1. The DFP quasi-Newton updating formula for the approximate Hessian B_k can be written as follows:

$$B_{k+1} = (I - \rho_k y_k s_k^T)B_k(I - \rho_k s_k y_k^T) + \rho_k y_k y_k^T,$$

where

$$\rho_k = \frac{1}{y_k^T s_k}.$$

Show that if B_k is positive definite and the curvature condition $y_k^T s_k > 0$ holds, then B_{k+1} is also positive definite.

Solution:

Defining $E_k = I - \rho_k y_k s_k^T$, the update formula can be rewritten as

$$B_{k+1} = E_k B_k E_k^T + \rho_k y_k y_k^T.$$

For any $z \in \mathbb{R}^n$ we have

$$z^T B_{k+1} z = z^T E_k B_k E_k^T z + \rho_k z^T y_k y_k^T z = (E_k^T z)^T B_k (E_k^T z) + \rho \|y_k z\|_2^2.$$

The first term is nonnegative (by positive definiteness of B_k) while the second term is also nonnegative, since $\rho_k > 0$ by the curvature condition. Hence, B_{k+1} is at least positive semidefinite.

If $z^T B_{k+1} z = 0$ for some nonzero z, we must have $y_k^T z = 0$ (from the second term). But then $E_k^T z = z$ so we have $z^T B_k z = z^T B_k z > 0$, a contradiction. Hence $z^T B_{k+1} z > 0$ for all nonzero z and so B_{k+1} is positive definite.
2. (a) Consider the problem

\[
\min_x f(x) \text{ subject to } l \leq x \leq u,
\]

where \(x \in \mathbb{R}^n \), \(f : \mathbb{R}^n \to \mathbb{R} \) is continuously differentiable, and the lower- and upper-bound vectors \(l \) and \(u \) are also in \(\mathbb{R}^n \). Write down the first-order necessary (KKT) conditions for this problem, eliminating Lagrange multipliers to obtain a simplified form.

Solution: Introducing Lagrange multipliers \(\lambda \) and \(\mu \) for \(x - l \geq 0 \) and \(u - x \geq 0 \), resp., we can write the Lagrangian as

\[
L(x, \lambda, \mu) = f(x) - \lambda^T(x - l) - \mu^T(u - x).
\]

The KKT conditions are then:

\[
\nabla_x L(x, \lambda, \mu) = \nabla f(x) - \lambda + \mu = 0,
\]

\[
x - l \geq 0, \quad u - x \geq 0,
\]

\[
\lambda \geq 0, \quad \mu \geq 0,
\]

\[
\lambda^T(x - l) = 0, \quad \mu^T(u - x) = 0.
\]

Assuming that \(l < u \), we have from the complementarity conditions that at most one of \(\lambda_i \) and \(\mu_i \) is nonzero for each \(i \). We consider three cases:

(i) \(l_i < x_i < u_i \): Then \(\lambda_i = \mu_i = 0 \) and \(\frac{\partial f}{\partial x_i} = 0 \);

(ii) \(x_i = l_i \): Then \(\mu_i = 0 \) and \(\lambda_i \geq 0 \), and we have by substituting into the first condition that \(\frac{\partial f}{\partial x_i} \geq 0 \);

(iii) \(x_i = u_i \): Then \(\lambda_i = 0 \) and \(\mu_i \geq 0 \), and we have by substituting into the first condition that \(\frac{\partial f}{\partial x_i} \leq 0 \).

(b) Consider the problem

\[
\min_{(x_1, x_2) \in \mathbb{R}^2} \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 - x_1 x_2 - 2x_2
\]

subject to

\[
1 - x_1 - x_2 \geq 0,
\]

\[
1 + x_1 - x_2 \geq 0.
\]

Show that the KKT conditions are satisfied at \(x^* = (0, 1) \), and determine the optimal values of the Lagrange multipliers for the two constraints.

Solution: We have

\[
\nabla f(x) = \begin{bmatrix} x_1 - x_2 \\ x_2 - x_1 - 2 \end{bmatrix}, \quad \nabla c_1(x) = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad \nabla c_1(x) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]

At \(x^* = (0, 1)^T \), both constraints are active. We need \(\lambda_1^* \geq 0 \) and \(\lambda_2^* \geq 0 \) such that

\[
\nabla f(x^*) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \lambda_1^* \begin{bmatrix} -1 \\ -1 \end{bmatrix} + \lambda_2^* \begin{bmatrix} 1 \\ -1 \end{bmatrix},
\]

and it is clear by inspection that \(\lambda_1^* = 1, \lambda_2^* = 0 \) is the unique solution of this system.
3. Consider the determination of a quadratic function of two variables using function value information. That is, we seek the values of the scalars a_{11}, a_{12}, a_{22}, b_1, b_2, and c such that for the model function $m(x)$ defined by

$$
m(x) = \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + c,$$

we have $m(y_i) = f(y_i)$, for the chosen values y_i, $i = 1, 2, 3, 4, 5, 6$ and the given function f. Show that if the points y_i all lie on an ellipse satisfying

$$(y_i)^TWy_i = \gamma, \quad i = 1, 2, 3, 4, 5, 6,$$

where W is a 2×2 positive definite matrix and γ is a positive scalar, then the quadratic m is not in general determined by the six points y_i, $i = 1, 2, 3, 4, 5, 6$.

Solution:

From the equations $m(y_i) = f(y_i)$ we obtain a 6×6 linear system in which the unknown vector is

$$(a_{11}, a_{12}, a_{22}, b_1, b_2, c)^T$$

and the ith row of the coefficient matrix is

$$\left(\frac{1}{2}(y_i^1)^2, y_i^1 y_i^2, \frac{1}{2}(y_i^2)^2, y_i^1, y_i^2, 1\right).$$

Since the y_i all lie on the ellipse indicated, there are scalars w_{11}, w_{12}, w_{22}, and γ such that

$$w_{11}(y_i^1)^2 + 2w_{12}y_i^1 y_i^2 + w_{22}(y_i^2)^2 - \gamma = 0.$$

Hence, if we multiply the coefficient matrix by the vector

$$(2w_{11}, 2w_{12}, 2w_{22}, 0, 0, -\gamma),$$

we get zero. Hence, this 6×6 matrix is nonsingular, so m is not determined in general.
4. (a) Suppose that an algorithm for minimizing the continuously differentiable function f generates a sequence $\{x_k\}$ lying in a bounded set B, such that the sequence of gradient norms $\{\|\nabla f(x_k)\|\}$ has an accumulation point at zero. Show that there exists an accumulation point x_∞ of $\{x_k\}$ such that $\nabla f(x_\infty) = 0$.

Solution:
Let x_{kj}, $j = 1, 2, \ldots$ be the subsequence for which $\lim_{j \to \infty} \nabla f(x_{kj}) = 0$. Since x_{kj} is in the bounded set B for all j, it has an accumulation point. We have by taking a further subsequence if necessary that $\lim_{j \to \infty} x_{kj} = x_\infty$ for some x_∞ (which lies in the closure of B, incidentally). By continuity of ∇f we have that $\nabla f(x_\infty) = 0$.

(b) Suppose that an algorithm for minimizing the twice continuously differentiable function f generates a sequence $\{x_k\}$ for which

$$\lim_{k \to \infty} \nabla f(x_k) = 0$$

and

$$\nabla^2 f(x_k)$$

are positive definite for all k.

Show that all accumulation points of $\{x_k\}$ satisfy second-order necessary conditions to be a minimizer of f.

Solution: If x_∞ is any accumulation point, there is a subsequence $\{x_{kj}\}_{j=1,2,3,\ldots}$ such that

$$\lim_{j \to \infty} x_{kj} = x_\infty.$$

By the smoothness assumption we have $\nabla f(x_\infty) = 0$ and $\nabla^2 f(x_\infty)$ positive semidefinite, so the second-order necessary conditions for x_∞ to be a minimizer of f are satisfied.

(c) Can we claim that all accumulation points for the sequence in part (b) satisfy second-order sufficient conditions? Why or why not?

Solution: We cannot argue in part (b) that the limit of a sequence of positive definite matrices is positive definite — only positive semidefinite, as some of the eigenvalues may be approaching zero.