
CS416 Spring 2007
Prof. Wright

Assignment #2

Due February 16, 2007

This assignment requires you to implement Newton’s method and bisection
for rootfinding in Matlab and try them on several functions. You’ll need to pass
function references to Matlab. We’ll discuss this in class, and you can get more
information by typing “help feval”in Matlab.

1. Write a Matlab function newton.m to implement Newton’s method. Use
the following lines as the first lines of your code; they describe the input
and output arguments you should use for your function, as well as the
various termination tests:

function [x,ierr] = newton(f, fd, x0, epsi, delta, maxf, maxstep)
% Newton’s method for evaluating a root of the function
% f whose derivative is given in fd.
%
% calling sequence: [x,ierr] = newton(@f, @fd, x0, epsi, delta, maxf, maxstep)
%
% f = name of the matlab function that evaluates f
% fd = name of the matlab function that evaluates f’
% x0 = initial guess for the root x
% epsi = terminate (with ierr=0) if two successive x values
% differ by less than this amount
% delta = terminate (with ierr=0) if |f| drops below this value
% maxf = maximum number of iterations; terminate with ierr=2 if exceeded
% maxstep = terminate (with ierr=1) if step is longer than this value
%
% the routine prints out iteration number, x, and f at each iteration
%

You will find Matlab functions fq1.m and fdq1.m which evaluate the func-
tion f(x) = ex − 3x2 and its derivative on the course web site. Write a
Matlab code q1.m that calls your newton routine to find roots of this func-
tion, starting at the points x0 = −0.5 and x0 = 4. (Choose appropriate
values for the other input arguments.) Your code q1.m should print out
the final values of x and ierr returned by your Newton routine.

2. You will find Matlab functions fq2.m and fdq2.m to evalute the function
f(x) = tanx − x and its derivative on the course web site. Write code
q2.m that calls your Newton routine to find roots of this function, starting
from the values x0 = 0.1 and x0 = 4.9, and two other starting points of
your own choosing. Comment on the performance of the Newton code
on this example—its rate of convergence, whether it terminated with an

1

approximate root or an error, etc. (It may help if you draw graphs of tan x
and x, to figure out approximately where the true roots of f(x) lie.)

3. Write a Matlab function to implement the bisection algorithm, using the
following as the initial lines of your code:

function [x,ierr] = bisection(f, a, b, tol, tolf)
%
% use bisection to calculate a root of f.
%
% calling sequence: [x,ierr] = bisection(@f, a, b, tol)
%
% f = name of the matlab function to evaluate function f
% a,b = initial endpoints of the interval. Must have a<b, with
% f(a) and f(b) different signs (otherwise return ierr=1)
% tol = terminate when length of interval falls below this value
% tolf = terminate if |f(x)| falls below this value, where x is some
% point evaluated during the algorithm
%
% return x = final estimate of the root.
% ierr = error code (=0 if an approximate root is found)
%

Write a code q3.m that tests your bisection code on the function f(x) =
tanx − x defined in question 2, calling with a = 3.5 and b = 4.5 and
tol and tolf both set to 10−6. Print out the final values of x and ierr
returned by your bisection code.

Hand in hard copies of your codes newton.m, bisection.m, q1.m, q2.m,
and q3.m and output together with your written answers. Put your codes in a
directory called homework2. From the parent directory of homework2, run the
following command:

handin -c cs416-1 -a hwk2 -d homework2

2

