
Improving the Granularity of
Access Control in Windows NT

Michael M. Swift†, Peter Brundrett, Cliff Van Dyke, Praerit Garg,
Anne Hopkins, Shannon Chan, Mario Goertzel, Gregory Jensenworth

Microsoft Corporation
1 Microsoft Way

Redmond, WA 98052

mikesw@cs.washington.edu,
{petebr, cliffv, praeritg, annehop, shannonc, mariogo, gregjen} @microsoft.com

ABSTRACT
This paper presents the access control mechanisms in Windows
2000 that enable fine-grained protection and centralized man-
agement. These mechanisms were added during the transition
from Windows NT 4.0 to support the Active Directory, a new
feature in Windows 2000. We first extended entries in access
control lists to allow rights to apply to just a portion of an ob-
ject. The second extension allows centralized management of
object hierarchies by specifying more precisely how access
control lists are inherited. The final extension allows users to
limit the rights of executing programs by restricting the set of
objects they may access. These changes have the combined
effect of allowing centralized management of access control
while precisely specifying which accesses are granted to which
programs.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access
controls; K.6.5 [Management of Computing and Informa-
tion Systems]: Security and Protection – invasive software.

General Terms
Security, Design, Performance

Keywords
Access Control Lists, Windows 2000

1 INTRODUCTION
The Windows NT 4.0 operating system provides a secure plat-
form for applications by supporting authentication, authoriza-
tion, and auditing. However, the addition of the Active Directory

in Windows 2000 and the increasing frequency of security ex-
ploits from buggy applications demonstrated several limitations
of Windows NT security. The Active Directory, a hierarchical
directory service [17], requires access control at a finer granular-
ity than can be supported by the mechanisms in Window NT
4.0. Another weakness is that users cannot prevent untrusted
code from accessing their data. This paper presents the changes
made to the Windows NT access control mechanisms to address
these limitations.

The Active Directory in Windows 2000 is a directory service,
which “provides a place to store information about network-
based entities, such as applications, files, printers, and people”
[17]. It stores a database of many types of objects, including
printers, services, and users. The objects in the directory each
have many data properties, such as name, location, and owner.
Every object has a unique name, and the objects are organized as
a tree-shaped hierarchy. Containers are used to group objects,
and there may be objects of many different types within a single
container. While the directory service is installed with many
predefined object types, it also allows new object types to be
defined and existing objects types to be extended with new
properties. The primary task of the Active Directory is to answer
queries, which range from retrieving all the properties of a sin-
gle object to returning a subset of the properties of all the objects
matching a query expression. †

The major access control mechanism in Windows NT 4.0 is the
access control list (ACL). These lists are used throughout the
operating system and by many applications. The access control
list data structures and algorithms were designed for services,
such as the file system, with only a few types of objects (files
and directories), and with only a small number of operations
(such as read, write and execute) and data properties (such as
owner and creation time). However, the Active Directory con-
tains hundreds of types of objects and every object has many
properties that must be protected separately. As a result, we
discovered three limitations of the access control mechanisms in
Windows NT 4.0: the mechanisms do not support large numbers

† This work was performed while this author was employed at
Microsoft Corporation. The author’s new address is: Univer-
sity of Washington, Seattle WA 98195.



of properties or operations on an object, having many different
object types within a container, or propagating changes to ACLs
through a tree of objects.

The solution for Windows 2000 to all three problems is to ex-
tend the entries in access control data structures with the type of
object and the scope to which they apply. For example, access
control list entries in Windows 2000 specify what type of object
is being controlled, what types of objects may be created, and
what types of objects will copy the entry into their access con-
trol list upon creation. As a result, access control lists can pre-
cisely specify what objects may be accessed as well as how to
propagate that information through a large hierarchy of objects.

In addition to not supporting fine-grained access control lists,
Windows NT 4.0 also does not support fine-grained subjects,
with which a user can specify the rights of a particular program.
For example, downloaded ActiveX controls [20] have to be
trusted with the full rights of the user and cannot be restricted to
accessing only specific objects. In addition, bugs in applications,
such as web browsers and email clients, can inadvertently ex-
pose all the files on a computer to an attacker [6]. Using re-
stricted contexts, Windows 2000 allows programs to run with
limited authority, so they may only access certain objects. As a
result, users can implement the principle of least privilege, in
which programs are only granted access to the objects necessary
for their execution.

This paper presents the access control mechanisms in Windows
2000, with an explanation of what tradeoffs were made in the
design. As background, in Section 2 we present a description of
access control in Windows NT 4.0. This is followed by a de-
scription of object-specific access control lists in Section 3 and
inheritance improvements in Section 4. In Section 5 we describe
changes to limit the rights of untrusted code. In Section 6, we
discuss related work and then conclude in Section 7.

2 ACCESS CONTROL MECHANISMS
IN WINDOWS NT
To explain the access control extensions in Windows 2000, we
first describe access control in Windows NT 4.0 The access
control mechanisms in Windows 2000 are an evolutionary step
from the structures and mechanisms in Windows NT, both to
maintain compatibility with existing applications and to mini-
mize the changes to the operating system code. The security
models of both Windows NT 4.0 and Windows 2000 separate
objects, entities being accessed, from subjects, the active entities
performing accesses. Access control in both systems is based on
access control lists, which, for each object, specify the access
granted to different subjects.

2.1 Subjects
A subject in Windows NT is represented by an access token,
which is a kernel object encapsulating a user’s identities and
privileges. Users may be organized into groups, such as all users
that work on a project together. Security identifiers, or SIDs, are
variable-length byte strings that represent security principals,
such as users or groups of users. The operating system also sup-
ports a small number of standard privileges, which are repre-
sented as 64-bit numbers and have two purposes. First, privi-
leges grant administrative access to a large set of objects, such
as all objects for backup/restore or all drivers for system man-
agement. Second, privileges secure operations that have no spe-

cific object, such as shutting down the system or changing the
system clock. Access tokens, shown in Figure 1, are constructed
during logon by a trusted authentication package, which is re-
sponsible for authenticating the user and determining which user
identifier, group identifiers, and privileges should be in the ac-
cess token. Access tokens are associated with both processes and
threads. If a thread has no access token, then the access token
from the containing process is used for access control. Each
process is assigned an access token when it is created, and, after
creation, the access token may not be replaced or changed ex-
cept for enabling or disabling privileges. Threads, though, may
have their access tokens replaced at any time, allowing programs
to perform specific actions with different identities.

2.2 Access Control
Every object in Windows NT that needs access control, such as
files, processes, and devices, is assigned a security descriptor.
These descriptors store all the security state for an object, con-
sisting of the owner, group (similar to the Unix owning group
field), access control list, and auditing information. The operat-
ing system provides a standard representation of access control
lists (ACLs) for use by both system services and applications. If
a security descriptor has no ACL, then it is assumed that all
users are granted full access to the object. Figure 2 shows a sim-
ple file system and the security structures associated with files
and directories.

An access control list is a container for access control entries
(ACEs), which determine which access rights should be granted
or denied to principal. An ACL may contain an arbitrary number
of ACEs for different users or groups of users. The two types of
ACEs in Windows NT 4.0 are ACCESS_ALLOWED_ACEs,

User SID: Jane User
Group SIDs: Administrators

Service Operators
Users

Privileges: Start Service
Load Device Driver
Shut Down

Figure 1: Example of a simplified access token in Windows
NT 4.0, containing user and group identities and privileges.

Files directory 

Users Groups

Personal directory 

Addresses Schedule

Security Descriptor

Owner Group

ACL Audit

ACE

ACE

Figure 2: Every object, such as directories and files has a
security descriptor. A security descriptor has an owner,

group, ACL, and auditing information.



which grant a principal access, and ACCESS_DENIED_ACEs,
which deny access. A sample ACL is shown in Figure 3. The
header field identifies the type of ACE and contains flags con-
trolling how it is inherited. The remainder of the ACE contains
the security identifier of the principal it grants or denies access
and an access mask, which is a bit-field specifying the access
rights. Windows NT 4.0 allows sixteen bits to be defined by the
implementer of an object for specific access rights, such as read-
ing or writing data for a file, or listening on a socket and re-
serves sixteen bits for operating system use.

The security reference monitor in the Windows NT kernel is
responsible for correctly evaluating ACLs for all applications
and system components. Applications call the AccessCheck
routine to make an access control decision. This routine passes
the ACL, requested access rights, and the subject’s access token
into the security reference monitor. The entries from the ACL
are evaluated in order, and each entry’s SID is compared against
the user and group SIDs in the subject’s access token. If the SID
is found, then the access rights in the ACE are either granted or
denied. Once a right has been denied, it may not be granted later
by another ACE. Similarly, once a right has been granted, it may
not be denied later. Interleaving allow and deny ACEs allows
Windows NT to emulate Unix file system ACLs [22] by ensur-
ing that only one ACE grants access to a subject. For example,
by containing an ACE granting a group access to a file followed
by an ace denying the group all other accesses, the ACL ensures
that a member of that group receives just the granted accesses
and no more. However, the ordering convention in Windows NT
is to place ACEs denying access before ACEs granting access,
so that deny entries take precedence. Only if all the requested
access rights are granted, or if the application requested the
maximum allowed access and some right was granted, does the
access check succeed.

While there are routines to directly modify existing access
control lists, ACLs in Windows NT 4.0 are usually created by
copying entries from the container of an object when it is cre-
ated. When an object is created in a container, such as a file in a
directory, some of the entries from the container’s ACL are
inherited onto the new object, and the corresponding ACEs are
copied into the new object’s ACL. Inheritance of ACEs is con-
trolled through the flags in the ACE_HEADER structure,
shown in Table 1. ACEs are effective if they apply to the object

being protected; otherwise they are marked INHERIT_ONLY
and are used for inheritance. ACEs may be marked as inherited
onto containers (objects that can contain other objects), inher-
ited onto objects (objects that cannot contain other objects),
both, or neither. All inheritable access control entries are inher-
ited onto new containers, so the ACEs can be propagated to
objects created within that container. However, if the ACE was
not marked CONTAINER_INHERIT, then the IN-
HERIT_ONLY_ACE flag is set. As a result, the ACE is not
effective and has no impact on access to the container. ACL
inheritance allows permissions set on a directory to be propa-
gated to every new file and directory created underneath it, but
has no impact on already existing objects.

2.3 Limitations of Windows NT 4.0 Access
Control
The Windows NT access control structures and mechanisms are
powerful and flexible, and can be used to emulate other forms
of access control lists, such as Unix [22] and DCE [15]. How-
ever, the mechanisms have several limitations:

• Access masks are only sixteen bits, so a single ACL can
only control sixteen different access types.

• Inheritance does not distinguish between types of objects
with different access rights.

• Propagating access control changes to a tree of objects
may be ambiguous if some of the objects have ACLs other
than the one inherited, because the inherited ACL and ex-
plicitly specified one must be merged.

• There is no mechanism for restricting the rights of a proc-
ess other than disabling privileges.

The first three flaws are most apparent in the context of the
Active Directory. The Active Directory supports many types of
objects, such as users, groups, services, and machines, as well
as many types of containers. Every object has of a set of proper-
ties, each of which may need to be protected differently. The
Active Directory also requires that permissions be administrable
from the top of the directory hierarchy so that an administrator
may grant control of certain types of objects or groups of ob-
jects to another administrator. The fourth flaw was exposed by
the growing number of Windows NT systems connected to the
Internet, which resulted in security exploits of network applica-

ACL Header:
Revision: version 1
ACL Size: 100 bytes
ACE Count: 2

ACE 1
Header:

Type: ACCESS_ALLOWED_ACE
Flags: OBJECT_INHERIT

Access Rights: read, write, execute
Principal SID: administrators

ACE 2
Header:

Type: ACCESS_ALLOWED_ACE
Flags: CONTAINER_INHERIT

Access Rights: read
Principal SID: everyone

Figure 3: Example access control list (ACL) with two
entries (ACEs).

INHERIT_ONLY_ACE ACE is only used
for inheritance;
it is not applied
to this object

NO_PROPAGATE_INHERIT ACE is inherited
onto sub-objects,
but no further

OBJECT_INHERIT_ACE ACE is inherited
onto sub-objects

CONTAINER_INHERIT_ACE ACE is inherited
onto sub-
containers

Table 1: Flags in the ACE_HEADER that control
inheritance.



tions such as web browsers and email clients. As a result, pro-
grams have to be prevented from unnecessary access to user
and system resources. These limitations forced us to update the
access control mechanisms in Windows NT 4.0.

3 OBJECT-SPECIFIC ACCESS
CONTROL
The Active Directory could not be supported by the Windows
NT 4.0 access control infrastructure for three reasons: (1) the
number of object types, (2) the number of properties on each
object, and (3) the ability to add new object types and new
properties to existing objects. The large number of object types
requires a different access right to control creation of each type.
The large number of properties on each object requires more
access rights than the sixteen provided. The ability to create
new objects requires dynamically extending the number of ac-
cess rights.

We considered storing a separate ACL for each property on an
object. However, accessing multiple properties simultaneously
would then require multiple calls to AccessCheck and would
create unnecessary overhead when many properties have the
same protection. Another possibility we considered was to ex-
tend the access mask format so that more than sixteen bits are
used to represent rights. However, a bit field would have been
difficult to manage when properties were added or removed
from an object. The solution we chose for Windows 2000 was
to create a new access control entry format with a field that
specifies the portion of the object or type of object to which the
ACE applies.

3.1 Object Types in ACEs
The new ACE format introduced in Windows 2000 adds two
fields to each entry. An example of the new ACCESS_AL-
LOWED_OBJECT_ACE structure is shown in Figure 4. The
first new field, ObjectType, identifies the type of object or
property to which the ACE applies. The second new field, In-
heritedObjectType, controls which types of objects inherit the
ACE and will be discussed in Section 4. Both types are repre-
sented as GUIDs [13], which are sixteen-byte values used by
DCOM [19] to identify object classes.

The ObjectType field extends the set of rights available for an
object. Applications can supply an object-type GUID to the new
AccessCheckByType routine and only ACEs that either have no
object type or the same object type are evaluated. As a result,
the set of available access rights is expanded because the ob-
ject-type GUID distinguishes between different sets of rights. In
addition, applications may add new object-type GUIDs for an
object dynamically, so the set of access rights can be expanded.
The Active Directory associates a GUID with each object prop-
erty on each type of object, and the same set of access rights,
such as read and write, are used for each property. The directory
service can then check for access to a property by passing the
requested access and the GUID of the property to Access-
CheckByType. The Active Directory also uses object-specific
access control to extend container rights, such as the right to
create a child object. The object type for such a right identifies
the type of object that may be created. As a result, an adminis-
trator can explicitly allow a user to create certain types of ob-
jects but not others.

3.2 Property Sets
Specifying individual properties in ACEs provides fine-grained
access control at the cost of greatly increasing the number of
entries in an ACL. The number of calls to check access also
increases when multiple properties are accessed. The cost of
access control in Windows 2000 is reduced by, first, allowing
multiple object-type GUIDs to be passed to access check rou-
tines and, second, by allowing properties to be grouped into
property sets. Property sets are identified by a GUID, and ac-
cess to a property is granted if the access is granted by the
GUID of its property set. As a result, the set of rights for each
element of the property set is the same. Applications must still
request access to each property individually rather than request-
ing access to the property set as a whole, because a subject may
be granted access to each property separately by ACEs specify-
ing only a property.

Property sets are not visible within the structure of an access
control entry; ACEs do not specify whether the object-type
GUID refers to an object type (in the case of object creation), a
property set or a property. Instead, the hierarchy is passed into
the new access control routines in Windows 2000, such as Ac-
cessCheckByTypeResultList. This routine takes a list of property
GUIDs and their containing property set GUIDs. The list must
be in depth-first order, with each property set followed by the
properties within it. The hierarchy allows ACEs granting and
denying access to be correctly interpreted, so that a separate
access check result can be returned for each property requested.
An example of such a list is shown in Figure 5. Each GUID in
the list has a hierarchy level that indicates whether the GUID
corresponds to an object type, a property set, or a property. The
reference monitor performs a separate access check for each
property requested. Only access control entries with no object
type GUID or an object type matching the property or its prop-
erty set are evaluated.

ACE:
Header:

Type: ACCESS_ALLOWED_OBJECT_ACE
Flags: OBJECT_INHERIT

ObjectType: LogonScriptPath
InheritedObjectType: users
Access Rights: read, write
Principal SID: administrators

Figure 4: Example object type specific ACE granting ad-
ministrators access to the logon script path. This ACE is
inherited onto user objects. The new fields are shown in

boldface.

Level 0: {none}
Level 1: {GUID for profile property-

set}
Level 2: {GUID for home directory

property}
Level 2: {GUID for logon script

property}
Level 1: {GUID for public properties}

Level 2: {GUID for user name}
Level 2: {GUID for user description}

Figure 5: A multi-level list of object-type GUIDs for an
access check.



3.3 Example
An example of how object types in ACEs are used is shown in
Figure 6. The example shows an ACL on a user object in the
Active Directory service. The first ACE grants administrators
full control over all the properties of a user. The second ACE
grants group administrators read and write access to the user’s
public information, such as her phone number. The third ACE
grants the user herself access to change the password on the
account. Changing a password does not correspond to reading
or writing a property. Instead, an object type is being used as an
extended right, because it extends the number of access rights
for a single object to cover an additional operation rather than
protecting a specific property. As a result, the required access is
control rather than read or write. In this case, the Active Direc-
tory understands that the password change protocol, such as
kpasswd [25], is allowed to change a user’s password if it can
prove knowledge of the user’s previous password.

3.4 Discussion
The primary purpose of object-specific ACEs is to allow appli-
cations to both have a large set of access rights as well as to
dynamically extend their set of rights. Hierarchically grouping
access rights into property sets lessens the memory and per-
formance impact of a large set of rights by allowing many rights
to be coalesced into a single access control entry. The Active
Directory uses these features to organize properties with similar
access control requirements, such as all the contact information
properties, into property sets.

There has been some customer resistance to specifying access
control on individual properties: in particular, the large number
of properties can be difficult for administrators to manage, so
access control changes are usually applied at the property set
level. One possible solution would be higher-level management
tools that provide better abstractions while manipulating per-
property access control entries. There has also been resistance
by administrators to dividing the administration of an object
between multiple individuals. However, this may be an artifact
from Windows NT 4.0, in which each application stored its
information separately, removing the need to share access to
objects. As more applications use the Active Directory, shared
access to objects and split administration should become more
common.

One downside of using property sets is the inexact match be-
tween membership in property sets and administrative control.
For example, when upgrading Windows NT 4.0 servers to Win-
dows 2000 the access control lists protecting user objects in the
Windows NT 4.0 directory service are converted to object-
specific ACEs. However, each access right for a user object in
Windows NT 4.0 grants access to many properties. These
groups of properties do not map perfectly onto property sets in
Windows 2000, so rather than converting an access right in
Windows NT 4.0 into access to a Windows 2000 property set, it
is instead converted into a sequence of ACEs granting access to
each property. The resulting access control lists can be many
times longer than those on user objects created natively in Win-
dows 2000. Similarly if an administrator wants to grant access
to most of the properties in a property set but not all, she must
explicitly name all the properties. There has been some feed-
back from developers indicating that allowing a property to be a
member of multiple property sets would simplify administration
and shrink the size of access control lists.

Despite these drawbacks, object-specific access control is cru-
cial to the Active Directory. Identifying properties by GUIDs
simplifies adding and removing properties from an object by
leaving ACEs for other properties unchanged. In addition, ad-
ministrators can grant access to just the properties needed for a
job function or application rather than all those controlled by
the same access right.

4 INHERITANCE CONTROL
Windows NT 4.0 assigns access control to new objects primar-
ily through inheritance of access control entries from the access
control lists on containers. There are two primary limitations to
the inheritance mechanisms in Windows NT 4.0:

• If containers can hold multiple types of objects, it is im-
possible to specify that different access control lists be in-
herited onto each object type.

• It is difficult to propagate changes to ACLs through a tree
of objects, because inheritance rules cannot be re-applied
without erasing any modified ACLs lower in the tree.

Both problems arise in the Active Directory, which has a large
hierarchy of containers and where there are many object types.
One of the goals for the Active Directory is to allow delegation,
so that one administrator can grant another administrator con-
trol over a subset of the objects in the directory service, such as
all those of a particular type or in a particular sub-tree. As a
result, administrators must be able to change permissions at the
top of the directory and let the effects propagate down.

We considered several solutions for each problem. One solution
for supporting multiple object types, similar to the design of
ACLs in DCE [15], is to store multiple ACLs on a container,
one for each object type. However, that approach may be ineffi-
cient if many entries are common to all child objects. In addi-
tion, the routines for manipulating access control data in Win-
dows NT 4.0 do not support multiple ACLs on a single object.
Another option is to store default ACLs for the various object
types in a separate database. However, this solution does not
allow hierarchical propagation of access rights. Instead, we
chose to let applications annotate each ACE with the type of
object that should inherit the ACE.

To allow granting rights to a tree of objects, we considered the
dynamic inheritance approach, as used in the Novell Directory

ACL Header:
Revision: version 2
ACL Size: 100 bytes
ACE Count: 3

ACCESS_ALLOWED_ACE
Principal: Administrators
Access: read, write, delete, control

ACCESS_ALLOWED_OBJECT_ACE
Principal: Group Admins
Access: read,write
ObjectType: {GUID for public

property-set}
ACCESS_ALLOWED_OBJECT_ACE

Principal: Jane User
Access: control
ObjectType: {GUID for change-

password}

Figure 6: A sample ACL using object-type specific access
control entries.



Service [21]: if an access right is not granted on an object, then
access is checked on all parent containers until the right is
granted or the root is reached. However, we believe that the
access control mechanism should not assume that because ob-
jects are named in a hierarchy they are also stored and accessed
in a hierarchy. For example, files in NFS are accessed by file
identifier, not by path [5]. Similarly, the Active Directory stores
data in a flat database, so there is no convenient opportunity to
access the ancestral containers while performing a query. Dy-
namic inheritance would require first locating the object and
then locating all of its ancestors. Furthermore, object accesses
and queries are relatively frequent, while changes to ACLs are
infrequent. It is therefore more efficient to propagate ACLs
when they are changed than to perform additional checks for
each access. In addition, most objects inherit their access con-
trol lists, so, in the common case, the ACL determining access
to an object will be stored on one of its ancestors. As a result,
our design uses static inheritance, in which inheritance is reap-
plied only when ACLs change and only a single ACL is evalu-
ated during access checks.

4.1 Type-Specific Inheritance
Similar to object-specific access control, Windows 2000 allows
type-specific inheritance. The CONTAINER_INHERIT and
OBJECT_INHERIT flags from Windows NT 4.0 are restricted
to specific object types by adding a field, InheritedObjectType,
that identifies the type of object that may inherit the ACE. The
rules for determining which ACEs are inherited now require
two steps: first, find ACEs in the container’s ACL with OB-
JECT_INHERIT set if an object is being created and CON-
TAINER_INHERIT set if a container is being created. Second,
discard ACEs with an InheritedObjectType field that does not
match the type of the new object or container. As in Windows
NT 4.0, all inheritable ACEs are propagated to containers for
future inheritance. The result of this change is that different
types of objects can inherit different sets of ACEs from a con-
tainer, and all objects inherit ACEs that are not restricted by
inherited object types.

An example of type-specific inheritance is shown in Figure 7.
In this example, the services container has ACEs that are to be
inherited onto all objects, Web Service objects, and RPC Service
objects. The WWW service, a Web Service, inherits the ACEs
with no inherited object type and with a Web Service object
type. Similarly, the Names service inherits the first ACE and the
RPC Service ACE. This example demonstrates the power of
type specific inheritance: a single ACE, placed at the top of the
directory tree, can ensure that a principal is granted or denied
access to every object of a particular type.

4.2 Static Inheritance
While type-specific inheritance ensures that different objects
will inherit different ACLs, it does not ensure that changes to an
ACL can be correctly propagated to a tree of objects. The pri-
mary difficulty is merging ACEs applied locally to an ACL
with the entries inherited from its parent. Another difficulty is
that inheritance must be limited, so that certain portions of a
hierarchy, such as those containing private information, do not
receive inherited access control.

Windows 2000 allows changes to access control lists to be
propagated down a tree by annotating ACEs with inheritance
information and by allowing inheritance to be disabled on an

object or container. In addition, Windows 2000 specifies ex-
actly how a locally modified ACL is merged with inherited
access control entries. These changes allow inheritance rules to
be reapplied with the same results, making the process of
changing permissions on a hierarchy simpler and more predict-
able. In Windows 2000, it is possible to grant access to a tree of
objects by granting access to the root of the tree and reapplying
inheritance to the tree. If the propagation of inheritance aborts
due to a failure, inheritance can be applied again with predict-
able results. This inheritance is static, because it is only evalu-
ated when an ACL changes rather than during every access
request. The resulting access for a principal is the same as if
inheritance was dynamic and an object’s ancestors were
checked during an access check.

The ACL data structures in Windows 2000 annotate each access
control entry with a flag indicating whether or not it was inher-
ited. Each ACE that was inherited has the INHERITED_ACE
flag set in its header. These ACEs are removed before reapply-
ing inheritance, leaving only the entries added directly to the
ACL. As a result, reapplying inheritance does not overwrite
locally specified access control entries. Another flag, the
SE_DACL_PROTECTED flag on security descriptors, prevents
ACEs from being inherited onto an ACL. This flag is stored on
security descriptors, the container for security information on
each object, rather than ACLs because a security descriptor
with no access control list is interpreted as granting full access
to all principals, and may need to be protected from inheritance.

In addition to adding these flags, the ordering rules for ACEs
are different in Windows 2000. In Windows NT 4.0 it is rec-
ommended that ACEs denying access be placed first in an ACL,
so that deny ACEs have precedence over allow ACEs. How-
ever, we chose to grant administrators of a sub-tree the ability
to override all inherited permissions (which can also be accom-
plished by protecting the ACL from inheritance). Placing all
access denied ACEs first prevents the administrator of an object
from overriding an inherited ACE that denies access. As a re-
sult, in Windows 2000, locally added ACEs are placed first,
followed by inherited entries. Unfortunately, this ordering limits
centralized control by allowing high-level access control deci-
sions to be overridden at lower levels in the hierarchy.

Services: container type
ACE1: inherited object type = null
ACE2: inherited object type =

Web Service
ACE3: inherited object type =

RPC Service
Services\WWW: Web Service type

ACE1: inherited object type = null
ACE2: inherited object type =

Web Service
Services\Names: RPC Service type

ACE1: inherited object type = null
ACE3: inherited object type =

RPC Service

Figure 7: ACLs on a container and two objects within the
container. Type specific ACEs are inherited from the base

‘ Services’ container only onto specific types of objects.



4.3 Example
An example of how these flags are used is shown in Figure 8. In
this example, the ‘\files\Personal’ directory overrides the inher-
ited permissions by removing the access of administrators and
instead granting access to the user ‘Jane User’. The other direc-
tory, ‘\files\Work’, augments the inherited permissions by addi-
tionally granting the ‘Users’ group read access. When a new
ACE is added to the ‘\files’ directory, the change is only propa-
gated to the ‘\files\Work’ directory, while the ‘\files\Personal’
directory is protected from inheritance.

4.4 Discussion
These enhancements to the inheritance rules allow centralized
management of access control because access permissions can
be administered at any level of the hierarchy. Some accesses
can be administered at the top and propagate down, while others
are applied lower in the tree or directly to a single object. In
addition, some portions of the tree may be more protected and
block inheritance of rights from above. This approach provides
the major benefit of dynamic access control, which is central-
ized administration high in the tree of objects. However, it low-
ers the cost at access time because ACLs along the whole path
do not need to be evaluated.

In our experience, the new inheritance mechanisms are used
mostly for making global changes to the Active Directory rather
than to delegate access to particular object types. This again is a
form of organizational resistance to distributing responsibility
for objects in the directory, and may change as more applica-
tions use it to store data.

Compared to Windows NT 4.0, this inheritance mechanism
increases the cost of access control both in space and time.
First, the inherited ACE information for each object type is
duplicated in the ACL of every container, so it may require
much more space to store. However, by only storing one copy

of each unique ACL, the space needed to store ACLs can be
reduced. Second, the larger ACLs make access check opera-
tions on containers more expensive [18], because every ACE,
whether or not it is effective, must be read and inspected. Al-
though the speed of access checks has not been a problem in the
Active Directory, caching the result of an access check can
lower the cost of access control by not evaluating the same
ACL multiple times. Another difficulty is that changing an
object from a non-container to a container requires reapplying
inheritance on every instance of the object, so that the inherit-
able ACEs can be propagated to its ACL. Finally, applying
inheritance statically requires that some piece of code walk the
tree of objects and re-apply inheritance. This re-application
must be resumed if the machine crashes, and for certain applica-
tions, such as the Active Directory, must be transactional. The
process is much more complex than dynamically applying in-
heritance during an access check. However, once implemented,
static inheritance can provide the manageability benefits of
dynamic inheritance with lower runtime costs.

5 PROTECTION FROM UNTRUSTED
CODE
Fine-grained access control lets administrators control which
users may have access to an object, but it does not let users
choose which programs may have access. The second major
access control concern in designing Windows 2000 was limit-
ing the damage caused by misbehaving programs. There are
many examples of extra protection layered on top of operating
system protection, such as Janus [10] and Tron [4]. These sys-
tems augment Unix protection with separate configuration files
or scripts that limit the rights of certain programs and processes.
We believe that, given the opportunity to modify the operating
system, it is better to extend the existing operating system ac-
cess control mechanisms rather than add a new set of mecha-
nisms. It is easier to understand and administer a system with

Figure 8: An example of reapplying inheritance. On the left is shown a directory hierarchy, in which the \Personal directory is
protected from inheritance. After modifying the ACL on the \files directory with the bold-faced entries, the new ACE is propa-

gated to the \Work directory but not the \Personal directory.

\files
Principal: Admins

Read, Write

\Personal
SE_DACL_PROTECTED
Principal: Jane

User
Read, Write

\Work
Principal: Users

Read
Principal: Admins

Read, Write
(Inherited)

\files
Principal: Admins

Read, Write
Principal: Backup

Read

\Personal
SE_DACL_PROTECTED
Principal: Jane

User
Read, Write

\Work
Principal: Users

Read
Principal: Admins

Read, Write
(Inherited)

Principal: Backup
Read
(inherited)



one set of mechanisms rather than using different mechanisms
for different access control purposes. Finally, multiple access
control mechanisms protecting the same objects may cause
confusing results or interact poorly.

Our solution, restricted contexts, was based on three goals:

• Code should have no greater access than the user running
the code.

• Users should be able to restrict programs to accessing spe-
cific objects or classes of objects.

• No separate security model should be needed for restrict-
ing code.

These goals suggest that untrusted code should run in a separate
process and address space with its own access token, and access
control on objects should limit the process to a subset of the
objects accessible to the user.

5.1 Restricted Contexts
Windows 2000 allows users to create a limited version of their
identity that may access only a subset of the objects normally
accessible. A restricted context is an access token with a re-
striction, which consists of a set of groups to disable, a set of
privileges to disable, and a set of restricted security identifiers.
The disabled privileges and groups cannot be re-enabled by the
untrusted code. The groups are marked
USE_FOR_DENY_ONLY, so they will be used with ACEs
denying access but not those granting access. The restricted
SIDs represent the identity and privileges of the program being
run and are used during access checks. The user may choose
these SIDs and assign SIDs to different programs or software
publishers. Both the user’s normal identities and the restricted
SIDs must be granted access to an object. If either set of identi-
ties is denied access, then the access check fails. A user can
grant a particular program access to an object by, first, creating
a restricted SID for the program, then setting appropriate ACLs
to grant access to that SID, and finally, running the program in
a restricted context with that SID in the restrictions. As a result,
users can choose with objects may be accessed by a program.

An example of a restricted context is shown in Figure 9, and
how it is used for an access check is shown in Figure 10. In this
example, the token has a single restricted SID, ‘StockTicker’,
representing a downloadable stock-ticker application. The three
ACLs shown in Figure 10 demonstrate the effect of restricted
SIDs. In the first ACL, the restricted context is allowed read
access, because both ‘Jane User’ and ‘StockTicker’ are granted
access. With the second ACL, the restricted context has no ac-
cess, because there is no ACE granting ‘StockTicker’ any access.
Similarly, the third access is denied because the ‘SecurityGroup’
SID in the unrestricted portion of the token may only be used to
deny but not to grant access. As a result, the restricted context is
granted access to only a subset of the resources available to the
user.

Restricted contexts can be used to implement the policy of least
privilege [23], which states that a program should have only the
privileges necessary to perform its job and no more. As a result,
some common application exploits, such as macro viruses, can
be prevented because the application has no access to unrelated
or unnecessary resources.

5.2 Applying Restrictions to System Ob-
jects
Implementing restrictions by placing restricted SIDs in access
control lists poses three problems.

• Users do not control many objects in the operating system,
so they cannot grant access to those objects.

• The operating system creates the ACL on many non-
persistent objects, such as for user interface objects, so us-
ers do not have an opportunity to store a new ACL on these
objects.

• The access rights for an operating system object may be at
the wrong granularity, such as in the case of sockets, which
do not distinguish between different endpoints.

Our solution to protecting system objects was to create several
standard SIDs that may be used in restrictions to grant access to
broad classes of system resources. The operating system uses
these SIDs when protecting its own objects. For example, the

Access Token:
User SID: Jane User

Group SIDs: Everyone
GradStudents
SecurityGroup

(use for deny only)

Restricted SIDs: StockTicker

Privileges: none

Figure 9: A restricted token. In this token, the Security-
Group group SID has been disabled so it can only be used
to deny access. In addition, the StocketTicker SID has been

added to the Restricted SIDs field, so that SID must be
granted access to any objects accessed by this token.

ACL 1:
Principal: Jane User

Access: Read, Write, Delete
Principal: StockTicker

Access: Read
Access granted to restricted context: read

ACL 2:
Principal: Jane User

Access: Read, Write, Delete
Access granted to restricted context: none

ACL 3:
Principal: SecurityGroup

Access: Read, Write
Principal: StockTicker

Access: Read, Write
Access granted to restricted context: none

Figure 10: This example shows the results of using the
restricted token from Figure 9 to access objects pro-

tected by three ACLs.



SID “restricted-network” is used to grant access to network
components, and the “restricted-windows” SID grants access to
the user interface. On resources for which ACLs do not provide
the correct granularity of protection, access to the object itself
must be denied. Instead, the untrusted application is linked to
proxy code that contacts a trusted service to perform the opera-
tion. For example, network client code contacts a trusted proxy
service to create a network connection. The proxy then checks
whether the untrusted code is allowed to contact a specific end-
point and creates the connection. The proxy code may slow
down the operation significantly if new connections are fre-
quent, but is still effective at enforcing finer granularities of
access control. These features were implemented but dropped
for the final release of Windows 2000 due to schedule pressure.

5.3 Remote Authentication with Restricted
Contexts
Restricted contexts are most useful for local access control but
they may be extended across a network. If restricted contexts
have direct access to a user’s password, private keys for TLS
[9], or Kerberos ticket cache [11], then the untrusted code can
authenticate itself as the user to another machine without the
restrictions by implementing the authentication protocol itself.
However, by exposing only abstract authentication operations,
such as the GSS-API [14], the operating system can ensure that
the authentication protocol carries restrictions to remote servers.
As long as the untrusted code has no opportunity to corrupt the
restrictions, this technique allows restrictions to be used across
machine boundaries. The Kerberos protocol used in Windows
2000 [11,12] has a field, authorization-data, in its encrypted
authentication messages with which the client can explicitly
limit its authority on the server. As a result, the Kerberos client
code can bundle the restrictions from an access token and se-
curely transmit them to a remote server, which can then create a
restricted context for the client. This feature was also imple-
mented but not shipped with Windows 2000.

5.4 Discussion
We do not have much experience with restricted contexts due to
their limited implementation in the shipped version of Windows
2000. However, restricted contexts as they are implemented
allow users to divide their identity, so they need not run all pro-
grams with the same rights. Users may choose to run a web
browser and mail program in a context without access to work
documents. Similarly, users can choose to disable their adminis-
trative access to the system when running normal programs and
only enable it when running administrative tools. Allowing
restricted contexts to be used for network authentication in-
creases their usefulness because ordinary applications that need
to access network services can be run in restricted contexts. As a
result, restricted contexts are able to both provide safety from
untrusted code and protect normal applications from exploitation
by malicious viruses.

There are several issues with restricted contexts we have still not
resolved. The first is assigning restricted SIDs to executables.
Currently, we use the DNS domain name of the source of the
executable, but this requires trusting DNS to accurately translate
that name. The second issue is determining the correct context
for a process executing code from multiple sources. Intersecting
the two contexts may create too restrictive a context, and using
the union of the two contexts may be too relaxed to be safe.

Finally, restricted contexts do not fully isolate programs; they
have no notion of information flow [3,8]. A rogue mail program
in a restricted context may save a file that is later accessed from
an unrestricted context where it may cause damage, so some
form of labeling objects with their source is necessary to fully
isolate programs.

6 RELATED WORK
The work presented here is an evolutionary step from the access
control model in Windows NT 4.0. The inheritance model in
Novell NDS 8 [21] resembles the model in Windows 2000, by
supporting inherited rights in a directory service. NDS differs in
that it uses dynamic inheritance. In addition, NDS supports in-
heritance filters, which are similar to our
SE_DACL_PROTECTED flag except that they protect the in-
heritance of specific rights rather than all rights. Furthermore,
NDS does not support grouping properties into property sets.
WebDAV [7] also has a model similar to Windows 2000. It
supports protecting objects from inheritance and marking ACEs
as inherited, but does not restrict objects to a tree structure.

Restricted contexts are similar to the compound principals from
[1], where two principals can be required for access. However,
restricted contexts change the subject of access control rather
than changing ACLs to require compound principals. Role-
based access control (RBAC) [24] is related to restricted con-
texts in that programs can be run with different identities accord-
ing to their task. Unlike RBAC, users can choose whether to use
restricted contexts and what context to use.

Several projects provide isolation between processes to limit the
exploitation of trusted code. HP’s Compartmented Mode Work-
staion (CMW) [27] and domain and type enforcement (DTE) in
Unix [26] provide isolation between processes and allow for
restricting the objects accessible to a process. However, while
these systems provide stronger security guarantees, they also
require far more changes to the operating system, such as sup-
port for mandatory access control, than do restricted contexts.
The WindowBox project [2] provides isolation with restricted
contexts by separating applications onto separate user-visible
desktops rather than just running them in different contexts.

Janus [10] and Tron [4] are similar to our work, in that they
protect the boundary between processes and the operating sys-
tem by layering protection on top of operating system security
mechanisms. Both approaches use a separate set of security
policies and configuration tools for protecting users from un-
trusted code, and as a result are not integrated with the existing
operating system security mechanisms. The benefit of these
systems is that they provide more flexible policies, such as
modifying the arguments to system calls.

Finally, [16] suggests that operating systems should support
hierarchically-named capabilities, in which a user may append
identifiers to her user identifier to create many levels of sub-
identities. These capabilities are similar to restricted contexts in
that users can create limited versions of their identity, but pro-
grams must specify which single capability is to be used for
each access.

7 CONCLUSION
In this paper we presented the extensions made to the Windows
NT 4.0 access control mechanisms for Windows 2000. While



many of the ideas have been seen before in other systems or in
slightly different forms, their combination provides the right
balance of feasibility, performance, and manageability needed
for Windows 2000. In particular, extending access control en-
tries to specify both to which portion of an object they refer and
onto which objects they may be inherited allows the existing
model, designed for file systems, to be applied to many other
applications. The extended inheritance controls enable central-
ized management of large hierarchies of objects by allowing
inheritance to be reapplied without disrupting previously modi-
fied ACLs. The addition of restricted contexts makes it possible
to apply operating system security mechanisms to misbehaving
code by allowing users to restrict the set of objects accessible to
a program and provides the support needed to implement the
policy of least privilege. Overall, these changes greatly improve
the scalability and security of the Windows 2000 operating sys-
tem.

8 ACKNOWLEDGEMENTS
We would like to thank the other members of the security, direc-
tory service, and DCOM teams at Microsoft, in particular Robert
Reichel and Murli Satagopan, for contributing to the ideas pre-
sented here. David Ely provided valuable feedback on an early
draft of this paper. We would also like to thank our anonymous
reviewers and Robert Grimm, our shepherd, for his insightful
and detailed comments that greatly improved the paper.

9 REFERENCES
[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, A Calcu-

lus for Access Control in Distributed Systems. ACM Transac-
tions on Programming Languages and Systems, 15(4):706--
734, Oct. 1993.

[2] D. Balfanz, and D. Simon, WindowBox: A Simple Security
Model for the Connected Desktop. In Proceedings of the 4th
USENIX Windows Systems Symposium, Aug. 2000.

[3] D. Bell and L. LaPadula, Secure Computer System: Unified
Exposition and the Multics Interpretation. Technical Report
No. ESD-TR-75-306, Electronics Systems Division,AFSC,
Manscom AF Base, Bedford, MA, 1976.

[4] A. Berman, V. Bourassa, and E. Selberg, TRON: Process-
specific file protection for the UNIX operating system. In Pro-
ceedings of the 1995 USENIX Winter Technical Conference,
pages 165—175. Jan. 1995.

[5] B. Callaghan, B. Pawloski and P. Staubach, NFS Version 3
Protocol Specification. Request for Comments RFC 1813,
Internet Engineering Task Force, Jun. 1995.

[6] Computer Emergency Response Team, CERT Advisory CA-
2000-16 Microsoft ‘IE Script’/Access/OBJECT Tag Vulner-
ability. http://www.cert.org/advisories/CA-2000-16.html, Aug.
2000.

[7] G. Clemm, A. Hopkins, E. Sedlar and J. Whitehead, WebDAV
Access Control Protocol. Internet draft draft-ietf-webdav-acl-
04, Intnernet Engineering Task Force, Jan. 2001.

[8] D. Denning, A Lattice Model of Secure Information Flow.
Communications of the ACM, 19(5), pages 236-243, Aug.
1976.

[9] T. Dierks and C. Allen, The TLS Protocol. Request for Com-
ments RFC 2246, Internet Engineering Task Force, Jan. 1999.

[10] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A Se-
cure Environment for Untrusted Helper Applications --- Con-
fining the Wily Hacker. In Proceedings of the 1996 USENIX
Security Symposium.

[11] J. Kohl and B. C. Neuman. The Kerberos Network Authentica-
tion Service (V5). Request for Comments (Proposed Standard)
RFC 1510, Internet Engineering Task Force, Sep. 1993.

[12] J. Kohl, B. C. Neuman, and T. Y. T’so. The Evolution of the
Kerberos Authentication System. In Distributed Open Systems,
pages 78-94. IEEE Computer Society Press, 1994

[13] P. J. Leach and R. Salz, UUIDs and GUIDs. Internet Draft
draft-leach-uuids-guids-01.txt. Internet Engineering Task
Force, Feb. 1998.

[14] J. Linn, Generic Security Service API, Request For Comments
RFC 1508, Internet Engineering Task Force, Sep. 1993.

[15] D. Mackey and R. Salz, DCE ACL Library – Functional Speci-
fication, OSF DCE SIG Request For Comments 46.0, Oct.
1993.

[16] D. Mazières and M. F. Kaashoek, Secure Applications Need
Flexible Operating Systems. In Proceedings of the 6th Work-
shop on Hot Topics in Operating Systems, May 1997.

[17] Microsoft Corp., Windows 2000 Active Directory,
http://www.microsoft.com/widows2000/guide/server/features/
directory.asp, 2000.

[18] Microsoft Knowledge Base, Large Numbers of ACEs in ACLs
Impair Directory Service Performance,
http://support.microsoft.com/support/kb/articles/q271/8/76.asp,
2000.

[19] Microsoft Corp., Distributed Component Object Model.
http://www.microsoft.com/com/tech/dcom.asp, 1998.

[20] Microsoft Corp., ActiveX Controls, http://microsoft.com/
com/tech/activex.asp, 1999.

[21] Novell Inc., NDS 8. http://www.novell.com/documentation/
lg/nds8/docui/index.html, 1999.

[22] D. Ritchie, and K. Thompson, The UNIX Timesharing System.
Communications of the ACM, 17(7), pages 365-375, Jul. 1974.

[23] J. Saltzer and M. Schroeder. The Protection of Information in
Computer Systems. In Proceedings of the IEEE 63(9), pages
1278-1308, Sep. 1975.

[24] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
Based Access Control Models. IEEE Computer, 29(2) pages
38- 47, Feb. 1996.

[25] M. Swift, J. Trostle, J. Brezak and B. Gossman, Kerberos
Set/Change Password: Version 2, Internet Draft draft-ietf-cat-
kerberos-set-passwd-03 Internet Engineering Task Force, Apr.
2000.

[26] K. Walker, D. Sterne, M. Badger, M. Petkac, D. Shermann,
and K. Oostendorp, Confining Root Programs with Domain
and Type Enforcement (DTE). In Proceedings of the 6th

USENIX Security Symposium, Jul. 1996.

[27] Q. Zhong, Providing Secure Environments for Untrusted Net-
work Applications. In Proceedings of the 2nd IEEE Interna-
tional Workshop on Enterprise Security, Jun. 1997.




