a table’s schema.

hint To change a table’s performance hints.

Table 1: The permissions used by the record store.

range of computing platforms.
For our store, we chose to specify a standard

interface to an external access controller that im-
plements the platform-specific access control model.
The access controller interface supports both ACL-
based and name-based access control and is invoked
by the record store on all operations. For tables, it
can provide access control at the granularity of the
entire table, individual records, as well as individual
fields. In order to keep the access controller inter-
face simple, it uses seven permissions to represent
the individual record store operations, as shown in
Table 1.

The record store manages the ACLs associated
with store objects as well as records for ACL-based
access control. It stores their internal, binary rep-
resentation with its own meta-data and lets ap-
plications access their external object representa-
tion. Furthermore, it uses the access controller to
convert between the two representations. Newly
created store objects automatically inherit a copy
of their parent directory’s ACL. Similarly, newly
added records are protected by their table’s ACL.
The complete interface of the access controller is
shown in Figure 3.

3.5 Summary

In our design, records are stored in tables, and ta-
bles, in turn, are organized in directories, forming a
hierarchical name space similar to that of file sys-
tems. To ensure the scalability of the record store,
all operations on tables affect only a singe table. To
ensure its reliability, all operations are atomic and
applications can use transactions to group several
operations into one atomic unit. To simplify repli-
cation, all records are associated with GUIDs and
accessed by GUID, one record at a time. Applica-
tions use queries to search records by other criteria.
Furthermore, applications can provide hints, so that
the record store can optimize table access and lay-
out for the applications’ workload. Finally, access



public interface AccessController {

boolean usesAcls();

/* Return true if the access controller

uses ACLs. */

void check(String name, Guid g, int perm,

byte[] acl);

/* Check that the caller has permissions

perm for the store object with name

and GUID g. */

void check(String path, Guid g1, Guid g2,

List fields, int perm, byte[] acl);

/* Check that the caller has permissions

perm for fields of the record with

GUID g2 in the table with name and

GUID g1. */

Acl convert(byte[] acl);

/* Convert the binary representation of

acl into its object representation. */

byte[] convert(Acl acl);

/* Convert the object representation of

acl into its binary representation. */

}

Figure 3: The interface to the access controller. The
name argument for both check() methods is the fully
qualified name that does not contain any aliases for the
corresponding store object. If the access controller uses
ACLs, the record store passes the ACL protecting a store
object or record to the corresponding check() method.
Both check() methods throw a SecurityException if
the check fails.

control is delegated to an external access controller,
which can perform checks based on ACLs or names.

4 Prototype Implementation

The primary goal for our prototype implementation
is to provide a platform for validating that our de-
sign (1) meets the needs of modern data-centric ap-
plications and (2) effectively supports application-
specific replication. We therefore decided to imple-
ment our prototype using a relational database as
the backing store instead of providing a native im-
plementation. This may seem like a strange deci-
sion, given our assertion that relational databases
are too complex; however, for our prototype the re-
lational database acts simply as a reliable persis-

tent store with support for transactions. Our im-
plementation is written in Java and uses JDBC [45]
to access the underlying database. It consists of
16 classes and about 8,200 lines of well-documented
code.

Our implementation maps the record store into
the database as follows. It uses a separate database
table to store each record store table. Additionally,
it uses three database tables to store meta-data, one
for the hierarchical name space, one for the field
descriptors of all record store tables, and one for
the hints of all record store tables.

To minimize any performance overhead caused
by using the database, the implementation makes
extensive use of caching. Transactions are an im-
plicit property of the database connections used by
JDBC to access a database. Our implementation
thus maintains a pool of connections and maps the
explicit transactions used in the record store API to
the corresponding database connections. Further-
more, it uses prepared statements for all operations
on record store tables and caches them for future re-
use. Finally, it caches the Java objects representing
store objects.

5 Experiences

In order to gain experience with our record-storage
interface, we implemented several benchmark pro-
grams and measured their execution on the record
store. For comparison, we also implemented and
measured several of these tests using straight JDBC.
Our benchmark programs are:

1. A micro-benchmark that creates a simple dic-
tionary table mapping integer keys to string
values.

2. An application implementing a portion of the
TPC-W benchmark for e-commerce [43] that
searches a database for all the books by a given
author.

3. An application, also based on the TPC-W
benchmark, that implements a user database
supporting account additions, logons, and ac-
count updating after an order.

4. A simple mail server that supports the func-
tions necessary for responding to IMAP4 re-
quests [11]. We layered the mail server on top
of a replication module that intercepts calls to
the record store and copies data to a peer ma-
chine.



Writing these programs allowed us to gauge the
usefulness of the record store’s API, as well as to
discover flaws. Overall, using the record store’s
interface is easier than using JDBC, mostly due
to its clean design. The two most useful fea-
tures turned out to be the automatic connection
management, which simplifies multi-threaded pro-
gramming, and explicit transaction support, which
proved simpler than associating transactions with
connections. Furthermore, our experiences showed
that the interface is both sufficiently powerful to
write a real application and simple enough to imple-
ment replication on top of it. The major drawback
of the API turned out to be its verbosity: to perform
operations that take a single line of SQL code re-
quires several lines to build the corresponding record
store data structures. However, the API encourages
re-use of these data structures, so the complexity is
centralized. The programs also demonstrated that
the performance of the record store, even when lay-
ered on top of JDBC, is good enough to be used
seriously.

5.1 Experimental Setup

We had three goals in evaluating our prototype im-
plementation. The first was to make sure that our
implementation did not have a major impact on per-
formance relative to that of JDBC. The second was
to demonstrate that the record store performs well
for the workloads it targets, such as e-commerce
or electronic mail. The third was to show that
the interface can effectively support an application-
specific replication mechanism. All experiments use
Sun’s HotSpot Server virtual machine, version 2.0
RC2, and a commercial relational database as the
underlying storage layer. They were performed on
commodity PCs with a 350 MHz Pentium III pro-
cessor, 128 MByte of RAM, and two IDE hard disks,
which are connected by a 100 Mbps switched Eth-
ernet. We report the average of ten trials for each
experiment.

5.2 Micro-Benchmarks

The first micro-benchmark tests the overhead intro-
duced by the record store interface. In this test, a
table with two fields, an integer key and a string
value, is populated with data, then queried by in-
teger key, and finally updated by GUID. The size
of the string was varied between 10 bytes and 7,000
bytes, near the maximum buffer size of JDBC. The
throughput results in Figure 4 show that the perfor-
mance difference is never greater than 16%, which
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Figure 4: Performance comparison of JDBC and the
record store for adding, writing, and querying 10, 1000,
and 7000 byte values. Bars represent throughput in op-
erations per second.

occurs for small data items that are stored in the
buffer cache of the database. This represents the
worst-case performance, because the overhead of the
record store interface is amortized over reading just
ten bytes of data. For larger data values, the over-
head drops to less than 6%. For 1,000 byte values,
the performance on writes is better than for 10 byte
values due to the underlying database implementa-
tion. Nonetheless, this test demonstrates that the
overhead introduced by the record store is relatively
small and does not severely compromise the perfor-
mance of JDBC.

The next test simulates “Search Author Web In-
teraction” database operations from the TPC-W e-
commerce benchmark [43]. In this test, two tables,
an author table and a book table, are populated
with a set of 5,000 author names and 30,000 book
titles that are randomly generated using a tool pro-
vided with the benchmark specification. Each book
record contains a field identifying the book’s author
by author ID. The test program picks a random
author name and then queries for books by those
authors whose names start with the same letters.
Because titles and authors are stored in separate
tables, the implementation on top of JDBC uses a
join operation on the author ID for both tables. In
the record store interface, however, it must be im-
plemented by performing a nested loop join: first
the program queries for the author, to find the au-
thor ID, and then the book table is queried to find
books by that author. We ran the test searching for
one, ten, and fifty books.

The results, shown in Figure 5, illustrate that
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Figure 5: Performance comparison of JDBC and the
record store for searching a database of books by their
author. Bars represent throughput in operations per
second when 1, 10, and 50 books are requested.

there is a significant performance penalty for using
an interface without relational operators. The re-
sults for searching for a single book are somewhat
anomalous. In this case, the data set is small enough
to fit into the database’s buffer cache. However, due
to a bug in JDBC, the record store has to iterate
through all the results for each query. Consequently,
the JDBC implementation is able to satisfy searches
for a single book out of memory, while the record
store is forced to go to disk. The results for search-
ing for 10 and 50 books better demonstrate the
penalty of not supporting relations. The through-
put for 10 results is about 50% of the throughput
of JDBC, while for 50 results it is 45% as fast. The
difference can be accounted for by the record store
implementation issuing separate queries for each au-
thor until it has a sufficient number of results. Over-
all, this test demonstrates that for common Web
applications, such as searching a database and re-
turning a small number of results, the record store
performs well enough that the common order-of-
magnitude differences in database performance do
not occur [20].

The final micro-benchmark implements the “Buy
Request Web Interaction” from TPC-W. This test
uses a table of user accounts and a separate table
of addresses. During each request session, a user
either logs on to an existing account or creates a
new user account and address. Following that, the
user may exit without ordering, in which case the
last-logon time of the account is updated, or make
an order, which causes the whole account to be read
and the account balance to be updated. This bench-
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Figure 6: Performance comparison of JDBC and
the record store for simulating user sessions on an e-
commerce site. The portion of sessions resulting in the
creation of new user accounts varies from 10% to 50%.
Similarly, the portion of sessions resulting in an order
varies from 10% to 50%. Bars represent throughput in
requests per second.

mark is intended to highlight mixed read/write per-
formance. In order to explore the sensitivity of the
record store to the mix of read and write opera-
tions, we varied the percentage of new users and
the percentage of users making an order. The re-
sults, shown in Figure 6, illustrate that the perfor-
mance of the record store causes a negligible 3% to
7% loss in throughput, which drops when perform-
ing more disk-intensive write operations. Thus, this
test demonstrates that on a realistic workload with
both read and write operations, the record store in-
terface adds negligible overhead to JDBC. It indi-
cates that a native implementation could perform
equally well or better.

5.3 Replication

As a final test, we implemented a simple mail server
program on top of our record store and then inserted
a replication layer underneath the mail server. The
replication layer implements the replication proto-
col used in the Porcupine cluster mail server [39],
which was designed for efficient multi-master repli-
cation among a small number of peers. The protocol
uses a last-writer-wins strategy for resolving update
conflicts, which causes every update to rewrite the
object with its new contents. This is appropriate
for a mail server, since mail messages are typically
only created and deleted, but not modified. The
replication code is written as a layer that intercepts
requests to the record store and logs updates while



otherwise passing through all requests. The replica-
tion layer uses a background thread to read objects
referenced in the replication log and to copy them
to the replication peers.

To test the mail server, we created a client pro-
gram that generates requests to either send mail or
to read mail for a particular user. The size of mes-
sages sent is chosen according to the size distribu-
tion used in [39], and the users for reading mail are
chosen in a randomized round-robin fashion. Clients
randomly choose to either send mail or read mail
with equal probability. To avoid the overhead of
parsing mail protocols in our tests, we use a simpli-
fied RPC mechanism that sends serialized Java ob-
jects over a TCP connection. For our experiments,
we use two machines for running the clients and one
or two machines for running the server, depending
on whether data is replicated or not.

Figure 7 shows the results for one mail server
without replication handling requests from one, two,
and four clients as well as for two servers with repli-
cation handling requests from the same number of
clients. The results demonstrate that, while repli-
cation causes a 20% performance drop for a sin-
gle client, replication increases the scalability of the
overall mail system for two and four clients. This
increased scalability has two reasons. First, when
updates arrive through replication, the user need
not be authenticated and her mailbox need not be
located. Second, updates arrive in batches, so there
is less overhead than when processing individual re-
quests. This experiment shows that application-
specific replication can readily be implemented on
top of the record store and can be used to increase
application scalability when client communication is
relatively expensive.

5.4 Summary

Overall, we believe that the record store’s API
considerably simplifies the implementation of data-
centric applications. Furthermore, even with an im-
plementation on top of a relational database, the
record store introduces only a small performance
overhead for many applications. Finally, it provides
an effective platform for application-specific repli-
cation, because it only exposes a small number of
simple operations that modify data and that must
be captured by the replication layer.
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Figure 7: Performance comparison of a mail server
with and without replication. Clients randomly ei-
ther send mail or retrieve mail for one of 1,000 users.
The non-replicated test uses a single server and mul-
tiple clients while the replicated test splits clients be-
tween two servers that replicate all data. Bars represent
throughput of the mail system in messages per second.

6 Related Work

While storage systems cover a wide range of design
points in the space of possible storage solutions,
three aspects stand out. The first aspect is how
data is structured, the second is how the storage
system ensures reliability, and the third is the ab-
straction level provided by the storage system. Tra-
ditionally, storage systems store either unstructured
or structured data. On one side, file systems and re-
coverable virtual memory (RVM) manage basically
unstructured data. On the other side, record stores,
object stores, tuple spaces, and relational databases
manage either records or objects. Semi-structured
data, notably XML [7], is just emerging as an alter-
native to both unstructured and structured data. At
the same time, efficiently storing and querying semi-
structured data is still a topic of active research [46].

File systems, while nearly ubiquitous, store only
unstructured data, which considerably complicates
concurrent updates to the same file as well as repli-
cation. Furthermore, while several efforts have
explored providing failure atomicity for file sys-
tems [9, 16, 22, 31, 38] as well as the underlying
disk system [8, 21], most file systems limit failure
atomicity to their meta-data, if they provide it at
all.

RVM [30, 40] represents a fault-tolerant alter-
native for managing application state by providing
transactional guarantees for regions of virtual mem-
ory. However, since memory, like files, is inherently



unstructured, RVM suffers from similar problems.
As data is directly mapped into an application’s ad-
dress space, it considerably complicates the effective
sharing between applications as well as replication.

Record stores, such as IBM’s VSAM [34] and
Compaq’s RMS [10], provide a record-oriented stor-
age API and include support for indexes. Because
these record stores expose the on-disk layout of
records and lack any high-level mechanisms for en-
suring atomicity, they are more suitable as the un-
derlying storage layer for our record store than as a
general storage abstraction for applications. Palm
Computing’s Palm OS [6] does not distinguish be-
tween main memory and persistent storage. Its
record storage is limited to providing a possibly
sorted list of records and thus represents an even
lower level of abstraction.

Object stores, such as Thor [29], provide a per-
sistent heap of objects. By preserving the struc-
ture of application objects, they let applications
safely share data. By using transactions, they pro-
vide both concurrency control and reliability across
failures. However, object stores are optimized for
storing heterogeneous objects and for maintaining
the relationships between them, and not for storing
large collections of homogeneous records.

Tuple spaces, such as JavaSpaces [15] and T
Spaces [47], are emerging as a new kind of network
service. A tuple space stores objects and supports
three basic operations: write (to add an object),
read (to return a copy of an object that matches a
template), and take (to remove and return an ob-
ject that matches a template). While tuple spaces
support collections of homogeneous objects and use
transactions for reliability, their limited interface is
not well suited for data-centric applications that fre-
quently modify data.

Relational databases [19] are specifically de-
signed to store large collections of records, to pro-
vide concurrency control and reliability through
the use of transactions, and to support sophisti-
cated queries to access the data. They are widely
used as the underlying store for server applications.
Furthermore, embedded databases are increasingly
used as a storage substrate for resource-limited de-
vices, such as personal digital assistants [36]. The
level of abstraction provided by databases is much
higher than that of our record store because of the
support for relations, a query language [24], and
replication, resulting in a system that is overly com-
plex and requires significant management efforts.

Our record store, like other record stores and
relational databases, manages record-oriented data.
The store provides operations that are atomic across

failures, and applications can use transactions to
group several operations into an atomic unit. Com-
pared to the other systems described, we designed
our record store to provide a simple interface specif-
ically tuned to the needs of modern networked data
services. In particular, our interface is (1) simpler
than that of other record stores, because it provides
a higher level of abstraction and hides the on-disk
layout of data, (2) simpler than that of relational
databases, because it does not support many of their
advanced features, and (3) cleaner than the inter-
faces of other systems, because it clearly separates
different concerns and provides separate operations
and abstractions to represent them. Finally, our
record store is the only system specifically designed
to support application-specific replication.

7 Conclusions

A new generation of networked data services has ap-
peared, due in part to the success of the Internet.
These applications store and retrieve relatively sim-
ple data objects, but have high demands for avail-
ability and reliability, which requires replication.
Neither file systems nor databases provide a good
match for these Internet applications.

In this paper, we have presented a transactional
record store that better meets the requirements of
modern data-centric applications. The design of our
record store is based on three principles: limit global
knowledge, don’t hide power, and separate indepen-
dent concerns. The store combines the manageabil-
ity of the file system interface with select features for
managing record-oriented data. Records are stored
in tables, which are organized in a hierarchical name
space. To simplify replication, the store exposes
globally unique identifiers for individual records as
well as the objects in its name space. To ensure good
performance, the store uses a simple yet expressive
hinting system. Finally, to provide reliability across
failures, all operations are atomic and applications
can use transactions to group several operations into
a single atomic unit.

An implementation of our record store on top
of a relational database shows negligible overhead
over direct database access for workloads dominated
by reads and writes and a reasonable overhead for
workloads dominated by relational operations. Fur-
thermore, the implementation demonstrates that
the record store is an effective platform for imple-
menting application-specific replication.

We are considering two future extensions to our
record store. First, we wish to support references



as a basic type in addition to the existing numeric,
string, and binary types. Applications can already
reference specific records by using a pair of GUIDs,
one for the record’s table and the other for the
record itself. The principle of not hiding power sug-
gests that this type of reference should be formal-
ized, especially since references can provide infor-
mation on which data to prefetch [5]. Support for
references, however, raises the question of whether
to ensure their integrity. On one side, relational
databases provide referential integrity between pri-
mary and foreign keys and thus help applications
maintain consistency between related records. On
the other side, referential integrity clearly violates
the principle of limiting global knowledge. Conse-
quently, we plan to investigate how networked data
services may utilize references in order to better un-
derstand their requirements.

Second, the emergence of tuple spaces as a new
kind of network service raises the question of how
to effectively implement them. Tuple spaces lend
themselves towards storage in a table, but sup-
porting multiple versions and subclasses of objects
makes the mapping non-trivial [4, 26]. Conse-
quently, we plan to determine the minimal feature
set necessary to implement tuple spaces directly
within the record store and how to integrate tuple
and record storage.
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