
726: Nonlinear Optimization I
Mathematical Background Material

Fall, 2008
Important: Review Appendix A of [3] and make sure you understand it.

The text below hits a few important topics from that material and adds a few more
relevant items. Some of it will be covered in class but it is up to you to fill in the rest.
Many of the things discussed here will be referred to during the semester.

1. Linear Algebra.
Definition 1.1. The vectors x1, x2, . . . , xm in IRn are linearly dependent if there

exist scalars α1, α2, . . . , αm, not all zero, such that
∑m

i=1 αixi = 0. Otherwise, they
are linearly independent.

Lemma 1.2. Suppose that y1, y2, . . . , ym+1 are vectors in IRn that are each a
linear combination of the vectors x1, x2, . . . , xm. Then y1, y2, . . . , ym+1 are linearly
dependent.

Proof. See Mangasarian [2, p. 177].
Corollary 1.3.

• Any m > n vectors in IRn are linearly dependent.
• Consider the system Ax = b, where A ∈ IRm×n with m < n. If this system

has a solution, then it has infinitely many solutions.
Proof. First statement follows by noting that each of the m vectors can be ex-

pressed as linear combinations of the unit vectors ei, i = 1, 2, . . . , n where ei is the
vector with all 0s except for a 1 in the ith position. Second statement follows from
the fact that Az = 0 has infinitely many solutions.

Definition 1.4. A set S ⊂ IRn is a subspace if for any x, y ∈ S we have
αx + βy ∈ S for all scalars α and β.

Definition 1.5. Given a set S ⊂ IRn, a basis is the maximal set of linearly
independent vectors that can be chosen from S.

Bases are used mostly when S is a subspace.
Lemma 1.6. The linearly independent vectors x1, x2, . . . , xr are a basis for S if

and only if any vector y ∈ S is a linear combination of the xis.
Definition 1.7. Given a matrix A ∈ IRm×n, the rank of A is the maximum

number of linearly independent rows in A.
This is the same as the number of linearly independent columns, so rank(A) =

rank(AT ).
Lemma 1.8. If A ∈ IRr×n with r ≤ n has (full) rank r, then the system Ax = b

has a solution for any b. If in addition r < n, it has infinitely many solutions.
Definition 1.9. A matrix A ∈ IRn×n is nonsingular if it has rank n and singular

otherwise.
A is nonsingular if and only if Ax = b has a unique solution for any b.
Definition 1.10. A matrix A ∈ IRn×n is positive definite if xT Ax > 0 for any

x 6= 0. It is positive semidefinite if xT Ax ≥ 0 for any x.
Any positive definite matrix A is nonsingular.
Lemma 1.11. If A is symmetric positive semidefinite, the matrix[

A BT

−B 0

]
is positive semidefinite for any B (but symmetric only if B is vacuous or zero). The
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matrix [
A BT

B 0

]
is symmetric but not positive semidefinite unless B is vacuous or zero.

Proof. Given any vectors x and y of appropriate dimensions, we have for the first
claim that [

x
y

]T [
A BT

−B 0

] [
x
y

]
= xT Ax ≥ 0.

For the second claim, let the indices i and j be such that Bij 6= 0. Then if we do
symmetric pivoting to bring rows/columns j and n+ i to the top left 2× 2 submatrix
we have that this submatrix has the form[

Ajj Bij

Bij 0

]
Since it is symmetric, this matrix has real eigenvalues (Ajj ±

√
A2

jj + 4B2
ij)/2, one of

which is positive and the other of which is negative. Choosing z to be the eigenvector
in IR2 that corresponds to this negative eigenvalue, we have that[

z
0

]T

PT

[
A BT

B 0

]
P

[
z
0

]
= zT

[
Ajj Bij

Bij 0

]
z < 0,

demonstrating that the matrix in question is not positive semidefinite.
QR Decomposition. Given any matrix A ∈ IRm×n with m ≥ n, there is an n × n

permutation matrix P , an m×m orthogonal matrix Q and an m×m upper triangular
matrix R with nonnegative diagonals such that

AP = Q

[
R
0

]
=

[
Q1 Q2

] [
R
0

]
= Q1R.

(The zero matrix has dimension (n − m) × m, and Q1 is n × m.) When A has full
(column) rank, R has all positive diagonal elements. When A is rank deficient (say,

rank r), R has the form R =
[

R1 R2

0 0

]
, where R1 is r × r upper triangular with

positive diagonal elements and R2 is r × (m − r). In this case we can write the
factorization as

AP = Q

[
R
0

]
=

[
Q̄1 Q̄2

] [
R1 R2

0 0

]
= Q̄1

[
R1 R2

]
.

Definition 1.12. Given a matrix A ∈ IRm×n, the range space of A is the set
R(A) def= {Av | v ∈ IRn}. (It is also known as the image of A and is a subspace of IRm.)
The null space N(A) is the set of all vectors z such that Az = 0. (It is also known as
the kernel of A and is a subspace of IRn.)

Theorem 1.13. (Fundamental Theorem of Algebra.) If A ∈ IRm×n, R(A) ⊕
N(AT ) = IRm.

Given a matrix A ∈ Rm×n with m < n and full rank m, find a matrix Z ∈
IRn×(n−m) that spans the null space N(A), that is, N(A) = {Zy | y ∈ IRn−m}.
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Method 1. Perform a column permutation of A described by permutation matrix
P , such that

AP =
[

A1 A2

]
,

where A1 is m×m nonsingular and A2 is m× (n−m). Then set Z = P

[
A−1

1 A2

−I

]
.

Method 2. Perform a QR decomposition of AT , to get

AT P =
[

Q1 Q2

] [
R
0

]
.

Then AQ2 = PPT AQ2 = P [QT
2 AT P ] = 0. Since Q2 has linearly independent columns

and the maximal number of them (n−m) its columns span N(AT ).
Norms on IRn: Euclidean norm (a.k.a. 2-norm): ‖x‖2 =

√∑n
i=1 x2

i ; 1-norm:
‖x‖1 =

∑n
i=1 |xi|; ∞-norm: ‖x‖∞ = maxi=1,2,...,n |xi|.

Theorem 1.14. Let H and A be matrices with the following properties:
(i) H is symmetric;
(ii) A has full row rank;
(iii) If Z is any matrix whose columns span N(A), then ZT HZ is positive definite.

Then the following matrix is nonsingular:[
H AT

A 0

]
.

Proof. We prove the result by showing that (x, y) = (0, 0) is the only possible
solution of the following linear system:[

H AT

A 0

] [
x
y

]
=

[
0
0

]
.

Since Ax = 0, we have x ∈ N(A) and so x = Zu for some vector u. Hence, using the
fact that AZ = 0 and that ZT HZ is nonsingular, we have

Hx + AT y = 0 ⇒ HZu + AT y = 0 ⇒ ZT HZu = 0 ⇒ u = 0 ⇒ x = 0.

Hence,

Hx + AT y = 0 ⇒ AT y = 0.

Since AT has full column rank, we have y = 0, completing the proof.
Matrix norms: For p = 1, 2,∞, induced norm is

‖A‖p = max
x6=0

‖Ax‖p/‖x‖p.

Frobenius norm is

‖A‖F

√√√√ n∑
i=1

n∑
j=1

A2
ij .
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2. Topology.
Basic background on topology of IRn.
Definition 2.1. Given x ∈ IRn, and the open ball of radius ε around x is defined

by Bε(x) = {z | ‖z − x‖2 < ε}.
Definition 2.2. A set x ∈ IRn is in the interior of Γ ⊂ IRn (denoted x ∈ int(Γ)

if there is ε > 0 such that Bε(x) ⊂ Γ.
Definition 2.3. The closure of the set Γ ⊂ IRn (denoted cl(Γ)) is the set of

points x with the property that Bε(x) ∩ Γ 6= ∅ for all ε > 0.
Definition 2.4. A set Γ ⊂ IRn is open if x ∈ int(Γ) for all x ∈ Γ. Γ is closed if

Γ = cl(Γ).
Definition 2.5. Given two sets Γ ⊂ Λ ⊂ IRn, we say that Γ is open (closed)

relative to Λ if there is some open (closed) set Σ such that Γ = Λ ∩ Σ.
Example: The set {(0, t2) | t2 > 0} is open relative to {0} × IR, though it is not

itself open. (Take Σ = {(t1, t2) | t1 ∈ IR, t2 > 0}.) The set (0, 1) ⊂ IR is closed relative
to itself; take Σ = [0, 1].

Theorem 2.6.

• Every union of open sets is open.
• Every finite interesection of open sets is open.
• 0 and IRn are open.
• Every intersection of closed sets is closed.
• Every finite union of closed sets is closed.
• 0 and IRn are closed.

The last three results follow immediately from the first three if we use the fact
that the complement of any open set is closed.

3. Sequences.
Now discuss sequences {xk}∞k=1 of real vectors. A subsequence is defined by an

infinite subset of integers K def= {k1, k2, k3, . . .}, such that k1 < k2 < k3 < · · ·. Write
the subsequence as {xkj}∞j=1 or as {xk}k∈K.

x̄ ∈ IRn is the limit of the sequence {xk} if for any ε > 0 there is an integer K
such that ‖xk − x̄‖ ≤ ε for all k ≥ K. Write

lim
k→∞

xk = x̄.

We say that {xk} converges to x̄. Example: xk = 1/k has limit 0.
x̄ ∈ IRn is an accumulation point of the sequence {xk} if for any ε > 0 and

any positive integer K, there is some k > K such that ‖xk − x̄‖ ≤ ε. Example:
xk = (−1)k + 1/2k has accumulation points −1 and 1, but no limit. Example: xk =
kπ − bkπc has every point in [0, 1] as an accumulation point (but has no limit).

Theorem 3.1.

(i) If x̄ is an accumulation point, there is a subsequence for which x̄ is the limit.
(ii) If x̄ is the limit, the sequence can have no other accumulation points.
If x̄ ∈ cl(C) for some set C, there is a sequence {xk} of points in C for which x̄

is the limit. Any accumulation point of a sequence {xk} in C must be in cl(C).
Now consider sequences of real numbers {αk}.
We say that αL is the lim inf of {αk} (written lim infk αk = αL) if

αL = lim
n→∞

( inf
k≥n

αk).
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Similarly, we have

lim sup
k

αk = lim
n→∞

(sup
k≥n

αk).

Axiom 1. Any nonempty set of real numbers Λ which has a lower (upper) bound
has a greatest lower (least upper) bound.

Theorem 3.2. Every bounded nondecreasing sequence of real numbers has a
limit.

Proof. Let β be an upper bound on {αk}. By the axiom, we can choose β to
be the least possible upper bound. For any ε > 0 there is an integer K such that
xK > β − ε (otherwise, we could decrease β to β − ε, which contradicts the choice of
β as the least upper bound). Because {αk} is nondecreasing, we must have that

β ≥ xk ≥ xK ≥ β − ε, for all k ≥ K.

Hence, β is in fact the limit of {αk}, as claimed.
A sequence converges to a limit if and only if it is a Cauchy sequence, that is, one

for which for all ε > 0 there is an integer K such that ‖xn−xm‖ ≤ ε for all m,n ≥ K.
A set Λ ⊂ IRn is bounded if there is β ≥ 0 such that ‖x‖ ≤ β for all x ∈ Λ.
A compact set Λ is defined by any one of the following equivalent properties:
(i) Λ is closed and bounded.
(ii) Every sequence of points in Λ has an accumulation point in Λ.
(iii) For every family of open sets Λi, i = 1, 2, 3, . . . such that Λ ⊂ Λ1∪Λ2∪Λ3∪· · ·,

there is a finite subfamily i1, i2, i3, . . . , im such that Λ ⊂ Λi1 ∪Λi2 ∪Λi3 ∪· · ·∪
Λim .

Rates of convergence. Consider a sequence {xk} that converges to a limit x∗. We
say that the convergence is Q-linear if lim sup‖xk+1 − x∗‖/‖xk − x∗‖ ≤ r for some
r < 1. We say that it is Q-superlinear if lim ‖xk+1 − x∗‖/‖xk − x∗‖ = 0. We say that
it is Q-quadratic if ‖xk+1 − x∗‖/‖xk − x∗‖2 is bounded. More generally, we say that
it has Q-order τ for any τ > 1 if

lim inf(log ‖xk+1 − x∗‖/ log ‖xk − x∗‖) ≥ τ.

We say the sequence {xk} converges R-linearly (resp. R-superlinearly, R-quadratically)
to x∗ if there is a sequence {αk} of real numbers such that ‖xk − x∗‖ ≤ αk and αk

converges Q-linearly (resp. Q-superlinearly, Q-quadratically) to zero.

4. Linear Programming.
Consider the linear program in standard form:

min
x

cT x subject to Ax = b, x ≥ 0,(4.1)

for which the dual form is:

max
u

bT u subject to AT u ≤ c.(4.2)

There is a rich mathematical theory known as duality theory that relates these two
problems. This theory is also useful in the construction of some algorithms, e.g.
primal-dual interior-point methods.

Theorem 4.1 (Weak Duality). If x is feasible for (4.1) and u is feasible for
(4.2), then cT x ≥ bT u.
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Proof.

bT u = (Ax)T u = xT AT u ≤ xT c,

where the last inequality follows from AT u− c ≤ 0 and x ≥ 0.
Theorem 4.2 (Strong Duality). Exactly one of the following three statements is

true:
(i) Both primal and dual problems are feasible and both have optimal solutions

with equal extrema.
(ii) Exactly one of the problems is infeasible and the other has unbounded objective

on its feasible region.
(iii) Both problems are infeasible.
This result is proved in [1] by invoking the simplex method with a pivot rule that

prevents cycling.
We say that a function f(x) “attains its minimum” over a feasible region C if

there exists x∗ ∈ C such that

f(x∗) = inf
x∈C

f(x).

A function can be bounded below and yet not attain its minimum. When C is not
closed this is obvious; for example if f(x) is any monotonically increasing function
and C = (0, 1]. It can also happen for closed C; for example f(x) = e−x and C =
{x |x ≥ 0}.

Corollary 4.3. Suppose the linear program (4.1) is feasible and bounded below.
Then it attains its minimum.

Proof. Case (iii) of the strong duality result does not hold since the primal problem
(4.1) is feasible. Case (ii) does not hold either, because the primal is bounded below.
Therefore case (i) holds, so we conclude that (4.1) has a solution x∗ that attains the
minimum.

The Karush-Kuhn-Tucker (KKT) conditions give another important way of re-
lating and recognizing primal and dual solutions.

Theorem 4.4 (KKT conditions). x solves (4.1) and u solves (4.2) if and only
if x and u satisfy the following relationships:

Ax = b, x ≥ 0, AT u ≤ c,

(feasibility) and

xT (AT u− c) = 0

(complementarity).

5. Convex Sets and Projections. (From Robinson [4].)
A set C ⊂ IRn is convex if for each x and y in C and each λ ∈ [0, 1], we have

(1− λ)x + λy ∈ C.
A half space is a set of the form {x | 〈x, y〉 ≥ η} where y ∈ IRn and η ∈ IR are

constants. A hyperplane is a set of the form {x | 〈x, y〉 = η}.
A polyhedral convex set in IRn is the intersection of finitely many half-spaces.
A cone is a set with the property that x ∈ K ⇒ αx ∈ K for all α ≥ 0. A convex

cone is a cone that is a convex set.
If C is a convex set, a vector y is said to be normal to C at x if for all c ∈ C we

have 〈y, c− x〉 ≤ 0.
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The normal cone to C at a point x, denoted NC(x), is the set of all y that are
normal to C at x. (If x /∈ C, then NC(x) = ∅.)

If K is a nonempty cone, the polar of K is defined by

K◦ = {x | 〈x, k〉 ≤ 0 for all k ∈ K}.

The polar is always closed (by continuity of the inner product).
If K and L are two cones in IRn with ∅ 6= K ⊂ L, then L◦ ⊂ K◦.
The tangent cone to a convex set C at a point x ∈ C is TC(x) = NC(x)◦.
In the text below, we assume ‖ · ‖ = ‖ · ‖2.
If S is any subset of IRn, the point-to-set distance to S is defined by

dS(x) = inf{‖x− s‖ | s ∈ S}.(5.1)

If S = ∅ then dS(x) = ∞ for all x.
If S is nonempty and closed, then the infimum in the formula above is attained.

To see this, let s0 be any element of S. Then

dS = inf{‖x− s‖ | s ∈ S, ‖x− s‖ ≤ ‖x− s0‖}.

The infimum is taken over a compact set, so since ‖x− ·‖ is continuous, it attains its
minimum. (The minimum may be attained at more than one point, in general)

When S is convex, the minimum in (5.1) is attained at one point only, as we show
below. We show first some properties of the point that attains the minimum.

Lemma 5.1. Let C be a convex set in IRn, and let x0 ∈ IRn. The function ‖x0−(·)‖
attains its minimum on C at a point c0 ∈ C if and only if for each c ∈ C, we have
〈x0 − c0, c− c0〉 ≤ 0.

Proof. Note first that

‖x0 − c‖2(5.2)
= ‖(x0 − c0)− (c− c0)‖2 = ‖x0 − c0‖2 − 2〈x0 − c0, c− c0〉+ ‖c− c0‖2.

(⇐) Assume first that 〈x0 − c0, c− c0〉 ≤ 0. Rearranging (5.2), we have

0 ≥ 〈x0 − c0, c− c0〉

=
1
2

(
‖x0 − c0‖2 − ‖x0 − c‖2

)
+

1
2
‖c− c0‖2 ≥ 1

2
(
‖x0 − c0‖2 − ‖x0 − c‖2

)
.

Therefore, c0 minimizes ‖x0 − (·)‖ over C.
(⇒) Assume that ‖x0 − (·)‖ attains its minimum on C at a point c0 ∈ C. Let

c1 be any point in C. Since C is convex, we have that for all λ ∈ (0, 1) that c(λ) def=
(1− λ)c0 + λc1 ∈ C. Using (5.2) and the fact that c0 is the minimizer, we have

0 ≥ ‖x0 − c0‖2 − ‖x0 − c(λ)‖2

= 2〈x0 − c0, c(λ)− c0〉 − ‖c(λ)− c0‖2 = 2λ〈x0 − c0, c1 − c0〉 − λ2‖c1 − c0‖2.

Dividing both sides by λ and letting λ ↓ 0, we obtain 〈x0−c0, c1−c0〉 ≤ 0, as required.
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6. Nonconvex sets. When Ω is nonconvex, we define the tangent cone first,
then define the normal as the polar of the tangent.

A vector w ∈ IRn is tangent to Ω at x ∈ Ω if for all sequences xi ∈ Ω with
xi → x and all positive scalar sequences ti ↓ 0, there is a sequence wi → w such that
xi + tiwi ∈ Ω for all i.
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