Midterm Examination

CS 525 - Spring 2009

Wednesday, March 11, 2009, 7:15-9:15pm

Each question is worth the same number of points.

No electronic devices, notes, or books allowed, except that you may bring one standard-size sheet of paper, handwritten on both sides, into the test. **You need to give reasoning and justify all your answers**, citing the appropriate theorems where necessary.

1. (a) For the following choice of A and b, solve the system of equations $Ax = b$. If there are multiple solutions, describe the full solution set. If there are linear dependence relations between the rows of the coefficient matrix, state them.

 \[
 A = \begin{bmatrix} 1 & 4 & 7 \\ -1 & 2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}.
 \]

 (b) Repeat part (a) for the following choice of A and b:

 \[
 A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ -3 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}.
 \]

2. Solve the following linear program. If it is infeasible, say so. If it is unbounded, give a direction of unboundedness. If there are multiple solutions, describe the full set of solutions.

 \[
 \begin{array}{l}
 \text{min} & x_1 - 2x_2 + 2x_3 \\
 \text{subject to} & -x_1 + x_2 - 3x_3 \geq 1, \\
 & x_1 + 4x_2 + 4x_3 \leq 2, \\
 & 4x_1 + x_2 - 6x_3 \leq 5, \\
 & x_1, x_2, x_3 \geq 0.
 \end{array}
 \]
3. Solve the following linear program. (Hint: Use Scheme II.) If it infeasible, say so. If it is unbounded, give a direction of unboundedness. If there are multiple solutions, describe the full set of solutions.

\[\begin{align*}
\text{min} & \quad 4x_1 + 6x_2 + 2x_3 \\
\text{subject to} & \quad 2x_1 - 3x_2 + x_3 = 4, \\
& \quad 3x_1 - 5x_2 + x_3 \geq 9, \\
& \quad x_1, x_2 \geq 0, \quad x_3 \text{ free.}
\end{align*} \]

4. (a) Explain why the following linear program cannot be infeasible, and give an upper bound on its optimal objective value:

\[\begin{align*}
\text{min} & \quad p'x \\
\text{subject to} & \quad Ax \geq 0, \quad x \geq 0.
\end{align*} \]

(b) Write down conditions under which the problem in part (a) has a solution. (Hint: Use the dual.) Assuming these conditions hold, write down a solution to this problem without doing any computations at all. (Justify your answers by citing the appropriate theorems.)

(c) Write down the dual of the following linear program in \(n \) unknowns, and find the solution of the dual:

\[\begin{align*}
\text{max} & \quad x_1 + 2x_2 + 3x_3 + \ldots + nx_n \\
\text{subject to} & \quad x_1 + x_2 + x_3 + \ldots + x_n \leq 1, \\
& \quad x_1, x_2, x_3, \ldots, x_n \geq 0.
\end{align*} \]