
CS 525 Class Project
Breast Cancer Diagnosis via Quadratic

Programming∗

Fall, 2015
Due 15 December 2015, 5:00pm

In this project, we apply quadratic programming to breast cancer diag-
nosis.

We use the Wisconsin Diagnosis Breast Cancer Database (WDBC) made
publicly available by Dr. William H. Wolberg (Department of Surgery, UW
Medical School), Professor W. Nick Street (Management Sciences Depart-
ment, University of Iowa), and Prof. O. L. Mangasarian (Computer Sciences
Department, UW).

The database is available thorugh the class web site, as the files wdbc.data
and wdbc.names. You should read the file wdbc.names, which explains some
background information and a description of the structure of the data file.

The idea of the project is to come up with a discriminant function —
a separating plane in this case — to determine whether an unknown tumor
sample is benign or malignant. In order to do so, you will use part of the
data in the above database as a “training set” to generate the separating
plane and the remaining part as a “testing set” to test the effectiveness the
separating plane.

Attributes 3 to 32 of each piece of data form a 30-dimensional vector—
a point in 30-dimensional real space R30. A training set, consisting of two
disjoint point sets in R30 representing confirmed benign and malignant fine
needle aspirates (FNAs), is used to generate the separating plane. (Figure
1 shows the different appearance of malignant and benign samples.) Each
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Figure 1: Nuclei of cells of malignant(left) and benign(right) fine needle
aspirates taken from patients’ breasts

sample point is labeled either “B” of “M”, to indicate whether it is benign or
malignant. We can therefore form two sets of points in the space R30: a set
B of points corresponding to the benign tumors, and a set M of malignant
tumors. Our aim is to compute a plane in R30 which separates these two
sets, as much as possible. When a new sample point is obtained, we diagnose
it as “benign” or “malignant” depending on whether it lies on the “B side”
of the separating plane, or on the “M side”.

We say “as much as possible” because it may be that the data in B and
M is interspersed in a way that makes it impossible to find a plane that
performs the separation cleanly. In this case, we seek a plane that minimizes
some measure of the classification error. This classification error for a point
is strictly positive if it lies on the wrong side of the plane (for example, the
point represents a benign sample but lies on the “M side” of the plane), and
zero otherwise.

Algebraically, the separating plane is defined as a linear function f with
the following desired property:

f(x) > 0 =⇒ x ∈M, f(x) ≤ 0 =⇒ x ∈ B.

This function is given by f(x) = w′x−γ, where w ∈ R30 and γ ∈ R are to be
determined from the training data. The quantities w and γ are determined
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by solving a quadratic program in MATLAB. The form of this quadratic
program is similar to one proposed in [1, 4]; see also [3].

If represent the sets of m pointsM by a matrix M ∈ Rm×n and the set of
k points B by a matrix B ∈ Rk×n, then the problem becomes one of choosing
w and γ to solve the following minimization problem:

min
w,γ

1

m

∥∥(−Mw + emγ + em)+
∥∥
1

+
1

k

∥∥(Bw − ekγ + ek)+
∥∥
1

Here em and ek are vectors of lengths m and k, respectively, whose entries
are all 1, while ((z)+)i = max{zi, 0}, i = 1, 2, . . . ,m and ‖z‖1 =

∑m
i=1 |zi| for

z ∈ Rm. This problem approximately minimizes the number of points that
are misclassified by choosing w and γ to minimize the sum of the distances
(times ‖w‖2) to the separating plane whenever a point is on the incorrect
side of the plane. The (·)+ and ‖ · ‖1 functions can be eliminated to yield the
following linear programming reformulation:

minw,γ,y,z
(

1
m
e′y + 1

k
e′z
)

subject to
Mw − eγ + y ≥ e,
−Bw + eγ + z ≥ e,
y ≥ 0, z ≥ 0.

If the data sets M and B are separable, then this linear program may
have multiple solutions. In order to choose an appropriate solution from
these, typically w is chosen to maximize the “separation margin” between
the two datasets. It can be shown that the separation margin is given by the
reciprocal of ‖w‖2, so we modify the above formulation to add a multiple of
the two-norm of w to the objective:

minw,γ,y,z
(

1
m
e′y + 1

k
e′z
)

+ µ
2
w′w subject to

Mw − eγ + y ≥ e,
−Bw + eγ + z ≥ e,
y ≥ 0, z ≥ 0.

Here µ is a penalty parameter. As its value is increased, the norm of the
solution w tends to decrease. This quadratic programming formulation
is the one you will work with in this project.

You can obtain a Matlab file wdbcData.m that contains a function that
reads the data from wdbc.data and stores it in test and training matrices.
See the comments at the start of this file for details.

The project consists of the following four parts.
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1. Write code in Matlab and CVX to solve the QP formulation above.

(a) Test your routine on the training data obtained by setting fracTest=0.1
and reord=0 in help wdbcData, using the value µ = 0.001. (This
will yield a training data set with 512 data points, consisting of
records 1 through 512 from the file wdbc.data.)

(b) Test your routine on the training data obtained by setting fracTest=0.15
and reord=1 in help wdbcData, using µ = 0.001. (This will yield
a training matrix of 484 records randomly selected from the 569
samples in the file wdbc.data.)

Make sure you print out w, γ and the optimal objective of the quadratic
program. Also, print out the number of misclassified points in the
training set — the number of points in the training set that lie on the
wrong side of the calculated plane.

2. By modifying your code for part 1, write a program to obtain the
separating plane on the training set, and then determine the number of
misclassified points on the corresponding testing set, for the following
cases (use µ = 0.001 for each):

(a) fracTest=0.1 and reord=0

(b) fracTest=0.15 and reord=0

(c) fracTest=0.20 and reord=1

(d) fracTest=0.05 and reord=1

Print fracTest, reord, and the number of misclassified points in the
testing set, for each case. (Do not print w, γ, or the optimal objective
for these cases.)

3. Suppose that the oncologist wants to use only 2 of the 30 attributes to
make the diagnosis. Determine which pair of attributes is most effec-
tive in obtaining a correct diagnosis as follows. First, obtain a training
set by setting fracTest=0.12 and reord=0. Considering each of the(
30
2

)
= 435 pairs of possible attributes, use the training set and the for-

mulation above to determine a separating plane in R2. Use µ = 0.0008
throughout. For each plane use the training set with the correspond-
ing pair of attributes to determine the number of misclassified cases.
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Each time you find an attribute pair that gives the fewest number of
training-set misclassifications encountered so far, print out a line of the
form

fprintf(’attributes %2d %2d: misclass %3d\n’,i,j, wrong);

(Note: Do not print out this line for every one of the 435 pairs! Only
do it when you find a pair that gives the best results so far.)

4. Apply the best performing answer from Part 3 above to the testing
set. First, determine the number of incorrectly classified points in the
testing set. Then, plot all the testing set points on a two dimensional
figure using MATLAB’s plotting routines. Use ‘o’ for benign points
and ‘+’ for malignant points in the plot. Use MATLABcommands
to draw the calculated separating plane w′x = γ on the plot. Check
to see if the number of misclassified points agrees with the plot, and
comment. (Note that some points may coalesce, so you may want to
randomly perturb points by a small amount to visualize all the points.)

Hand in listings of your code and output, and a short (approximately one
page) summary and discussion of your results.
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