Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu

Institute for Mathematics and its Applications University of Minnesota

August 4, 2016

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

NORTHWESTERN UNIVERSITY

$$\begin{array}{c} \min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } c_E(x) = 0 \\ c_I(x) \le 0 \end{array} (\text{NLP}) \qquad \begin{array}{c} f: \mathbb{R}^n \longrightarrow \mathbb{R} \\ c_E: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_E} \\ c_I: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_I} \end{array}$$

We assume that all functions are twice continuously differentiable.

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t. } c_E(x) = 0 \\ c_I(x) \le 0 } f: \mathbb{R}^n \longrightarrow \mathbb{R} \\ (\text{NLP}) \qquad \qquad f: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_E} \\ c_I: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_I}$$

- ▶ We assume that all functions are twice continuously differentiable.
- ► No is convexity required.

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t. } c_E(x) = 0 \\ c_I(x) \le 0 } f: \mathbb{R}^n \longrightarrow \mathbb{R} \\ (\text{NLP}) \qquad \qquad f: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_E} \\ c_I: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_I} \\ c_I: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_I}$$

- ▶ We assume that all functions are twice continuously differentiable.
- No is convexity required.
- Most algorithms for NLP have
 - theoretical convergence guarantee only to stationary points;

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t. } c_E(x) = 0 \\ c_l(x) \le 0 }} f(x)$$
 (NLP)
$$f: \mathbb{R}^n \longrightarrow \mathbb{R} \\ c_E: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_E} \\ c_l: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_l}$$

- ▶ We assume that all functions are twice continuously differentiable.
- No is convexity required.
- Most algorithms for NLP have
 - theoretical convergence guarantee only to stationary points;
 - ingredients that steer towards local minimizers.

Table of Contents

Applications

Equality-Constrained Quadratic Programming

Active-Set Quadratic Programming Solvers

SQP for Equality-Constrained NLPs

SQP for Inequality-Constrained NLPs

Interior Point Methods

Software

Andreas Wächter

Table of Contents

Applications

Equality-Constrained Quadratic Programming

Active-Set Quadratic Programming Solvers

SQP for Equality-Constrained NLPs

SQP for Inequality-Constrained NLPs

Interior Point Methods

Software

Andreas Wächter

Design and Operation of Chemical Plant

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

Design and Operation of Chemical Plant

- Minimize "Costs Profit"
- Variables: Physical quantities
- Constraints: physical relationships (conservation laws; themodyn. rel.)
- Limits (physical and operational)
- ightarrow < 10⁵ variables; few degrees of freedom

Andreas Wächter

Design and Operation of Chemical Plant

Minimize "Costs – Profit"

Andreas Wächter

- Variables: Physical quantities
- Constraints: physical relationships (conservation laws; themodyn. rel.)
- Limits (physical and operational)
- $ightarrow < 10^5$ variables; few degrees of freedom

Constraint Jacobian

$$\nabla c(x)^T =$$

is sparse and structured

Design Under Uncertainty

- Scenario parameters: F^I_{in}, x^I_{in}, T^I_{env}, p^I_{env}, ... (given) (defining scenarios I = 1, ..., L)
- Design variables:
- Control variables:
- State variables:

$$V_{react}, D_{dist}, h_{tank}, \dots$$

$$Q_{heat}^{l}, r_{refl}^{l}, v_{valve}^{l}, \dots$$

$$x_{str}^{l}, F_{str}^{l}, L_{tank}^{l}, T^{l}, p^{l}, \dots$$

Design Under Uncertainty

- Scenario parameters: F^l_{in}, x^l_{in}, T^l_{env}, p^l_{env}, ... (given) (defining scenarios l = 1, ..., L)
- Design variables:
- Control variables:
- State variables:

$$V_{react}, D_{dist}, h_{tank}, \dots$$

$$Q_{heat}^{l}, r_{refl}^{l}, v_{valve}^{l}, \dots$$

$$x_{str}^{l}, F_{str}^{l}, L_{tank}^{l}, T^{l}, p^{l}, \dots$$

Optimal Control / Dynamic Optimization

$$\min_{z,y,u,p} f(z(t_f), y(t_f), u(t_f), p)$$

s.t. $F(\dot{z}(t), z(t), y(t), u(t), p) = 0$
 $G(z(t), y(t), u(t), p) = 0$
 $z(0) = z_{init}$
bound constraints

- $\begin{array}{ll} u: [0, t_f] \to \mathbb{R}^{n_u} & \text{control variables} \\ z: [0, t_f] \to \mathbb{R}^{n_z} & \text{differentiable state variables} \\ y: [0, t_f] \to \mathbb{R}^{n_y} & \text{algebraic state variables} \\ p \in \mathbb{R}^{n_p} & \text{time-independent parameters} \\ z_{init} & \text{initial conditions} \\ t_f & \text{final time} \end{array}$
- Large-scale NLPs arise from discretization.

Andreas Wächter

Circuit Tuning

- Model consists of network of gates.
- Gate delays computed by simulation (expensive, noisy).
- ▶ Model has many variables (up to 1,000,000).
- Implemented in IBM's circuit tuning tool EinsTuner.

Andreas Wächter

Hyperthermia Treatment Planning

$$\begin{array}{ll} \min_{T(x),u} & \frac{1}{2} \int_{\Omega} (T(x) - T_{\text{target}}(x))^2 \, dx \\ s.t. & -\Delta T(x) - w(T(x) - T_{\text{blood}}) = u^* M(x) u & \text{in } \Omega \\ & \nabla T(x) \cdot n = T_{\text{exterior}} - T(x) & \text{on } \partial\Omega \\ & T(x) \leq T_{\text{max}} & \text{in } \Omega \setminus \Omega_{\text{Tumor}} \end{array}$$

- Heat tumors with microwaves (support chemo- and radio-therapy).
- Model is a PDE with
 - ► controls: Application *u* of microwave antennas.
 - states: Temperature T(x) defined over domain Ω .
- Finite-dimensional problem obtained by discretization.
 - e.g., finite differences, finite elements
- Resulting NLP is usually very large.

Andreas Wächter

Table of Contents

Applications

Equality-Constrained Quadratic Programming

Active-Set Quadratic Programming Solvers

SQP for Equality-Constrained NLPs

SQP for Inequality-Constrained NLPs

Interior Point Methods

Software

Andreas Wächter

$$\begin{array}{c} \min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x \\ \text{s.t. } A_E x + b_E = 0 \\ A_I x + b_I \le 0 \end{array} \quad (QP)$$

$$egin{aligned} Q \in \mathbb{R}^{n imes n} ext{ symmetric} \ A_E \in \mathbb{R}^{m^E imes n} ext{ } b_E \in \mathbb{R}^{m_E} \ A_I \in \mathbb{R}^{m^I imes n} ext{ } b_I \in \mathbb{R}^{m_I} \end{aligned}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

Many applications (e.g., portfolio optimization, optimal control).

- Many applications (e.g., portfolio optimization, optimal control).
- Important building block for methods for general NLP.

- Many applications (e.g., portfolio optimization, optimal control).
- Important building block for methods for general NLP.
- Algorithms:
 - Active-set methods
 - Interior-point methods

$$\min_{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} Q x + g^{T} x$$
s.t. $A_{E} x + b_{E} = 0$
 $A_{I} x + b_{I} \leq 0$

$$(QP) \qquad \qquad Q \in \mathbb{R}^{n \times n} \text{ symmetric}$$
 $A_{E} \in \mathbb{R}^{m^{E} \times n} \quad b_{E} \in \mathbb{R}^{m_{E}}$
 $A_{I} \in \mathbb{R}^{m^{I} \times n} \quad b_{I} \in \mathbb{R}^{m_{I}}$

- Many applications (e.g., portfolio optimization, optimal control).
- Important building block for methods for general NLP.
- Algorithms:
 - Active-set methods
 - Interior-point methods
- Let's first consider equality-constrained case.
- Assume: all rows of A_E are linearly independent.

Equality-Constrained QP

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x$$

s.t. $Ax + b = 0$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

Equality-Constrained QP

$$\begin{array}{c|c}
\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x \\
\text{s.t. } A x + b = 0
\end{array}$$
(EQP)

First-order optimality conditions:

$$Qx + g + A^T \lambda = 0$$

 $Ax + b = 0$

Andreas Wächter

Equality-Constrained QP

$$\begin{array}{c|c}
\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x \\
\text{s.t. } A x + b = 0
\end{array}$$
(EQP)

First-order optimality conditions:

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

Find stationary point (x^*, λ^*) by solving the linear system

$$\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}.$$

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

NORTHWESTERN UNIVERSITY

$$egin{bmatrix} Q & A^{\mathcal{T}} \ A & 0 \end{bmatrix} egin{pmatrix} x^* \ \lambda^* \end{pmatrix} = - egin{pmatrix} g \ b \end{pmatrix}$$

• When is (x^*, λ^*) indeed a solution of (EQP)?

$$\begin{bmatrix} Q & A^{\mathsf{T}} \\ A & 0 \end{bmatrix} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

- ► When is (x*, λ*) indeed a solution of (EQP)?
- Recall the second-order optimality conditions:
 - Let the columns of Z ∈ ℝ^{n×(n−m)} be a basis of the null-space of A, so AZ = 0 ("null-space matrix").
 - Then x^* is a strict local minimizer of (EQP) if $Z^T Q Z \succ 0$.

$$\begin{bmatrix} Q & A^{\mathsf{T}} \\ A & 0 \end{bmatrix} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

- ► When is (x*, λ*) indeed a solution of (EQP)?
- Recall the second-order optimality conditions:
 - Let the columns of Z ∈ ℝ^{n×(n−m)} be a basis of the null-space of A, so AZ = 0 ("null-space matrix").
 - Then x^* is a strict local minimizer of (EQP) if $Z^T Q Z \succ 0$.
- On the other hand:
 - If $Z^T Q Z$ has negative eigenvalue, then (EQP) is unbounded below.

$$egin{bmatrix} Q & A^{\mathcal{T}} \ A & 0 \end{bmatrix} egin{pmatrix} x^* \ \lambda^* \end{pmatrix} = - egin{pmatrix} g \ b \end{pmatrix}$$

- ► When is (x*, λ*) indeed a solution of (EQP)?
- Recall the second-order optimality conditions:
 - Let the columns of Z ∈ ℝ^{n×(n−m)} be a basis of the null-space of A, so AZ = 0 ("null-space matrix").
 - Then x^* is a strict local minimizer of (EQP) if $Z^T Q Z \succ 0$.
- On the other hand:
 - If $Z^T Q Z$ has negative eigenvalue, then (EQP) is unbounded below.
- There are different ways to solve the KKT system
 - Best choice depends on particular problem

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:\mathcal{K}} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

• How can we verify that x^* is local minimizer without computing Z?

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:\mathcal{K}} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

• How can we verify that x^* is local minimizer without computing Z?

Definition

Let n_+ , n_- , n_0 be the number of positive, negative, and zero eigenvalues of a matrix M. Then $\ln(M) = (n_+, n_-, n_0)$ is the inertia of M.

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:\mathcal{K}} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

• How can we verify that x^* is local minimizer without computing Z?

Definition

Let n_+ , n_- , n_0 be the number of positive, negative, and zero eigenvalues of a matrix M. Then $\ln(M) = (n_+, n_-, n_0)$ is the inertia of M.

Theorem

Suppose that A has full rank. Then: $ln(K) = ln(Z^TQZ) + (m, m, 0)$.

Andreas Wächter

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:\mathcal{K}} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

• How can we verify that x^* is local minimizer without computing Z?

Definition

Let n_+ , n_- , n_0 be the number of positive, negative, and zero eigenvalues of a matrix M. Then $\ln(M) = (n_+, n_-, n_0)$ is the inertia of M.

Theorem

Suppose that A has full rank. Then: $ln(K) = ln(Z^T Q Z) + (m, m, 0)$.

Corollary

If ln(K) = (n, m, 0), then x^* is the unique global minimizer.

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:\mathcal{K}} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

- Symmetric indefinite factorization $PKP^T = LBL^T$
 - P: permutation matrix
 - L: unit lower triangular matrix
 - B: block diagonal matrix with 1×1 and 2×2 diagonal blocks

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:\mathcal{K}} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

- Symmetric indefinite factorization $PKP^T = LBL^T$
 - P: permutation matrix
 - L: unit lower triangular matrix
 - B: block diagonal matrix with 1×1 and 2×2 diagonal blocks
- Can be computed efficiently, exploits sparsity.

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:K} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

- Symmetric indefinite factorization $PKP^T = LBL^T$
 - P: permutation matrix
 - L: unit lower triangular matrix
 - B: block diagonal matrix with 1×1 and 2×2 diagonal blocks
- Can be computed efficiently, exploits sparsity.
- Obtain inertia simply from counting eigenvalues of the blocks in *B*.

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:\mathcal{K}} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

- Symmetric indefinite factorization PKP^T = LBL^T
 - P: permutation matrix
 - L: unit lower triangular matrix
 - B: block diagonal matrix with 1×1 and 2×2 diagonal blocks
- Can be computed efficiently, exploits sparsity.
- Obtain inertia simply from counting eigenvalues of the blocks in *B*.
- Used also to solve the linear system.
Computing the Inertia

$$\underbrace{\begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix}}_{=:\mathcal{K}} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = - \begin{pmatrix} g \\ b \end{pmatrix}$$

- Symmetric indefinite factorization $PKP^T = LBL^T$
 - P: permutation matrix
 - L: unit lower triangular matrix
 - B: block diagonal matrix with 1×1 and 2×2 diagonal blocks
- Can be computed efficiently, exploits sparsity.
- Obtain inertia simply from counting eigenvalues of the blocks in *B*.
- Used also to solve the linear system.
- ► Will be important later when we need to "convexify" QPs $(Q \leftarrow Q + \gamma I)$.

Andreas Wächter

$$Qx + g + A^{T}\lambda = 0$$
$$Ax + b = 0$$

• Assume, Q is positive definite. Then $AQ^{-1}A^{T}$ is nonsingular.

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

- Assume, Q is positive definite. Then $AQ^{-1}A^{T}$ is nonsingular.
- Pre-multiply first equation by AQ^{-1} .

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

- Assume, Q is positive definite. Then $AQ^{-1}A^{T}$ is nonsingular.
- Pre-multiply first equation by AQ^{-1} .
- Then solve

$$[AQ^{-1}A^T]\lambda^* = b - AQ^{-1}g$$

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

- Assume, Q is positive definite. Then $AQ^{-1}A^{T}$ is nonsingular.
- Pre-multiply first equation by AQ^{-1} .
- Then solve

$$[AQ^{-1}A^{T}]\lambda^{*} = b - AQ^{-1}g$$
$$Qx = -g - A^{T}\lambda^{*}$$

Andreas Wächter

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

- Assume, Q is positive definite. Then $AQ^{-1}A^{T}$ is nonsingular.
- Pre-multiply first equation by AQ^{-1} .
- Then solve

$$[AQ^{-1}A^{T}]\lambda^{*} = b - AQ^{-1}g$$

 $Qx = -g - A^{T}\lambda^{*}$

- Requirements:
 - Solutions with Q can be done efficiently

Constrained Nonlinear Optimization Algorithms

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

- Assume, Q is positive definite. Then $AQ^{-1}A^{T}$ is nonsingular.
- Pre-multiply first equation by AQ^{-1} .
- Then solve

$$[AQ^{-1}A^{T}]\lambda^{*} = b - AQ^{-1}g$$

 $Qx = -g - A^{T}\lambda^{*}$

- Requirements:
 - Solutions with Q can be done efficiently
 - Need to compute $[AQ^{-1}A^T]$ and solve linear system with it

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

- Assume, Q is positive definite. Then $AQ^{-1}A^{T}$ is nonsingular.
- Pre-multiply first equation by AQ^{-1} .
- Then solve

$$[AQ^{-1}A^{T}]\lambda^{*} = b - AQ^{-1}g$$

 $Qx = -g - A^{T}\lambda^{*}$

- Requirements:
 - Solutions with Q can be done efficiently
 - Need to compute $[AQ^{-1}A^T]$ and solve linear system with it
 - Works best if m is small

Andreas Wächter

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

• Decompose $x^* = x_Y + x_Z$ into two steps:

- "range-space step" x_Y: step into constraints
- "null-space step" x_Z: optimize within null space

Andreas Wächter

• Decompose $x^* = x_Y + x_Z$ into two steps:

- "range-space step" x_Y: step into constraints
- "null-space step" x_Z: optimize within null space

•
$$x_Y = Y p_Y$$
 and $x_Z = Z p_Z$

• where [Y Z] is basis of \mathbb{R}^n and Z is null space matrix for A.

• Decompose $x^* = x_Y + x_Z$ into two steps:

- "range-space step" x_Y: step into constraints
- "null-space step" x_Z: optimize within null space

•
$$x_Y = Y p_Y$$
 and $x_Z = Z p_Z$

• where [Y Z] is basis of \mathbb{R}^n and Z is null space matrix for A.

Decomposition depends on choice of Y and Z

Andreas Wächter

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

• $x_Y = Yp_Y$ is a step into the constraints: $0 = Ax + b = AYp_Y + AZp_Z + b$

Andreas Wächter

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

►
$$x_Y = Y p_Y$$
 is a step into the constraints:
 $0 = Ax + b = AY p_Y + AZ p_Z + b \implies p_Y = -[AY]^{-1} b$

Andreas Wächter

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

 x_Y = Yp_Y is a step into the constraints: 0 = Ax + b = AYp_Y + AZp_Z + b ⇒ p_Y = -[AY]⁻¹b
 x_Z = Zp_Z optimizes in the null space p_Z = -[Z^TQZ]⁻¹Z^T(g + QYp_Y)

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

► $x_Y = Yp_Y$ is a step into the constraints: $0 = Ax + b = AYp_Y + AZp_Z + b \implies p_Y = -[AY]^{-1}b$ ► $x_Z = Zp_Z$ optimizes in the null space $p_Z = -[Z^T QZ]^{-1}Z^T(g + QYp_Y)$ ► Solves $\min_{p_Z} \frac{1}{2}p_Z^T[Z^T QZ]p_Z + (g + QYp_Y)^TZp_Z$ ("reduced QP")

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

$$Qx + g + A^T \lambda = 0$$
$$Ax + b = 0$$

• $x_Y = Yp_Y$ is a step into the constraints: $0 = Ax + b = AYp_Y + AZp_Z + b \implies p_Y = -[AY]^{-1}b$ • $x_Z = Zp_Z$ optimizes in the null space $p_Z = -[Z^T QZ]^{-1}Z^T(g + QYp_Y)$ • Solves $\min_{p_Z} \frac{1}{2}p_Z^T[Z^T QZ]p_Z + (g + QYp_Y)^TZp_Z$ ("reduced QP") • $\lambda = -[AY]^{-T}Y(Qx^* + g)$

Andreas Wächter

Example: PDE-Constrained Optimization

$$\min_{T,u} \frac{1}{2} \int (T(z) - \hat{T}(z))^2 dz + \frac{\alpha}{2} ||u||^2$$

s.t. $-\Delta T(z) = \sum_{i=1}^{n_u} k_i(z) u_i$ on Ω
 $T(z) = b(z)$ on $\partial \Omega$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Example: PDE-Constrained Optimization

$$\min_{T,u} \frac{1}{2} \int (T(z) - \hat{T}(z))^2 dz + \frac{\alpha}{2} ||u||^2$$

s.t. $-\Delta T(z) = \sum_{i=1}^{n_u} k_i(z) u_i$ on Ω
 $T(z) = b(z)$ on $\partial \Omega$

- Given the (independent) control variable *u*:
 - (Dependent) state T is solution of PDE
 - Can use well-established solution techniques

Example: PDE-Constrained Optimization

$$\min_{T,u} \frac{1}{2} \int (T(z) - \hat{T}(z))^2 dz + \frac{\alpha}{2} ||u||^2$$

s.t. $-\Delta T(z) = \sum_{i=1}^{n_u} k_i(z) u_i$ on Ω
 $T(z) = b(z)$ on $\partial \Omega$

- Given the (independent) control variable *u*:
 - (Dependent) state T is solution of PDE
 - Can use well-established solution techniques
- We have only n_u degrees of freedom

Discretized PDE-Constrained Problem

$$\begin{split} \min_{T,u} & \frac{1}{2} \int (T(z) - \hat{T}(z))^2 dz + \frac{\alpha}{2} \|u\|^2 \\ \text{s.t.} & -\Delta T(z) = \sum_{i=1}^{n_u} k_i(z) u_i \text{ on } \Omega \\ & T(z) = b(z) \text{ on } \partial\Omega \end{split}$$

$$\min_{t,u} \sum_{i=1}^{n} (t_i - \hat{t}_i)^2 + \sum_{i=1}^{n_u} u_i^2$$

s.t. $\overline{D} t + \overline{K}u + \overline{b} = 0$

- Discretized state variables $t \in \mathbb{R}^N$
- ▶ Discretized non-singular(!) differential operator $\overline{D} \in \mathbb{R}^{N \times N}$

Discretized PDE-Constrained Problem

$$\begin{split} \min_{T,u} & \frac{1}{2} \int (T(z) - \hat{T}(z))^2 dz + \frac{\alpha}{2} \|u\|^2 \\ \text{s.t.} & -\Delta T(z) = \sum_{i=1}^{n_u} k_i(z) u_i \text{ on } \Omega \\ & T(z) = b(z) \text{ on } \partial\Omega \end{split}$$

$$\min_{t,u} \sum_{i=1}^{n} (t_i - \hat{t}_i)^2 + \sum_{i=1}^{n_u} u_i^2$$

s.t. $\overline{D} t + \overline{K}u + \overline{b} = 0$

- Discretized state variables $t \in \mathbb{R}^N$
- ▶ Discretized non-singular(!) differential operator $\overline{D} \in \mathbb{R}^{N \times N}$
 - Given controls *u*, the state variables can be computed from

$$t=-\overline{D}^{-1}(\overline{K}u+\overline{b}).$$

Andreas Wächter

Discretized PDE-Constrained Problem

$$\begin{split} \min_{T,u} & \frac{1}{2} \int (T(z) - \hat{T}(z))^2 dz + \frac{\alpha}{2} \|u\|^2 \\ \text{s.t.} & -\Delta T(z) = \sum_{i=1}^{n_u} k_i(z) u_i \text{ on } \Omega \\ & T(z) = b(z) \text{ on } \partial\Omega \end{split}$$

$$\min_{t,u} \sum_{i=1}^{n} (t_i - \hat{t}_i)^2 + \sum_{i=1}^{n_u} u_i^2$$

s.t. $\overline{D} t + \overline{K}u + \overline{b} = 0$

- Discretized state variables $t \in \mathbb{R}^N$
- ▶ Discretized non-singular(!) differential operator $\overline{D} \in \mathbb{R}^{N \times N}$
 - Given controls *u*, the state variables can be computed from

$$t=-\overline{D}^{-1}(\overline{K}u+\overline{b}).$$

• We could just eliminate t and solve lower-dimensional problem in u

Andreas Wächter

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} (x_B^T x_N^T) Q \begin{pmatrix} x_B \\ x_N \end{pmatrix} + g_B^T x_B + g_N^T x_N$$
s.t. $Bx_B + Nx_N + b = 0$

$$Y = \begin{bmatrix} I \\ 0 \end{bmatrix}$$
$$Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} (x_B^T x_N^T) Q \begin{pmatrix} x_B \\ x_N \end{pmatrix} + g_B^T x_B + g_N^T x_N$$

s.t. $B x_B + N x_N + b = 0$
$$Y = \begin{bmatrix} I \\ 0 \end{bmatrix}$$

$$Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix}$$

$$p_{Y} = -[AY]^{-1}d = -B^{-1}b$$

$$p_{Z} = -[Z^{T}QZ]^{-1}Z^{T}(g + QYp_{Y})$$

$$\lambda = -[AY]^{-T}Y(Qx^{*} + g) = -B^{-T}Y(Qx^{*} + g)$$

• Can use existing implementations of operator B^{-1} :

- Compute Z and p_Z (assuming N has few columns).
- Compute λ^* (assuming that we have implementation for B^{-T}).

Constrained Nonlinear Optimization Algorithms

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} (x_B^T x_N^T) Q \begin{pmatrix} x_B \\ x_N \end{pmatrix} + g_B^T x_B + g_N^T x_N$$

s.t. $B x_B + N x_N + b = 0$
$$Y = \begin{bmatrix} I \\ 0 \end{bmatrix}$$

$$Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix}$$

$$p_{Y} = -[AY]^{-1}d = -B^{-1}b$$

$$p_{Z} = -[Z^{T}QZ]^{-1}Z^{T}(g + QYp_{Y})$$

$$\lambda = -[AY]^{-T}Y(Qx^{*} + g) = -B^{-T}Y(Qx^{*} + g)$$

- Can use existing implementations of operator B^{-1} :
 - Compute Z and p_Z (assuming N has few columns).
 - Compute λ^* (assuming that we have implementation for B^{-T}).
- Tailored implementation for "simulation" often already exist.

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} (x_B^T x_N^T) Q \begin{pmatrix} x_B \\ x_N \end{pmatrix} + g_B^T x_B + g_N^T x_N$$

s.t. $B x_B + N x_N + b = 0$
$$Y = \begin{bmatrix} I \\ 0 \end{bmatrix}$$

$$Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix}$$

$$p_{Y} = -[AY]^{-1}d = -B^{-1}b$$

$$p_{Z} = -[Z^{T}QZ]^{-1}Z^{T}(g + QYp_{Y})$$

$$\lambda = -[AY]^{-T}Y(Qx^{*} + g) = -B^{-T}Y(Qx^{*} + g)$$

- Can use existing implementations of operator B^{-1} :
 - Compute Z and p_Z (assuming N has few columns).
 - Compute λ^* (assuming that we have implementation for B^{-T}).
- Tailored implementation for "simulation" often already exist.
- Exploit problem structure!

Andreas Wächter

Solution of EQP Summary

- Direct method:
 - Factorize KKT matrix
 - ► If L^TBL factorization is used, we can determine if x^{*} is indeed a minimizer
 - Easy general purpose option

Solution of EQP Summary

- Direct method:
 - Factorize KKT matrix
 - ► If L^T BL factorization is used, we can determine if x^{*} is indeed a minimizer
 - Easy general purpose option
- Schur-complement Method
 - ▶ Requires that Q is positive definite and easy to solve (e.g., diagonal)
 - Number of constraints m should not be large

Solution of EQP Summary

- Direct method:
 - Factorize KKT matrix
 - ► If L^TBL factorization is used, we can determine if x^{*} is indeed a minimizer
 - Easy general purpose option
- Schur-complement Method
 - ▶ Requires that *Q* is positive definite and easy to solve (e.g., diagonal)
 - Number of constraints *m* should not be large
- Null-space method
 - Step decomposition into range-space step and null-space step
 - Permits exploitation of constraint matrix structure
 - Number of degrees of freedom (n m) should not be large

Table of Contents

Applications

Equality-Constrained Quadratic Programming

Active-Set Quadratic Programming Solvers

SQP for Equality-Constrained NLPs

SQP for Inequality-Constrained NLPs

Interior Point Methods

Software

Andreas Wächter

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x$$
s.t. $a_i^T x + b_i = 0$ for $i \in \mathcal{E}$
 $a_i^T x + b_i \leq 0$ for $i \in \mathcal{I}$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\begin{split} \min_{x \in \mathbb{R}^n} \ &\frac{1}{2} x^T Q x + g^T x \\ \text{s.t.} \ &a_i^T x + b_i = 0 \text{ for } i \in \mathcal{E} \\ &a_i^T x + b_i \leq 0 \text{ for } i \in \mathcal{I} \end{split}$$

$$Qx + g + \sum_{i \in \mathcal{E} \cup \mathcal{I}} a_i \lambda_i = 0$$
$$a_i^T x + b_i = 0 \text{ for } i \in \mathcal{E}$$
$$a_i^T x + b_i \leq 0 \text{ for } i \in \mathcal{I}$$
$$\lambda_i \geq 0 \text{ for } i \in \mathcal{I}$$
$$(a_i^T x + b_i)\lambda_i = 0 \text{ for } i \in \mathcal{I}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x$$
s.t. $a_i^T x + b_i = 0$ for $i \in \mathcal{E}$
 $a_i^T x + b_i \le 0$ for $i \in \mathcal{I}$

$$Qx + g + \sum_{i \in \mathcal{E} \cup \mathcal{I}} a_i \lambda_i = 0$$
$$a_i^T x + b_i = 0 \text{ for } i \in \mathcal{E}$$
$$a_i^T x + b_i \leq 0 \text{ for } i \in \mathcal{I}$$
$$\lambda_i \geq 0 \text{ for } i \in \mathcal{I}$$
$$(a_i^T x + b_i)\lambda_i = 0 \text{ for } i \in \mathcal{I}$$

- Assume:
 - Q is positive definite;
 - $\{a_i\}_{i \in \mathcal{E}}$ are linearly independent.

$$\begin{split} \min_{x \in \mathbb{R}^n} \ &\frac{1}{2} x^T Q x + g^T x \\ \text{s.t.} \ &a_i^T x + b_i = 0 \text{ for } i \in \mathcal{E} \\ &a_i^T x + b_i \leq 0 \text{ for } i \in \mathcal{I} \end{split}$$

$$Qx + g + \sum_{i \in \mathcal{E} \cup \mathcal{I}} a_i \lambda_i = 0$$
$$a_i^T x + b_i = 0 \text{ for } i \in \mathcal{E}$$
$$a_i^T x + b_i \leq 0 \text{ for } i \in \mathcal{I}$$
$$\lambda_i \geq 0 \text{ for } i \in \mathcal{I}$$
$$(a_i^T x + b_i)\lambda_i = 0 \text{ for } i \in \mathcal{I}$$

- Assume:
 - Q is positive definite;
 - $\{a_i\}_{i \in \mathcal{E}}$ are linearly independent.
- ▶ Difficulty: Decide, which inequality constraints are active.

Constrained Nonlinear Optimization Algorithms
Inequality-Constrained QPs

$$\begin{split} \min_{x \in \mathbb{R}^n} \ &\frac{1}{2} x^T Q x + g^T x \\ \text{s.t.} \ &a_i^T x + b_i = 0 \text{ for } i \in \mathcal{E} \\ &a_i^T x + b_i \leq 0 \text{ for } i \in \mathcal{I} \end{split}$$

$$Qx + g + \sum_{i \in \mathcal{E} \cup \mathcal{I}} a_i \lambda_i = 0$$
$$a_i^T x + b_i = 0 \text{ for } i \in \mathcal{E}$$
$$a_i^T x + b_i \leq 0 \text{ for } i \in \mathcal{I}$$
$$\lambda_i \geq 0 \text{ for } i \in \mathcal{I}$$
$$(a_i^T x + b_i)\lambda_i = 0 \text{ for } i \in \mathcal{I}$$

- Assume:
 - Q is positive definite;
 - $\{a_i\}_{i \in \mathcal{E}}$ are linearly independent.
- Difficulty: Decide, which inequality constraints are active.
- ▶ We know how to solve equality-constrained QPs.
 - Can we use that here?

Andreas Wächter

Choose working set $\mathcal{W}\subseteq\mathcal{I}$ and solve

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x$$

s.t. $a_i^T x + b_i = 0$ for $i \in \mathcal{E}$
 $a_i^T x + b_i = 0$ for $i \in \mathcal{W}$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Choose working set $\mathcal{W}\subseteq\mathcal{I}$ and solve

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x$$
s.t. $a_i^T x + b_i = 0$ for $i \in \mathcal{E}$
 $a_i^T x + b_i = 0$ for $i \in \mathcal{W}$

$$Qx + g + \sum_{i \in \mathcal{E} \cup \mathcal{W}} a_i \lambda_i = 0$$
$$a_i^T x + b_i = 0 \text{ for } i \in \mathcal{E}$$
$$a_i^T x + b_i = 0 \text{ for } i \in \mathcal{W}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Choose working set $\mathcal{W}\subseteq\mathcal{I}$ and solve

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x$$
s.t. $a_i^T x + b_i = 0$ for $i \in \mathcal{E}$
 $a_i^T x + b_i = 0$ for $i \in \mathcal{W}$

$$\begin{aligned} Qx + g + \sum_{i \in \mathcal{E} \cup \mathcal{W}} a_i \lambda_i &= 0\\ a_i^T x + b_i &= 0 \text{ for } i \in \mathcal{E}\\ a_i^T x + b_i &= 0 \text{ for } i \in \mathcal{W} \end{aligned}$$

Set missing multipliers $\lambda_i = 0$ for $i \in \mathcal{I} \setminus \mathcal{W}$ and verify

$$egin{aligned} & a_i^T x + b_i \stackrel{?}{\leq} 0 ext{ for } i \in \mathcal{I} \setminus \mathcal{W} \ & \lambda_i \stackrel{?}{\geq} 0 ext{ for } i \in \mathcal{I} \end{aligned}$$

Andreas Wächter

Choose working set $\mathcal{W}\subseteq\mathcal{I}$ and solve

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x$$

s.t. $a_i^T x + b_i = 0$ for $i \in \mathcal{E}$
 $a_i^T x + b_i = 0$ for $i \in \mathcal{W}$

$$\begin{aligned} Qx + g + \sum_{i \in \mathcal{E} \cup \mathcal{W}} a_i \lambda_i &= 0\\ a_i^T x + b_i &= 0 \text{ for } i \in \mathcal{E}\\ a_i^T x + b_i &= 0 \text{ for } i \in \mathcal{W} \end{aligned}$$

Set missing multipliers $\lambda_i = 0$ for $i \in \mathcal{I} \setminus \mathcal{W}$ and verify

$$egin{aligned} a_i^T x + b_i \stackrel{?}{\leq} 0 ext{ for } i \in \mathcal{I} \setminus \mathcal{W} \ \lambda_i \stackrel{?}{\geq} 0 ext{ for } i \in \mathcal{I} \end{aligned}$$

• If satisfied, (x, λ) is the (unique) optimal solution

Constrained Nonlinear Optimization Algorithms

Choose working set $\mathcal{W}\subseteq\mathcal{I}$ and solve

$\min_{x\in\mathbb{R}^n}$	$\frac{1}{2}x^T Q x + g^T x$
s.t.	$a_i^T x + b_i = 0$ for $i \in \mathcal{E}$
	$a_i^T x + b_i = 0$ for $i \in \mathcal{W}$

$$\begin{aligned} Qx + g + \sum_{i \in \mathcal{E} \cup \mathcal{W}} a_i \lambda_i &= 0\\ a_i^T x + b_i &= 0 \text{ for } i \in \mathcal{E}\\ a_i^T x + b_i &= 0 \text{ for } i \in \mathcal{W} \end{aligned}$$

Set missing multipliers $\lambda_i = 0$ for $i \in \mathcal{I} \setminus \mathcal{W}$ and verify

$$egin{aligned} egin{aligned} egi$$

- If satisfied, (x, λ) is the (unique) optimal solution
- Otherwise, let's try a different working set

Andreas Wächter

Example QP

min
$$(x_1 - 1)^2 + (x_2 - 2.5)^2$$

s.t. $-x_1 + 2x_2 - 2 \le 0$ (1) $-x_1 \le 0$ (4)
 $x_1 + 2x_2 - 6 \le 0$ (2) $-x_2 \le 0$ (5)
 $x_1 - 2x_2 - 2 \le 0$ (3)

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

 $\frac{\text{Initialization:}}{\text{Choose feasible starting iterate } x}$

$$x = (0, 2)$$

Andreas Wächter

$$\mathcal{W} = \{3, 5\}$$
$$x = (0, 2)$$

Initialization:

Choose feasible starting iterate x

Choose working set $\mathcal{W}\subseteq\mathcal{I}$ with

- $i \in \mathcal{W} \Longrightarrow a_i^T x + b_i = 0$
- $\{a_i\}_{i \in \mathcal{E} \cup \mathcal{W}}$ are linear independent

(Algorithm will maintain these properties)

Andreas Wächter

$$\mathcal{W} = \{3, 5\}$$

 $x = (0, 2)$
 $x^{EQP} = (0, 2)$ Solve (EQP)
 $\lambda_3 = -2$
 $\lambda_5 = -1$

Andreas Wächter

 $\begin{aligned} \mathcal{W} &= \{3,5\} \\ x &= (0,2) \\ \chi^{\mathsf{EQP}} &= (0,2) \\ \lambda_3 &= -2 \\ \lambda_5 &= -1 \end{aligned}$ Status: Current iterate is optimal for (EQP).

Andreas Wächter

$$\mathcal{W} = \{3, 5\}$$

 $x = (0, 2)$
 $x^{\mathsf{EQP}} = (0, 2)$
 $\lambda_3 = -2$
 $\lambda_5 = -1$

Status: Current iterate is optimal for (EQP).
<u>Release Constraint:</u>
▶ Pick constraint *i* with λ_i < 0.

Constrained Nonlinear Optimization Algorithms

$$\mathcal{W} = \{3, 5\}$$

 $x = (0, 2)$
 $x^{EQP} = (0, 2)$
 $\lambda_3 = -2$
 $\lambda_5 = -1$

Andreas Wächter

Status: Current iterate is optimal for (EQP).

Release Constraint:

- Pick constraint *i* with $\lambda_i < 0$.
- Remove i from working set:

$$\mathcal{W} \leftarrow \mathcal{W} \setminus \{3\} = \{5\}$$

$$\mathcal{W} = \{3, 5\}$$

 $x = (0, 2)$
 $x^{EQP} = (0, 2)$
 $\lambda_3 = -2$
 $\lambda_5 = -1$

Status: Current iterate is optimal for (EQP).

Release Constraint:

- Pick constraint *i* with $\lambda_i < 0$.
- Remove *i* from working set:

$$\mathcal{W} \leftarrow \mathcal{W} \setminus \{3\} = \{5\}$$

Keep iterate x = (0, 2).

$$\begin{aligned} \mathcal{W} &= \{5\} \\ x &= (2,0) \\ x^{\mathsf{EQP}} &= (1,0) \\ \lambda_5 &= -5 \end{aligned} \qquad \text{Solve (EQP)}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

 $\begin{aligned} \mathcal{W} &= \{5\} \\ x &= (2,0) \\ x^{\mathsf{EQP}} &= (1,0) \\ \lambda_5 &= -5 \end{aligned}$ Status: Current iterate is not optimal for (EQP).

Andreas Wächter

$$egin{aligned} \mathcal{W} &= \{5\} \ x &= (2,0) \ x^{ ext{EQP}} &= (1,0) \ \lambda_5 &= -5 \end{aligned}$$

Status: Current iterate is not optimal for (EQP). Take step (x^{EQP} is feasible):

• Update iterate
$$x \leftarrow x^{\mathsf{EQF}}$$

Constrained Nonlinear Optimization Algorithms

$$egin{aligned} \mathcal{W} &= \{5\} \ x &= (2,0) \ x^{ ext{EQP}} &= (1,0) \ \lambda_5 &= -5 \end{aligned}$$

Andreas Wächter

Status: Current iterate is not optimal for (EQP). <u>Take step (x^{EQP} is feasible)</u>:

- Update iterate $x \leftarrow x^{\mathsf{EQP}}$
- ► Keep W

$$\begin{aligned} \mathcal{W} &= \{5\} \\ x &= (1,0) \\ x^{\mathsf{EQP}} &= (1,0) \\ \lambda_5 &= -5 \end{aligned} \qquad \text{Solve (EQP)}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Status: Current iterate is optimal for (EQP)

$$\mathcal{W} = \{5\}$$

 $x = (1,0)$
 $x^{\mathsf{EQP}} = (1,0)$
 $\lambda_5 = -5$

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Status: Current iterate is optimal for (EQP)
<u>Release Constraint:</u>
▶ Pick constraint *i* with λ_i < 0.

 $\mathcal{W} = \{5\}$ x = (1,0) $x^{EQP} = (1,0)$ $\lambda_5 = -5$

Andreas Wächter

Status: Current iterate is optimal for (EQP)

$$\mathcal{W} = \{5\}$$

 $x = (1, 0)$
 $x^{EQP} = (1, 0)$
 $\lambda_5 = -5$

Release Constraint:

- Pick constraint *i* with $\lambda_i < 0$.
- Remove i from working set:

$$\mathcal{W} \leftarrow \mathcal{W} \setminus \{5\} = \emptyset$$

Status: Current iterate is optimal for (EQP)

$$\mathcal{W} = \{5\}$$

 $x = (1,0)$
 $x^{EQP} = (1,0)$
 $\lambda_5 = -5$

Release Constraint:

- Pick constraint *i* with $\lambda_i < 0$.
- Remove *i* from working set:

$$\mathcal{W} \leftarrow \mathcal{W} \setminus \{5\} = \emptyset$$

▶ Keep iterate x = (1, 0).

$$\mathcal{W} = \emptyset$$

 $x = (1,0)$ Solve (EQP)
 $x^{\text{EQP}} = (1,2.5)$

Andreas Wächter

Status: Current iterate not optimal for (EQP)

$$\mathcal{W} = \emptyset$$

 $x = (1, 0)$
 $x^{\mathsf{EQP}} = (1, 2.5)$

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Status: Current iterate not optimal for (EQP) Take step (x^{EQP} not feasible): x = (1, 0)

 $x^{EQP} = (1, 2.5)$

 $\mathcal{W} = \emptyset$

Status: Current iterate not optimal for (EQP) <u>Take step (x^{EQP} not feasible)</u>: • Largest $\alpha \in [0, 1]$: $x + \alpha(x^{EQP} - x)$ feasible

Constrained Nonlinear Optimization Algorithms

x = (1, 0) $x^{EQP} = (1, 2.5)$

 $\mathcal{W} = \emptyset$

Status: Current iterate not optimal for (EQP) Take step (x^{EQP} not feasible):

 $\mathcal{W} = \emptyset$ x = (1, 0) $x^{\mathsf{EQP}} = (1, 2.5)$

- Largest $\alpha \in [0, 1]$: $x + \alpha (x^{\mathsf{EQP}} x)$ feasible
- Update iterate $x \leftarrow x + \alpha (x^{\mathsf{EQP}} x)$

Status: Current iterate not optimal for (EQP) Take step (x^{EQP} not feasible):

 $\mathcal{W} = \emptyset$ x = (1, 0) $x^{\mathsf{EQP}} = (1, 2.5)$

Andreas Wächter

- ▶ Largest $\alpha \in [0, 1]$: $x + \alpha (x^{\mathsf{EQP}} x)$ feasible
- Update iterate $x \leftarrow x + \alpha (x^{\mathsf{EQP}} x)$
- Update $\mathcal{W} \leftarrow \mathcal{W} \cup \{i\} = \{1\}$
 - ▶ where constraint *i* = 1 is "blocking"

$$\begin{split} \mathcal{W} &= \{1\} \\ x &= (1, 1.5) \\ x^{\mathsf{EQP}} &= (1.4, 1.7) \\ \lambda_1 &= 0.8 \end{split} \ \ \, \text{Solve (EQP)}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

 $\mathcal{W} = \{1\}$ x = (1, 1.5) $x^{\mathsf{EQP}} = (1.4, 1.7)$ $\lambda_1 = 0.8$

Status: Current iterate is not optimal for (EQP). 5) 1.7)

Andreas Wächter

$$\mathcal{W} = \{1\}$$

 $x = (1, 1.5)$
 $x^{EQP} = (1.4, 1.7)$
 $\lambda_1 = 0.8$

Status: Current iterate is not optimal for (EQP). <u>Take step (x^{EQP} feasible)</u>:

- Update iterate $x \leftarrow x^{\mathsf{EQP}}$.
- ► Keep W.

$$\begin{split} \mathcal{W} &= \{1\} \\ x &= (1.4, 1.7) \\ x^{\mathsf{EQP}} &= (1.4, 1.7) \\ \lambda_1 &= 0.8 \end{split}$$
 Solve (EQP)

$$\begin{split} \mathcal{W} &= \{1\} & \text{Status: Current iterate is optimal for (EQP)} \\ &x &= (1.4, 1.7) \\ x^{\text{EQP}} &= (1.4, 1.7) \\ &\lambda_1 &= 0.8 \end{split}$$

Constrained Nonlinear Optimization Algorithms

 $\mathcal{W} = \{1\}$ x = (1.4, 1.7) $x^{EQP} = (1.4, 1.7)$ $\lambda_1 = 0.8$

Status: Current iterate is optimal for (EQP) • $\lambda_i \ge 0$ for all $i \in \mathcal{W}$.

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

$$\mathcal{W} = \{1\}$$

 $x = (1.4, 1.7)$
 $x^{EQP} = (1.4, 1.7)$
 $\lambda_1 = 0.8$

Andreas Wächter

Status: Current iterate is optimal for (EQP) $\lambda_i \ge 0$ for all $i \in \mathcal{W}$.

Declare Optimality!
1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.

Constrained Nonlinear Optimization Algorithms

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .
- 3. If $x = x^{EQP}$:

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .
- 3. If $x = x^{EQP}$:
 - If $\lambda^{EQP} \ge 0$: Done!

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .
- 3. If $x = x^{EQP}$:
 - If $\lambda^{EQP} \ge 0$: Done!
 - Otherwise, select $\lambda_i^{EQP} < 0$ and set $\mathcal{W} \leftarrow \mathcal{W} \setminus \{i\}$.

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .
- 3. If $x = x^{EQP}$:
 - If $\lambda^{EQP} \ge 0$: Done!
 - Otherwise, select $\lambda_i^{EQP} < 0$ and set $\mathcal{W} \leftarrow \mathcal{W} \setminus \{i\}$.
- 4. If $x \neq x^{\mathsf{EQP}}$:

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .
- 3. If $x = x^{EQP}$:
 - If $\lambda^{EQP} \ge 0$: Done!
 - Otherwise, select $\lambda_i^{EQP} < 0$ and set $\mathcal{W} \leftarrow \mathcal{W} \setminus \{i\}$.
- 4. If $x \neq x^{\mathsf{EQP}}$:
 - Compute step $p = x^{EQP} x$.

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .
- 3. If $x = x^{EQP}$:
 - If $\lambda^{EQP} \ge 0$: Done!
 - Otherwise, select $\lambda_i^{\mathsf{EQP}} < 0$ and set $\mathcal{W} \leftarrow \mathcal{W} \setminus \{i\}$.
- 4. If $x \neq x^{\mathsf{EQP}}$:
 - Compute step $p = x^{EQP} x$.
 - Compute $\alpha = \arg \max\{\alpha \in [0, 1] : x + \alpha p \text{ is feasible}\}.$

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .
- 3. If $x = x^{EQP}$:
 - If $\lambda^{EQP} \ge 0$: Done!
 - Otherwise, select $\lambda_i^{\mathsf{EQP}} < 0$ and set $\mathcal{W} \leftarrow \mathcal{W} \setminus \{i\}$.
- 4. If $x \neq x^{\mathsf{EQP}}$:
 - Compute step $p = x^{EQP} x$.
 - Compute $\alpha = \arg \max\{\alpha \in [0, 1] : x + \alpha p \text{ is feasible}\}.$
 - ▶ If $\alpha < 1$, pick $i \in \mathcal{I} \setminus \mathcal{W}$ with $a_i^T p > 0$ and $a_i^T (x + \alpha p) + b_i = 0$, and set $\mathcal{W} \leftarrow \mathcal{W} \cup \{i\}$.

- 1. Select feasible x and $\mathcal{W} \subseteq \mathcal{I} \cap \mathcal{A}(x)$.
- 2. Solve (EQP) to get x^{EQP} and λ^{EQP} .
- 3. If $x = x^{EQP}$:
 - If $\lambda^{EQP} \ge 0$: Done!
 - Otherwise, select $\lambda_i^{EQP} < 0$ and set $\mathcal{W} \leftarrow \mathcal{W} \setminus \{i\}$.
- 4. If $x \neq x^{\mathsf{EQP}}$:
 - Compute step $p = x^{EQP} x$.
 - Compute $\alpha = \arg \max\{\alpha \in [0, 1] : x + \alpha p \text{ is feasible}\}.$
 - ▶ If $\alpha < 1$, pick $i \in \mathcal{I} \setminus \mathcal{W}$ with $a_i^T p > 0$ and $a_i^T (x + \alpha p) + b_i = 0$, and set $\mathcal{W} \leftarrow \mathcal{W} \cup \{i\}$.
 - Update $x \leftarrow x + \alpha p$.

5. Go to step 2.

- Primal active-set method:
 - Keeps all iterates feasible.
 - \blacktriangleright Changes ${\mathcal W}$ by at most one constraint per iteration.
 - $\{a_i\}_{i \in \mathcal{E} \cup \mathcal{W}}$ remain linearly independent.

- Primal active-set method:
 - Keeps all iterates feasible.
 - \blacktriangleright Changes ${\mathcal W}$ by at most one constraint per iteration.
 - $\{a_i\}_{i \in \mathcal{E} \cup \mathcal{W}}$ remain linearly independent.
- Convergence
 - Finite convergence:
 - ► Finitely many options for *W*.
 - Objective decreases with every step;

- Primal active-set method:
 - Keeps all iterates feasible.
 - \blacktriangleright Changes ${\mathcal W}$ by at most one constraint per iteration.
 - $\{a_i\}_{i \in \mathcal{E} \cup \mathcal{W}}$ remain linearly independent.
- Convergence
 - Finite convergence:
 - ► Finitely many options for *W*.
 - ▶ Objective decreases with every step; as long as α > 0!
 - Special handling of degeneracy necessary ($\alpha = 0$ steps)

- Primal active-set method:
 - Keeps all iterates feasible.
 - \blacktriangleright Changes ${\mathcal W}$ by at most one constraint per iteration.
 - $\{a_i\}_{i \in \mathcal{E} \cup \mathcal{W}}$ remain linearly independent.
- Convergence
 - Finite convergence:
 - ► Finitely many options for *W*.
 - Objective decreases with every step; as long as $\alpha > 0!$
 - Special handling of degeneracy necessary ($\alpha = 0$ steps)
- Efficient solution of (EQP)
 - Update the factorization when $\mathcal W$ changes.

- Primal active-set method:
 - Keeps all iterates feasible.
 - \blacktriangleright Changes ${\mathcal W}$ by at most one constraint per iteration.
 - $\{a_i\}_{i \in \mathcal{E} \cup \mathcal{W}}$ remain linearly independent.
- Convergence
 - Finite convergence:
 - ► Finitely many options for *W*.
 - Objective decreases with every step; as long as $\alpha > 0!$
 - ► Special handling of degeneracy necessary (α = 0 steps)
- Efficient solution of (EQP)
 - Update the factorization when $\mathcal W$ changes.
- Complexity
 - ► Fast convergence if good estimate of optimal working set is given.
 - Worst case exponential complexity.
 - Alternative: Interior-point QP solvers (polynomial complexity).

- Primal active-set method:
 - Keeps all iterates feasible.
 - \blacktriangleright Changes ${\mathcal W}$ by at most one constraint per iteration.
 - $\{a_i\}_{i \in \mathcal{E} \cup \mathcal{W}}$ remain linearly independent.
- Convergence
 - Finite convergence:
 - ► Finitely many options for *W*.
 - Objective decreases with every step; as long as $\alpha > 0!$
 - ► Special handling of degeneracy necessary (α = 0 steps)
- Efficient solution of (EQP)
 - Update the factorization when $\mathcal W$ changes.
- Complexity
 - ► Fast convergence if good estimate of optimal working set is given.
 - Worst case exponential complexity.
 - Alternative: Interior-point QP solvers (polynomial complexity).
- ▶ There are variants that allow *Q* to be indefinite.

Table of Contents

Applications

Equality-Constrained Quadratic Programming

Active-Set Quadratic Programming Solvers

SQP for Equality-Constrained NLPs

SQP for Inequality-Constrained NLPs

Interior Point Methods

Software

Andreas Wächter

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t. } c(x) = 0}} f(x) \longrightarrow \qquad \nabla f(x) + \nabla c(x)\lambda = 0$$
$$c(x) = 0$$

• System of nonlinear equations in $(x, \lambda) \in \mathbb{R}^n \times \mathbb{R}^m$

Constrained Nonlinear Optimization Algorithms

- System of nonlinear equations in $(x, \lambda) \in \mathbb{R}^n \times \mathbb{R}^m$
- Apply Newton's method: Fast local convergence!

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t. } c(x) = 0}} f(x) \longrightarrow \qquad \overline{\nabla f(x) + \nabla c(x)\lambda = 0}$$

- System of nonlinear equations in $(x, \lambda) \in \mathbb{R}^n \times \mathbb{R}^m$
- Apply Newton's method: Fast local convergence!
- Issues:
 - Guarantees only (fast) local convergence.

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t. } c(x) = 0}} f(x) \longrightarrow \qquad \overline{\nabla f(x) + \nabla c(x)\lambda = 0}$$

- System of nonlinear equations in $(x, \lambda) \in \mathbb{R}^n \times \mathbb{R}^m$
- Apply Newton's method: Fast local convergence!
- Issues:
 - Guarantees only (fast) local convergence.
 - We would like to find local minima and not just any kind of stationary point.

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t. } c(x) = 0}} f(x) \longrightarrow \qquad \overline{\nabla f(x) + \nabla c(x)\lambda = 0}$$

- System of nonlinear equations in $(x, \lambda) \in \mathbb{R}^n \times \mathbb{R}^m$
- Apply Newton's method: Fast local convergence!
- Issues:
 - Guarantees only (fast) local convergence.
 - We would like to find local minima and not just any kind of stationary point.
- Need:
 - Globalization scheme (for convergence from any starting point)
 - Mechanisms that encourage convergence to local minima

$$abla f(x) +
abla c(x)\lambda = 0$$
 $c(x) = 0$

At iterate (x_k, λ_k) compute step p_k, p_k^λ from

$$abla f(x) +
abla c(x)\lambda = 0$$
 $c(x) = 0$

At iterate (x_k, λ_k) compute step p_k, p_k^{λ} from

$$\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix} \begin{pmatrix} p_k \\ p_k^\lambda \\ p_k^\lambda \end{pmatrix} = - \begin{pmatrix} \nabla f_k + \nabla c_k \lambda_k \\ c_k \end{pmatrix}$$

$$abla f_k :=
abla f(x_k) \qquad
abla c_k :=
abla c(x_k) \qquad c_k := c(x_k)$$

Andreas Wächter

$$abla f(x) +
abla c(x)\lambda = 0$$
 $c(x) = 0$

At iterate (x_k, λ_k) compute step p_k, p_k^{λ} from

$$\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix} \begin{pmatrix} p_k \\ p_k^\lambda \\ p_k^\lambda \end{pmatrix} = - \begin{pmatrix} \nabla f_k + \nabla c_k \lambda_k \\ c_k \end{pmatrix}$$

$$\nabla f_k := \nabla f(x_k) \qquad \nabla c_k := \nabla c(x_k) \qquad c_k := c(x_k)$$
$$\mathcal{L}(x,\lambda) := f(x) + \sum_{j=1}^m c_j(x)\lambda_j \qquad H_k := \nabla^2_{xx}\mathcal{L}(x_k,\lambda_k)$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$abla f(x) +
abla c(x)\lambda = 0$$
 $c(x) = 0$

At iterate (x_k, λ_k) compute step p_k, p_k^{λ} from

$$\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix} \begin{pmatrix} p_k \\ p_k^\lambda \end{pmatrix} = - \begin{pmatrix} \nabla f_k + \nabla c_k \lambda_k \\ c_k \end{pmatrix}$$

• Update iterate $(x_{k+1}, \lambda_{k+1}) = (x_k, \lambda_k) + (p_k, p_k^{\lambda})$

$$\nabla f_k := \nabla f(x_k) \qquad \nabla c_k := \nabla c(x_k) \qquad c_k := c(x_k)$$
$$\mathcal{L}(x,\lambda) := f(x) + \sum_{j=1}^m c_j(x)\lambda_j \qquad H_k := \nabla^2_{xx}\mathcal{L}(x_k,\lambda_k)$$

Andreas Wächter

$$\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix} \begin{pmatrix} p_k \\ p_k^\lambda \end{pmatrix} = - \begin{pmatrix} \nabla f_k + \nabla c_k \lambda_k \\ c_k \end{pmatrix}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix} \begin{pmatrix} p_k \\ \lambda_k + p_k^\lambda \end{pmatrix} = -\begin{pmatrix} \nabla f_k \pm \nabla c_k \lambda_k \\ c_k \end{pmatrix}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix} \begin{pmatrix} p_k \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_k \\ c_k \end{pmatrix}$$

$$\tilde{\lambda}_{k+1} = \lambda_k + p_k^{\lambda}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix} \begin{pmatrix} p_k \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_k \\ c_k \end{pmatrix}$$

These are the optimality conditions of

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p + f_k$$

s.t. $\nabla c_k^T p + c_k = 0$

with multipliers $\tilde{\lambda}_{k+1} = \lambda_k + p_k^{\lambda}$

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

$$\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix} \begin{pmatrix} p_k \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_k \\ c_k \end{pmatrix}$$

These are the optimality conditions of

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p + f_k$$

s.t. $\nabla c_k^T p + c_k = 0$

with multipliers $ilde{\lambda}_{k+1} = \lambda_k + p_k^\lambda$

Newton step can be interpreted as solution of a local QP model!

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Local QP Model

Original Problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

Andreas Wächter

Local QP Model

Original ProblemLocal QP model (QP_k) $\min_{x \in \mathbb{R}^n} f(x)$
s.t. c(x) = 0 $\min_{p \in \mathbb{R}^n} f_k + \nabla f_k^T p + \frac{1}{2} p^T H_k p$
s.t. $c_k + \nabla c_k^T p = 0$

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Exact Penalty Function

► Need tool to facilitate convergence from any starting point.
- ▶ Need tool to facilitate convergence from any starting point.
- ▶ Here, we have two (usually competing) goals:

- Need tool to facilitate convergence from any starting point.
- ▶ Here, we have two (usually competing) goals:

Optimality $\min f(x)$

Feasibility $\min \|c(x)\|$

- Need tool to facilitate convergence from any starting point.
- ▶ Here, we have two (usually competing) goals:

Feasibility $\min \|c(x)\|$

Combined in (non-differentiable) exact penalty function:

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$
 (\rho > 0)

- Need tool to facilitate convergence from any starting point.
- ▶ Here, we have two (usually competing) goals:

Feasibility min $\|c(x)\|$

Combined in (non-differentiable) exact penalty function:

$$\phi_{\rho}(x) = f(x) + \rho \| c(x) \|_1$$
 (\rho > 0)

Lemma

Suppose, x^* is a local minimizer of (NLP) with multipliers λ^* and LICQ holds. Then x^* is a local minimizer of ϕ_ρ if $\rho > \|\lambda^*\|_{\infty}$.

Andreas Wächter

- Need tool to facilitate convergence from any starting point.
- Here, we have two (usually competing) goals:

Feasibility min $\|c(x)\|$

Combined in (non-differentiable) exact penalty function:

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$
 (\rho > 0)

Lemma

Suppose, x^* is a local minimizer of (NLP) with multipliers λ^* and LICQ holds. Then x^* is a local minimizer of ϕ_ρ if $\rho > \|\lambda^*\|_{\infty}$.

 We can use decrease in φ_ρ as a measure of progress towards a local minimizer of (NLP).

Andreas Wächter

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$

• Backtracking line search: Try $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$ until

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$

• Backtracking line search: Try $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$ until

$$\phi_{\rho}(\mathbf{x}_{k} + \alpha_{k}\mathbf{p}_{k}) \leq \phi_{\rho}(\mathbf{x}_{k}) + \eta \alpha_{k} D \phi_{\rho}(\mathbf{x}_{k}; \mathbf{p}_{k}). \qquad (\eta \in (0, 1))$$

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$

• Backtracking line search: Try $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$ until

$$\phi_{\rho}(\mathbf{x}_{k} + \alpha_{k}\mathbf{p}_{k}) \leq \phi_{\rho}(\mathbf{x}_{k}) + \eta \alpha_{k} D \phi_{\rho}(\mathbf{x}_{k}; \mathbf{p}_{k}). \qquad (\eta \in (0, 1))$$

 $D\phi_{\rho}(x_k; p_k)$: Directional derivative of ϕ_{ρ} at x_k in direction p_k .

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$

• Backtracking line search: Try $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$ until

$$\phi_{\rho}(\mathbf{x}_{k} + \alpha_{k}\mathbf{p}_{k}) \leq \phi_{\rho}(\mathbf{x}_{k}) + \eta \alpha_{k} D \phi_{\rho}(\mathbf{x}_{k}; \mathbf{p}_{k}). \qquad (\eta \in (0, 1))$$

 $D\phi_{\rho}(x_k; p_k)$: Directional derivative of ϕ_{ρ} at x_k in direction p_k .

Lemma

Let p_k be an optimal solution of (QP_k) . Then

$$D\phi_{
ho}(x_k; p_k) \leq -p_k^{\mathsf{T}} H_k p_k - (
ho - \| ilde{\lambda}_{k+1}\|_{\infty}) \|c_k\|_1.$$

Andreas Wächter

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$

• Backtracking line search: Try $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$ until

$$\phi_{\rho}(\mathbf{x}_{k} + \alpha_{k}\mathbf{p}_{k}) \leq \phi_{\rho}(\mathbf{x}_{k}) + \eta \alpha_{k} D \phi_{\rho}(\mathbf{x}_{k}; \mathbf{p}_{k}). \qquad (\eta \in (0, 1))$$

 $D\phi_{\rho}(x_k; p_k)$: Directional derivative of ϕ_{ρ} at x_k in direction p_k .

Lemma

Let p_k be an optimal solution of (QP_k) . Then

$$D\phi_
ho(x_k; p_k) \leq -p_k^{\mathsf{T}} H_k p_k - (
ho - \| ilde{\lambda}_{k+1}\|_\infty) \|c_k\|_1.$$

• So, p_k is a descent direction for ϕ_ρ if

Andreas Wächter

$$\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$$

• Backtracking line search: Try $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$ until

$$\phi_{\rho}(\mathbf{x}_{k} + \alpha_{k}\mathbf{p}_{k}) \leq \phi_{\rho}(\mathbf{x}_{k}) + \eta \alpha_{k} D \phi_{\rho}(\mathbf{x}_{k}; \mathbf{p}_{k}). \qquad (\eta \in (0, 1))$$

 $D\phi_{\rho}(x_k; p_k)$: Directional derivative of ϕ_{ρ} at x_k in direction p_k .

Lemma

Let p_k be an optimal solution of (QP_k) . Then

$$D\phi_{
ho}(x_k; p_k) \leq -p_k^T H_k p_k - (
ho - \| ilde{\lambda}_{k+1}\|_{\infty}) \|c_k\|_1.$$

▶ So, p_k is a descent direction for ϕ_ρ if $H_k \succ 0$ and $\rho > \|\tilde{\lambda}_{k+1}\|_{\infty}$.

Andreas Wächter

1. Choose x_1 , λ_1 , $\rho_0 > 0$. Set $k \leftarrow 1$.

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

- 1. Choose x_1 , λ_1 , $\rho_0 > 0$. Set $k \leftarrow 1$.
- 2. Solve (QP_k) to get p_k and $\tilde{\lambda}_{k+1}$.

- 1. Choose x_1 , λ_1 , $\rho_0 > 0$. Set $k \leftarrow 1$.
- 2. Solve (QP_k) to get p_k and $\tilde{\lambda}_{k+1}$.
- 3. Update penalty parameter:

 $(\beta > 0)$

$$\rho_k = \begin{cases} \rho_{k-1} \\ \|\tilde{\lambda}_{k+1}\|_{\infty} + 2\beta \end{cases}$$

if
$$\rho_{k-1} \geq \|\tilde{\lambda}_{k+1}\|_{\infty} + \beta$$

otherwise.

- 1. Choose x_1 , λ_1 , $\rho_0 > 0$. Set $k \leftarrow 1$.
- 2. Solve (QP_k) to get p_k and $\tilde{\lambda}_{k+1}$.
- 3. Update penalty parameter:

 $(\beta > 0)$

$$\rho_{k} = \begin{cases} \rho_{k-1} & \text{if } \rho_{k-1} \geq \|\tilde{\lambda}_{k+1}\|_{\infty} + \beta \\ \|\tilde{\lambda}_{k+1}\|_{\infty} + 2\beta & \text{otherwise.} \end{cases}$$

4. Perform backtracking line search: Find largest $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, ...\}$ with

$$\phi_{\rho_k}(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \leq \phi_{\rho}(\mathbf{x}_k) + \eta \alpha_k D \phi_{\rho_k}(\mathbf{x}_k; \mathbf{p}_k).$$

Andreas Wächter

- 1. Choose x_1 , λ_1 , $\rho_0 > 0$. Set $k \leftarrow 1$.
- 2. Solve (QP_k) to get p_k and $\tilde{\lambda}_{k+1}$.
- 3. Update penalty parameter:

 $(\beta > 0)$

$$\rho_{k} = \begin{cases} \rho_{k-1} & \text{if } \rho_{k-1} \geq \|\tilde{\lambda}_{k+1}\|_{\infty} + \beta \\ \|\tilde{\lambda}_{k+1}\|_{\infty} + 2\beta & \text{otherwise.} \end{cases}$$

4. Perform backtracking line search: Find largest $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, ...\}$ with

$$\phi_{\rho_k}(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \leq \phi_{\rho}(\mathbf{x}_k) + \eta \alpha_k D \phi_{\rho_k}(\mathbf{x}_k; \mathbf{p}_k).$$

5. Update iterate $x_{k+1} = x_k + \alpha_k p_k$ and $\lambda_{k+1} = \tilde{\lambda}_{k+1}$.

- 1. Choose x_1 , λ_1 , $\rho_0 > 0$. Set $k \leftarrow 1$.
- 2. Solve (QP_k) to get p_k and $\tilde{\lambda}_{k+1}$.
- 3. Update penalty parameter:

 $(\beta > 0)$

$$\rho_{k} = \begin{cases} \rho_{k-1} & \text{if } \rho_{k-1} \geq \|\tilde{\lambda}_{k+1}\|_{\infty} + \beta \\ \|\tilde{\lambda}_{k+1}\|_{\infty} + 2\beta & \text{otherwise.} \end{cases}$$

4. Perform backtracking line search: Find largest $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, ...\}$ with

$$\phi_{\rho_k}(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \leq \phi_{\rho}(\mathbf{x}_k) + \eta \alpha_k D \phi_{\rho_k}(\mathbf{x}_k; \mathbf{p}_k).$$

5. Update iterate $x_{k+1} = x_k + \alpha_k p_k$ and $\lambda_{k+1} = \lambda_{k+1}$.

6. Set $k \leftarrow k + 1$ and to go Step 2.

Andreas Wächter

Assumptions

• f and c are twice continuously differentiable.

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

Assumptions

- f and c are twice continuously differentiable.
- ▶ The matrices H_k are bounded and uniformly positive definite.

Assumptions

- f and c are twice continuously differentiable.
- ▶ The matrices H_k are bounded and uniformly positive definite.
- ► The smallest singular value of ∇c_k is uniformly bounded away from zero.

Assumptions

- f and c are twice continuously differentiable.
- ► The matrices *H_k* are bounded and uniformly positive definite.
- ► The smallest singular value of ∇c_k is uniformly bounded away from zero.

Theorem

Under these assumptions, we have

$$\lim_{k\to\infty} \left\| \begin{pmatrix} \nabla f_k + \nabla c_k \tilde{\lambda}_{k+1} \\ c_k \end{pmatrix} \right\| = 0.$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

Assumptions

- f and c are twice continuously differentiable.
- ▶ The matrices H_k are bounded and uniformly positive definite.
- ► The smallest singular value of ∇c_k is uniformly bounded away from zero.

Theorem

Under these assumptions, we have

$$\lim_{k\to\infty} \left\| \begin{pmatrix} \nabla f_k + \nabla c_k \tilde{\lambda}_{k+1} \\ c_k \end{pmatrix} \right\| = 0.$$

In other words, each limit point of $\{x_k\}$ is a stationary point for (NLP).

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

NORTHWESTERN UNIVERSITY

$$\begin{array}{c} \min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_k^T p + c_k = 0 \end{array} \qquad (QP_k)$$

• For fast local convergence, want to choose $H_k = \nabla_{xx}^2 \mathcal{L}_k$.

$$\begin{array}{c} \min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_k^T p + c_k = 0 \end{array} \qquad (QP_k)$$

- ▶ For fast local convergence, want to choose $H_k = \nabla_{xx}^2 \mathcal{L}_k$.
- $\nabla_{xx}^2 \mathcal{L}_k$ is positive definite, if f and c are convex.

$$\begin{array}{c} \min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_k^T p + c_k = 0 \end{array} \qquad (QP_k)$$

- ► For fast local convergence, want to choose $H_k = \nabla_{xx}^2 \mathcal{L}_k$.
- $\nabla_{xx}^2 \mathcal{L}_k$ is positive definite, if f and c are convex.
- In general, $\nabla^2_{xx} \mathcal{L}_k$ might be indefinite.

$$\begin{array}{c} \min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_k^T p + c_k = 0 \end{array} \qquad (QP_k)$$

- ► For fast local convergence, want to choose $H_k = \nabla_{xx}^2 \mathcal{L}_k$.
- $\nabla_{xx}^2 \mathcal{L}_k$ is positive definite, if f and c are convex.
- In general, $\nabla^2_{xx} \mathcal{L}_k$ might be indefinite.
 - (QP_k) might be unbounded.

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$
s.t. $\nabla c_k^T p + c_k = 0$
(QP_k)

- ► For fast local convergence, want to choose $H_k = \nabla_{xx}^2 \mathcal{L}_k$.
- $\nabla_{xx}^2 \mathcal{L}_k$ is positive definite, if f and c are convex.
- In general, $\nabla_{xx}^2 \mathcal{L}_k$ might be indefinite.
 - (QP_k) might be unbounded.
 - p_k might not be a descent direction for ϕ_{ρ} .

$$\begin{array}{c} \min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_k^T p + c_k = 0 \end{array} \qquad (QP_k)$$

- ► For fast local convergence, want to choose $H_k = \nabla_{xx}^2 \mathcal{L}_k$.
- $\nabla_{xx}^2 \mathcal{L}_k$ is positive definite, if f and c are convex.
- In general, $\nabla_{xx}^2 \mathcal{L}_k$ might be indefinite.
 - (QP_k) might be unbounded.
 - p_k might not be a descent direction for ϕ_{ρ} .
 - Would like $Z_k^T H_k Z_k \succ 0$ (Z_k null-space matrix for ∇c_k^T).

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$

s.t. $\nabla c_k^T p + c_k = 0$ (QP_k)

- ► For fast local convergence, want to choose $H_k = \nabla_{xx}^2 \mathcal{L}_k$.
- $\nabla_{xx}^2 \mathcal{L}_k$ is positive definite, if f and c are convex.
- In general, $\nabla_{xx}^2 \mathcal{L}_k$ might be indefinite.
 - (QP_k) might be unbounded.
 - p_k might not be a descent direction for ϕ_{ρ} .
 - Would like $Z_k^T H_k Z_k \succ 0$ (Z_k null-space matrix for ∇c_k^T).
- $H_k = BFGS$ approximation of $\nabla^2_{xx} \mathcal{L}(x_k, \lambda_k)$.

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$
s.t. $\nabla c_k^T p + c_k = 0$
(QP_k)

- ► For fast local convergence, want to choose $H_k = \nabla_{xx}^2 \mathcal{L}_k$.
- $\nabla_{xx}^2 \mathcal{L}_k$ is positive definite, if f and c are convex.
- In general, $\nabla_{xx}^2 \mathcal{L}_k$ might be indefinite.
 - (QP_k) might be unbounded.
 - p_k might not be a descent direction for ϕ_{ρ} .
 - Would like $Z_k^T H_k Z_k \succ 0$ (Z_k null-space matrix for ∇c_k^T).
- $H_k = BFGS$ approximation of $\nabla^2_{xx} \mathcal{L}(x_k, \lambda_k)$.
 - ▶ Potentially slow local convergence, since ∇²_{xx} L(x*, λ*) may be indefinite.

$$egin{aligned} \min_{oldsymbol{p}\in\mathbb{R}^n} rac{1}{2} oldsymbol{p}^T oldsymbol{H}_k oldsymbol{p} +
abla f_k^T oldsymbol{p} \ ext{s.t.} \
abla c_k^T oldsymbol{p} + oldsymbol{c}_k = 0 \end{aligned}$$

Recall optimality conditions

$$\underbrace{\begin{bmatrix} H_k & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix}}_{=:\mathcal{K}_k} \begin{pmatrix} p_k \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_k \\ c_k \end{pmatrix}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

$$\min_{\boldsymbol{p} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{p}^T (\boldsymbol{H}_k + \gamma \boldsymbol{I}) \boldsymbol{p} + \nabla \boldsymbol{f}_k^T \boldsymbol{p}$$

s.t. $\nabla \boldsymbol{c}_k^T \boldsymbol{p} + \boldsymbol{c}_k = 0$

Recall optimality conditions

$$\underbrace{\begin{bmatrix} H_k + \gamma I & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix}}_{=:K_k} \begin{pmatrix} p_k \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_k \\ c_k \end{pmatrix}$$

• Choose
$$\gamma \ge 0$$

Andreas Wächter

Andreas Wächter

$$\min_{\boldsymbol{p} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{p}^T (\boldsymbol{H}_k + \gamma \boldsymbol{I}) \boldsymbol{p} + \nabla \boldsymbol{f}_k^T \boldsymbol{p}$$

s.t. $\nabla \boldsymbol{c}_k^T \boldsymbol{p} + \boldsymbol{c}_k = 0$

Recall optimality conditions

$$\underbrace{\begin{bmatrix} H_k + \gamma I & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix}}_{=:K_k} \begin{pmatrix} p_k \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_k \\ c_k \end{pmatrix}$$

• Choose $\gamma \geq 0$ so that K_k has inertia (n, m, 0).

$$\min_{\boldsymbol{p} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{p}^T (\boldsymbol{H}_k + \gamma \boldsymbol{I}) \boldsymbol{p} + \nabla \boldsymbol{f}_k^T \boldsymbol{p}$$

s.t. $\nabla \boldsymbol{c}_k^T \boldsymbol{p} + \boldsymbol{c}_k = 0$

Recall optimality conditions

$$\underbrace{\begin{bmatrix} H_k + \gamma I & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix}}_{=:K_k} \begin{pmatrix} p_k \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_k \\ c_k \end{pmatrix}$$

• Choose $\gamma \ge 0$ so that K_k has inertia (n, m, 0).

▶ E.g.: Trial and error, computing inertia via factorization

• Then $Z_k^T H_k Z_k$ is positive definite.

$$\min_{\boldsymbol{p} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{p}^T (\boldsymbol{H}_k + \gamma \boldsymbol{I}) \boldsymbol{p} + \nabla \boldsymbol{f}_k^T \boldsymbol{p}$$

s.t. $\nabla \boldsymbol{c}_k^T \boldsymbol{p} + \boldsymbol{c}_k = 0$

Recall optimality conditions

$$\underbrace{\begin{bmatrix} H_k + \gamma I & \nabla c_k \\ \nabla c_k^T & 0 \end{bmatrix}}_{=:K_k} \begin{pmatrix} p_k \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_k \\ c_k \end{pmatrix}$$

• Choose $\gamma \ge 0$ so that K_k has inertia (n, m, 0).

► E.g.: Trial and error, computing inertia via factorization

- Then $Z_k^T H_k Z_k$ is positive definite.
- ▶ No regularization necessary close to second-order sufficient solution.
$$\min_{\substack{p \in \mathbb{R}^n}} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$

s.t. $\nabla c_k^T p + c_k = 0$ (QP_k)

Decomposition $p_k = Y_k p_{Y,k} + Z_k p_{Z,k}$

$$\min_{\substack{p \in \mathbb{R}^n}} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$

s.t. $\nabla c_k^T p + c_k = 0$ (QP_k)

Decomposition $p_k = Y_k p_{Y,k} + Z_k p_{Z,k}$

Range space step

$$p_{\mathbf{Y},k} = -[\nabla c_k^T Y_k]^{-1} \nabla f_k$$

Andreas Wächter

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$
s.t. $\nabla c_k^T p + c_k = 0$
(QP_k)

Decomposition $p_k = Y_k p_{Y,k} + Z_k p_{Z,k}$

Range space step

$$p_{Y,k} = -[\nabla c_k^T Y_k]^{-1} \nabla f_k$$

Reduced space QP

$$\min_{p_Z} \frac{1}{2} p_Z^T [Z_k^T H_k Z_k] p_Z + (\nabla f_k + H_k Y_k p_{Y,k})^T Z_k p_Z$$

Constrained Nonlinear Optimization Algorithms

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$
s.t. $\nabla c_k^T p + c_k = 0$
(QP_k)

Decomposition $p_k = Y_k p_{Y,k} + Z_k p_{Z,k}$

Range space step

$$p_{Y,k} = -[\nabla c_k^T Y_k]^{-1} \nabla f_k$$

Reduced space QP

$$\min_{p_Z} \frac{1}{2} p_Z^T [Z_k^T H_k Z_k] p_Z + (\nabla f_k + H_k Y_k p_{Y,k})^T Z_k p_Z$$

• Make sure $Z_k^T H_k Z_k$ is positive definite

Andreas Wächter

$$\min_{\substack{p \in \mathbb{R}^n}} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$

s.t. $\nabla c_k^T p + c_k = 0$ (QP_k)

Decomposition $p_k = Y_k p_{Y,k} + Z_k p_{Z,k}$

Range space step

$$p_{Y,k} = -[\nabla c_k^T Y_k]^{-1} \nabla f_k$$

Reduced space QP

$$\min_{p_Z} \frac{1}{2} p_Z^T [Z_k^T H_k Z_k] p_Z + (\nabla f_k + H_k Y_k p_{Y,k})^T Z_k p_Z$$

• Make sure $Z_k^T H_k Z_k$ is positive definite (e.g., BFGS)

Andreas Wächter

$$\begin{split} \min_{p \in \mathbb{R}^n} \; & \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t.} \; & \nabla c_k^T p + c_k = 0, \quad \|p\| \leq \Delta_k \end{split}$$

• Trust-region radius Δ_k , updated throughout iterations

Constrained Nonlinear Optimization Algorithms

 (QP_k)

$$\begin{split} \min_{p \in \mathbb{R}^n} \, \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_k^T p + c_k = 0, \quad \|p\| \leq \Delta_k \end{split}$$

 (QP_k)

- Trust-region radius Δ_k , updated throughout iterations
- ▶ No positive-definiteness requirements for *H_k*

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$
s.t. $\nabla c_k^T p + c_k = 0, \quad \|p\| \le \Delta_k$

$$(Q$$

$$(QP_k)$$

- Trust-region radius Δ_k , updated throughout iterations
- \triangleright No positive-definiteness requirements for H_k
- Step p_k is accepted if $\frac{\text{pred}_k}{\text{ared}_k} \ge \eta$ with $(\eta \in (0,1))$

 $\operatorname{pred}_{k} = m_{k}(0) - m_{k}(p_{k}), \quad \operatorname{ared}_{k} = \phi_{\rho}(x_{k}) - \phi_{\rho}(x_{k} + p_{k})$

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n}} \frac{1}{2} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{\mathsf{T}} \boldsymbol{p}$$
s.t. $\nabla \boldsymbol{c}_{k}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{c}_{k} = 0, \quad \|\boldsymbol{p}\| \leq \Delta_{k}$

$$(\mathsf{QP}_{k})$$

- ▶ No positive-definiteness requirements for *H_k*
- ▶ Step p_k is accepted if $\frac{\mathsf{pred}_k}{\mathsf{ared}_k} \ge \eta$ with $(\eta \in (0, 1))$

 $\operatorname{pred}_k = m_k(0) - m_k(p_k), \quad \operatorname{ared}_k = \phi_\rho(x_k) - \phi_\rho(x_k + p_k)$

► Piece-wise quadratic model of φ_ρ(x) = f(x) + ρ || c(x) ||₁:

$$m_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} p^T H_k p + \rho \|c_k + \nabla c_k^T p\|_1$$

Constrained Nonlinear Optimization Algorithms

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n}} \frac{1}{2} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{\mathsf{T}} \boldsymbol{p}$$
s.t. $\nabla \boldsymbol{c}_{k}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{c}_{k} = 0, \quad \|\boldsymbol{p}\| \leq \Delta_{k}$

$$(\mathsf{QP}_{k})$$

- No positive-definiteness requirements for H_k
- ▶ Step p_k is accepted if $\frac{\mathsf{pred}_k}{\mathsf{ared}_k} \ge \eta$ with $(\eta \in (0,1))$

 $\operatorname{pred}_k = m_k(0) - m_k(p_k), \quad \operatorname{ared}_k = \phi_\rho(x_k) - \phi_\rho(x_k + p_k)$

► Piece-wise quadratic model of φ_ρ(x) = f(x) + ρ || c(x) ||₁:

$$m_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} p^T H_k p + \rho \|c_k + \nabla c_k^T p\|_1$$

• Otherwise, decrease Δ_k

Andreas Wächter

Inconsistent QPs

• If x_k is not feasible and Δ_k small, (QP_k) might not be feasible

Inconsistent QPs

- If x_k is not feasible and Δ_k small, (QP_k) might not be feasible
- ▶ One remedy: Penalize constraint violation

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n}} \frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{T} \boldsymbol{p}$$

s.t. $\nabla \boldsymbol{c}_{k}^{T} \boldsymbol{p} + \boldsymbol{c}_{k} = 0$
 $\|\boldsymbol{p}\| \leq \Delta_{k}$

Andreas Wächter

Inconsistent QPs

- If x_k is not feasible and Δ_k small, (QP_k) might not be feasible
- ▶ One remedy: Penalize constraint violation

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{m}} \frac{1}{2} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{\rho} \sum_{j=1}^{m} (s_{j} + t_{j})$$
s.t. $\nabla \boldsymbol{c}_{k}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{c}_{k} = s - t$
 $\|\boldsymbol{p}\| \leq \Delta_{k}, \quad s, t \geq 0$

$$\min_{p \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{m}} \frac{1}{2} p^{T} H_{k} p + \nabla f_{k}^{T} p + \rho \sum_{j=1}^{m} (s_{j} + t_{j})$$

s.t. $\nabla c_{k}^{T} p + c_{k} = s - t$
 $\|p\| \leq \Delta_{k}, \quad s, t \geq 0$

Constrained Nonlinear Optimization Algorithms

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{m}} \frac{1}{2} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{\rho} \sum_{j=1}^{m} (s_{j} + t_{j})$$
s.t. $\nabla \boldsymbol{c}_{k}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{c}_{k} = s - t$
 $\|\boldsymbol{p}\| \leq \Delta_{k}, \quad s, t \geq 0$

is equivalent to

$$\min_{\boldsymbol{p}\in\mathbb{R}^n} m_k(\boldsymbol{p}) = f_k + \nabla f_k^T \boldsymbol{p} + \frac{1}{2} \boldsymbol{p}^T \boldsymbol{H}_k \boldsymbol{p} + \rho \|\boldsymbol{c}_k + \nabla \boldsymbol{c}_k^T \boldsymbol{p}\|_1$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\min_{p \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{m}} \frac{1}{2} p^{T} H_{k} p + \nabla f_{k}^{T} p + \rho \sum_{j=1}^{m} (s_{j} + t_{j})$$

s.t. $\nabla c_{k}^{T} p + c_{k} = s - t$
 $\|p\| \leq \Delta_{k}, \quad s, t \geq 0$

is equivalent to

$$\min_{\boldsymbol{p}\in\mathbb{R}^n} m_k(\boldsymbol{p}) = f_k + \nabla f_k^T \boldsymbol{p} + \frac{1}{2} \boldsymbol{p}^T \boldsymbol{H}_k \boldsymbol{p} + \rho \|\boldsymbol{c}_k + \nabla \boldsymbol{c}_k^T \boldsymbol{p}\|_1$$

• Natural algorithm for minimizing $\phi_{\rho}(x)$.

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

$$\min_{p \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{m}} \frac{1}{2} p^{T} H_{k} p + \nabla f_{k}^{T} p + \rho \sum_{j=1}^{m} (s_{j} + t_{j})$$

s.t. $\nabla c_{k}^{T} p + c_{k} = s - t$
 $\|p\| \leq \Delta_{k}, \quad s, t \geq 0$

is equivalent to

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} p^T H_k p + \rho \|c_k + \nabla c_k^T p\|_1$$

- Natural algorithm for minimizing $\phi_{\rho}(x)$.
- Difficulty: Selecting sufficiently large value of ρ .

$$\min_{p \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{m}} \frac{1}{2} p^{T} H_{k} p + \nabla f_{k}^{T} p + \rho \sum_{j=1}^{m} (s_{j} + t_{j})$$

s.t. $\nabla c_{k}^{T} p + c_{k} = s - t$
 $\|p\| \leq \Delta_{k}, \quad s, t \geq 0$

is equivalent to

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} p^T H_k p + \rho \|c_k + \nabla c_k^T p\|_1$$

- Natural algorithm for minimizing $\phi_{\rho}(x)$.
- Difficulty: Selecting sufficiently large value of ρ .
 - This motivated the invention of *filter methods*.

Andreas Wächter

• Decompose step $p_k = n_k + t_k$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

• Decompose step $p_k = n_k + t_k$

Normal component n_k towards feasibility

• Decompose step $p_k = n_k + t_k$

Normal component n_k towards feasibility

Tangential component t_k towards optimality

Andreas Wächter

• Decompose step
$$p_k = n_k + t_k$$

Normal component n_k towards feasibility

$$\min_{n} \|\nabla c_k^T n + c_k\|_2^2$$

s.t. $\|n\|_2 \le 0.8\Delta_k$

Tangential component t_k towards optimality

• Decompose step $p_k = n_k + t_k$

Normal component n_k
towards feasibilityTangential component t_k
towards optimality $\min_n \|\nabla c_k^T n + c_k\|_2^2$
s.t. $\|n\|_2 \le 0.8\Delta_k$ $\min_t \frac{1}{2}(n_k+t)^T H_k(n_k+t) + \nabla f_k^T(n_k+t)$
s.t. $\nabla c_k^T t = 0$
 $\|t\|_2 \le \sqrt{\Delta_k^2 - \|n_k\|_2^2}$

Subproblems can be solved inexactly

- Subproblems can be solved inexactly
 - Normal problem: Dogleg method.

- Subproblems can be solved inexactly
 - Normal problem: Dogleg method.
 - ► Tangential problem: Conjugate-gradients method in null space.

- Subproblems can be solved inexactly
 - Normal problem: Dogleg method.
 - ► Tangential problem: Conjugate-gradients method in null space.
- ℓ_2 -norm penalty function $\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_2$.

- Normal problem: Dogleg method.
- Tangential problem: Conjugate-gradients method in null space.
- ℓ_2 -norm penalty function $\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_2$.
- Strong convergence result:

$$\begin{aligned} & \underset{t}{\text{towards optimality}} \\ & \underset{t}{\text{min}} \ \frac{1}{2} (n_k + t)^T H_k (n_k + t) + \nabla f_k^T (n_k + t) \\ & \text{s.t. } \nabla c_k^T t = 0 \\ & \|t\|_2 \leq \sqrt{\Delta_k^2 - \|n_k\|_2^2} \end{aligned}$$

- Subproblems can be solved inexactly
 - Normal problem: Dogleg method.
 - ► Tangential problem: Conjugate-gradients method in null space.
- ℓ_2 -norm penalty function $\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_2$.
- Strong convergence result:
 - If (NLP) is infeasible, limit points of {x_k} are stationary points for infeasibility minimization problem min_x ||c(x)||₂².

Andreas Wächter

- Even arbitrarily close to solution, full step α = 1 might be rejected because the non-smooth merit function φ_ρ increases.
- Degrades fast local convergence.
- ► Remedies: Second-order correction steps or "watchdog" method.

Table of Contents

Applications

Equality-Constrained Quadratic Programming

Active-Set Quadratic Programming Solvers

SQP for Equality-Constrained NLPs

SQP for Inequality-Constrained NLPs

Interior Point Methods

Software

Andreas Wächter

SQP For Inequality-Constrained Nonlinear Problems

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_E(x) = 0$

Compute p_k from local QP model

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f(x_k)^T p$$

s.t. $\nabla c_E(x_k)^T p + c_E(x_k) = 0$ (QP_k)

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

SQP For Inequality-Constrained Nonlinear Problems

Compute p_k from local QP model

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f(x_k)^T p$$

s.t. $\nabla c_E(x_k)^T p + c_E(x_k) = 0$ (QP_k)

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

SQP For Inequality-Constrained Nonlinear Problems

Compute p_k from local QP model

$$\min_{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} H_{k} p + \nabla f(x_{k})^{T} p$$
s.t. $\nabla c_{E}(x_{k})^{T} p + c_{E}(x_{k}) = 0$
 $\nabla c_{I}(x_{k})^{T} p + c_{I}(x_{k}) \leq 0$

$$(QP_{k})$$

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Local Behavior

$$egin{aligned} \min_{x\in\mathbb{R}^n} f(x) \ ext{ s.t. } c_i(x) &= 0 \quad i\in\mathcal{E} \ c_i(x) &\leq 0 \quad i\in\mathcal{I} \end{aligned}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Local Behavior

 $egin{aligned} \min_{x\in\mathbb{R}^n} \, f(x) \ ext{s.t.} \, c_i(x) &= 0 \quad i\in\mathcal{E} \ c_i(x) &\leq 0 \quad i\in\mathcal{A}^{\mathsf{NLP}}_* \ c_i(x) &\leq 0 \quad i\in\overline{\mathcal{A}}^{\mathsf{NLP}}_* \end{aligned}$

$$\mathcal{A}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) = 0\} \qquad \overline{\mathcal{A}}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) < 0\}$$

....

Andreas Wächter

Constrained Nonlinear Optimization Algorithms
Local Behavior

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0 \quad i \in \mathcal{E}$ $c_i(x) = 0 \quad i \in \mathcal{A}_*^{\mathsf{NLP}}$ $\underline{c_i(x)} \leq 0 \quad i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}}$

$$\mathcal{A}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) = 0\} \qquad \overline{\mathcal{A}}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) < 0\}$$

....

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Local Behavior

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_i(x) = 0$ $i \in \mathcal{E}$
 $c_i(x) = 0$ $i \in \mathcal{A}_*^{\text{NLP}}$
 $\underline{c_i(x)} \leq 0$ $i \in \overline{\mathcal{A}}_*^{\text{NLP}}$

$$\begin{split} \min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_{k,i}^T p + c_{k,i} &= 0 \quad i \in \mathcal{E} \\ \nabla c_{k,i}^T p + c_{k,i} &= 0 \quad i \in \mathcal{A}_*^{\text{QP}_k} \\ \hline \nabla c_{k,i}^T p + c_{k,i} &\leq 0 \quad i \in \overline{\mathcal{A}}_*^{\text{QP}_k} \end{split}$$

$$\mathcal{A}^{\mathsf{NLP}}_* = \{i \in \mathcal{I}: c_i(x^*) = 0\} \qquad \overline{\mathcal{A}}^{\mathsf{NLP}}_* = \{i \in \mathcal{I}: c_i(x^*) < 0\}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

}

Local Behavior

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0$ $i \in \mathcal{E}$ $c_i(x) = 0$ $i \in \mathcal{A}_*^{\mathsf{NLP}}$ $\underline{c_i(x)} \leq 0$ $i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}}$

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p$$
s.t. $\nabla c_{k,i}^T p + c_{k,i} = 0 \quad i \in \mathcal{E}$
 $\nabla c_{k,i}^T p + c_{k,i} = 0 \quad i \in \mathcal{A}_*^{\mathrm{QP}_k}$
 $\overline{\nabla c_{k,i}^T p + c_{k,i}} \leq 0 \quad i \in \overline{\mathcal{A}}_*^{\mathrm{QP}_k}$

$$\mathcal{A}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) = 0\} \qquad \overline{\mathcal{A}}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) < 0\}$$

Lemma

Suppose x^* is a local minimizer satisfying the sufficient second-order optimality conditions, at which LICQ and strict optimality hold. Then $\mathcal{A}_*^{\mathsf{NLP}} = \mathcal{A}_*^{\mathsf{QP}_k}$ for all x_k sufficiently close to x_* .

Andreas Wächter

Back to Newton's Method

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_i(x) = 0$ $i \in \mathcal{E}$
 $c_i(x) = 0$ $i \in \mathcal{A}_*^{\mathsf{NLP}}$
 $\underline{c_i(x)} \leq 0$ $i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}}$

$$\begin{split} \min_{\boldsymbol{p} \in \mathbb{R}^{n}} & \frac{1}{2} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{\mathsf{T}} \boldsymbol{p} \\ \text{s.t.} & \nabla \boldsymbol{c}_{k,i}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{c}_{k,i} = 0 \quad i \in \mathcal{E} \\ & \nabla \boldsymbol{c}_{k,i}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{c}_{k,i} = 0 \quad i \in \mathcal{A}_{*}^{\mathsf{NLP}} \\ & \underline{\nabla \boldsymbol{c}_{k,i}^{\mathsf{T}} \boldsymbol{p} + \boldsymbol{c}_{k,i} \leq 0} \quad i \in \overline{\mathcal{A}}_{*}^{\mathsf{NLP}} \end{split}$$

▶ When x_k is close to x^{*}, (QP_k) produces the same steps as SQP for equality-constrained NLP.

Back to Newton's Method

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_i(x) = 0$ $i \in \mathcal{E}$
 $c_i(x) = 0$ $i \in \mathcal{A}_*^{\mathsf{NLP}}$
 $\underline{c_i(x)} \leq 0$ $i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}}$

$$\begin{split} \min_{p \in \mathbb{R}^n} & \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_{k,i}^T p + c_{k,i} = 0 \quad i \in \mathcal{E} \\ & \nabla c_{k,i}^T p + c_{k,i} = 0 \quad i \in \mathcal{A}_*^{\text{NLP}} \\ & \underline{\nabla c_{k,i}^T p + c_{k,i} \leq 0} \quad i \in \overline{\mathcal{A}}_*^{\text{NLP}} \end{split}$$

- ▶ When x_k is close to x^{*}, (QP_k) produces the same steps as SQP for equality-constrained NLP.
- We are back to Newton's method...

Back to Newton's Method

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_i(x) = 0$ $i \in \mathcal{E}$
 $c_i(x) = 0$ $i \in \mathcal{A}_*^{\mathsf{NLP}}$
 $\underline{c_i(x)} \leq 0$ $i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}}$

$$\begin{split} \min_{p \in \mathbb{R}^n} & \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_{k,i}^T p + c_{k,i} = 0 \quad i \in \mathcal{E} \\ & \nabla c_{k,i}^T p + c_{k,i} = 0 \quad i \in \mathcal{A}_*^{\text{NLP}} \\ & \underline{\nabla c_{k,i}^T p + c_{k,i} \leq 0} \quad i \in \overline{\mathcal{A}}_*^{\text{NLP}} \end{split}$$

- ▶ When x_k is close to x^{*}, (QP_k) produces the same steps as SQP for equality-constrained NLP.
- We are back to Newton's method...
- Fast local convergence!

Global Convergence

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_E(x) = 0$
 $c_I(x) \le 0$

Methods for equality constraints can be generalized.

► For example, penalty function

$$\phi_{\rho}(x) = f(x) + \rho \|c_{E}(x)\|_{1} + \rho \|\max\{c_{I}(x), 0\}\|_{1}$$

Global Convergence

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_E(x) = 0$
 $c_I(x) \le 0$

Methods for equality constraints can be generalized.

► For example, penalty function

$$\phi_{\rho}(x) = f(x) + \rho \|c_{E}(x)\|_{1} + \rho \|\max\{c_{I}(x), 0\}\|_{1}.$$

$$\min_{p \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{m_{E}}; r \in \mathbb{R}^{m_{j}}} \frac{1}{2} p^{T} H_{k} p + \nabla f_{k}^{T} p + \rho \sum_{j=1}^{m_{E}} (s_{j} + t_{j}) + \rho \sum_{j=1}^{m_{j}} r_{j}$$

s.t. $\nabla c_{E,k}^{T} p + c_{E,k} = s - t$
 $\nabla c_{E,k}^{T} p + c_{E,k} \leq r$
 $\|p\| \leq \Delta_{k}, \quad s, t, r \geq 0$

Table of Contents

Applications

Equality-Constrained Quadratic Programming

Active-Set Quadratic Programming Solvers

SQP for Equality-Constrained NLPs

SQP for Inequality-Constrained NLPs

Interior Point Methods

Software

Andreas Wächter

$$egin{aligned} \min_{x\in\mathbb{R}^n} f(x) \ ext{s.t.} \ c(x) = 0 \ x \geq 0 \end{aligned}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$
 $x \ge 0$

 \longrightarrow

$$\min_{x \in \mathbb{R}^n} f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

 $\mu = 0.1$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

0,6

Andreas Wächter

0.2

Constrained Nonlinear Optimization Algorithms

0,6

Andreas Wächter

0.2

Constrained Nonlinear Optimization Algorithms

Basic Algorithm:

1. Choose $x_0 \in \mathbb{R}^n$, $\mu_0 > 0$, $\epsilon_0 > 0$. Set $k \leftarrow 0$.

Basic Algorithm:

- 1. Choose $x_0 \in \mathbb{R}^n$, $\mu_0 > 0$, $\epsilon_0 > 0$. Set $k \leftarrow 0$.
- 2. Starting from x_0 , solve (BP_{μ_k}) to tolerance ϵ_k and obtain x_{k+1} .

Basic Algorithm:

- 1. Choose $x_0 \in \mathbb{R}^n$, $\mu_0 > 0$, $\epsilon_0 > 0$. Set $k \leftarrow 0$.
- 2. Starting from x_0 , solve (BP_{μ_k}) to tolerance ϵ_k and obtain x_{k+1} .

3. Decrease
$$\mu_{k+1} < \mu_k$$
 and $\epsilon_{k+1} < \epsilon_k$; set $k \leftarrow k+1$; go to 2.
(Ensure $\mu_k \rightarrow 0$ and $\epsilon_k \rightarrow 0$.)

Constrained Nonlinear Optimization Algorithms

Basic Algorithm:

- 1. Choose $x_0 \in \mathbb{R}^n$, $\mu_0 > 0$, $\epsilon_0 > 0$. Set $k \leftarrow 0$.
- 2. Starting from x_0 , solve (BP_{μ_k}) to tolerance ϵ_k and obtain x_{k+1} .

 \rightarrow Use SQP techniques

3. Decrease $\mu_{k+1} < \mu_k$ and $\epsilon_{k+1} < \epsilon_k$; set $k \leftarrow k+1$; go to 2.

(Ensure $\mu_k \rightarrow 0$ and $\epsilon_k \rightarrow 0$.)

SQP Techniques for Solving the Barrier Problem

$$\min_{x \in \mathbb{R}^n} \varphi_{\mu}(x) = f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

Can re-use SQP techniques:

- Step computation
 - KKT system with regularization
 - Decomposition

SQP Techniques for Solving the Barrier Problem

$$\min_{x \in \mathbb{R}^n} \varphi_{\mu}(x) = f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

Can re-use SQP techniques:

- Step computation
 - KKT system with regularization
 - Decomposition
- Step acceptance
 - Line search
 - Trust region

Andreas Wächter

SQP Techniques for Solving the Barrier Problem

$$\min_{x \in \mathbb{R}^n} \varphi_{\mu}(x) = f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

Can re-use SQP techniques:

- Step computation
 - KKT system with regularization
 - Decomposition
- Step acceptance
 - Line search
 - Trust region
- Measuring progress
 - Exact penalty function
 - Filter method

Andreas Wächter

$$\min_{x \in \mathbb{R}^n} \varphi_{\mu}(x) = f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

Variables must stay positive

Constrained Nonlinear Optimization Algorithms

$$\min_{x \in \mathbb{R}^n} \varphi_{\mu}(x) = f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

- Variables must stay positive
 - Fraction-to-the-boundary rule

$$(au \in (0,1)$$
, e.g., $au = 0.99)$

$$\alpha_k^{\max} = \arg \max \left\{ \alpha \in (0,1] : x_k + \alpha p_k \ge (1-\tau) x_k \right\}$$

Andreas Wächter

$$\min_{x \in \mathbb{R}^n} \varphi_\mu(x) = f(x) - \mu \sum_{i=1}^n \log(x_i)$$
s.t. $c(x) = 0$

- Variables must stay positive
 - Fraction-to-the-boundary rule

$$(au \in (0,1)$$
, e.g., $au = 0.99)$

$$\alpha_k^{\max} = \arg \max \left\{ \alpha \in (0, 1] : x_k + \alpha p_k \ge (1 - \tau) x_k \right\}$$

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \mu X_{k}^{-2} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

$$\min_{x \in \mathbb{R}^n} \varphi_{\mu}(x) = f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

- Variables must stay positive
 - Fraction-to-the-boundary rule

$$(au \in (0,1)$$
, e.g., $au = 0.99)$

$$\alpha_k^{\max} = \arg \max \left\{ \alpha \in (0,1] : x_k + \alpha p_k \ge (1-\tau) x_k \right\}$$

Ill-conditioning in linear system

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \mu X_{k}^{-2} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Constrained Nonlinear Optimization Algorithms

Example

$$\min_{x \in \mathbb{R}^2} x_1 + (x_2 - 1)^2$$

st x > 0

k	I	mu_k	I	f_k	I	(x_k(1),	x_k(2))	I	(p_k(1),		p_k(2))	I	err_barr	I	alpha	
0	1	1.00e+00	1	2.50e+00		(2	00e+0	0,2.	00e+00)	1	(0.00e+00,	0.	.00e+00)	1	7.07e-01	1	0.00e+00	
1	L	1.00e+00	T	2.02e-01	Т	(2	00e-0	2,1.	60e+00)	I.	(-	-2.00e+00,	-4.	00e-01)	Т	2.04e+00	I.	9.90e-01	
2	L	1.00e+00	T	2.31e-01	Т	(3	96e-0	2,1.	62e+00)	I.	(1.96e-02,	1.	40e-02)	Т	2.41e-02	I.	1.00e+00	
3	L	1.00e-01	T	6.69e-02	L	(6	35e-0	2,1.	08e+00)	I.	(2.39e-02,	-5.	36e-01)	Т	5.36e-01	I.	1.00e+00	
4	L	1.00e-01	T	9.09e-02	L	(8)	67e-0	2,1.	09e+00)	I.	(2.32e-02,	9.	33e-03)	Т	2.50e-02	I.	1.00e+00	
5	L	1.00e-02	T	4.15e-03	Т	(8)	67e-0	4,1.	08e+00)	I.	(-	-6.65e-01,	-8.	18e-02)	Т	6.70e-01	I.	1.29e-01	
6	L	1.00e-02	T	1.71e-03	I.	(1	66e-0	3,1.	01e+00)	T	(7.92e-04,	-7.	12e-02)	I	7.12e-02	I.	1.00e+00	
12	L	3.16e-05	I	2.70e-05		(2	70e-0	5,1.	00e+00)		(7.45e-06,	2.	95e-11)		7.45e-06	Т	1.00e+00	
13	L	1.78e-07	T	4.98e-10	1	(4	81e-1	2,1.	00e+00)	Т	(-	-4.09e-03,	-3.	14e-05)	Т	4.09e-03	I.	6.62e-03	
Wai	ni	ing: Matr	ix	is close	to	s	ingula	r or	badly :	sca	al@	ed. Result	s I	nay be in	na	curate. 1	RCC	DND = 1.3	00371e-16.
14	L	1.78e-07	T	9.63e-12	Т	(9	62e-1	2,1.	00e+00)	I.	(4.81e-12,	-3.	12e-05)	Т	3.12e-05	I.	1.00e+00	
15	L	1.78e-07	T	1.93e-11	Т	(1	92e-1	1,1.	00e+00)	I.	(9.62e-12,	9.	44e-17)	Т	9.62e-12	I.	1.00e+00	
16	L	7.50e-11	I	3.35e-11	I.	(3	35e-1	1,1.	00e+00)	Т	(1.43e-11,	-1.	78e-07)	I	1.78e-07	L	1.00e+00	

Example

$$\min_{x \in \mathbb{R}^2} x_1 + (x_2 - 1)^2$$

s.t. $x \ge 0$

k	I	mu_k	I	f_k	I	(x_k(1)	,	x_k(2))	I	(p_k(1)	,	p_k(2))	I	err_barr	I	al	pha
	1	1.00e+00	I	2.50e+00	1	(2.	00e+00	,2.	00e+00)	1	(0	.00e+00	, 0	00e+00)	1	7.07e-01	1	0.00e	+00
1	- I	1.00e+00	T	2.02e-01	L	(2.	00e-02	,1.	60e+00)	L	(-2	.00e+00	,-4	00e-01)	T	2.04e+00	I.	9.90e	e-01
2	T	1.00e+00	T	2.31e-01	L	(3.	96e-02	,1.	62e+00)	T	(1	.96e-02	, 1	40e-02)	T	2.41e-02	I.	1.00e	+00
3	T	1.00e-01	T	6.69e-02	L	(6.	35e-02	,1.	08e+00)	T	(2	.39e-02	,-5	36e-01)	T	5.36e-01	I.	1.00e	+00
4	T	1.00e-01	T	9.09e-02	L	(8.	67e-02	,1.	09e+00)	T	(2	.32e-02	, 9	33e-03)	T	2.50e-02	I.	1.00e	+00
5	T	1.00e-02	T	4.15e-03	L	(8.	67e-04	,1.	08e+00)	T	(-6	.65e-01	,-8	18e-02)	T	6.70e-01	I.	1.29e	e-01
6	I	1.00e-02	I	1.71e-03	L	(1.	66e-03	,1.	01e+00)	I	(7	.92e-04	,-7	12e-02)	T	7.12e-02	I	1.00e	+00
12	1	3.16e-05	I	2.70e-05	L	(2.	70e-05	,1.	00e+00)	L	(7	.45e-06	, 2	95e-11)	T	7.45e-06	I.	1.00e	e+00
13	1	1.78e-07	T	4.98e-10	L	(4.	81e-12	,1.	00e+00)	L	(-4	.09e-03	,-3	14e-05)	T	4.09e-03	Т	6.62e	e-03
Wa	rn	ing: Matr:	ix	is close	to) si	ngular	or	badly s	sca	aled	. Result	ts I	nay be in	na	ccurate. H	RCC	DND =	1.300371e-16
14	Т	1.78e-07	T	9.63e-12	I.	(9.	62e-12	,1.	00e+00)	T.	(4	.81e-12	,-3	12e-05)	T	3.12e-05	I.	1.00e	e+00
15	Т	1.78e-07	T	1.93e-11	I.	(1.	92e-11	,1.	00e+00)	I.	(9	.62e-12	, 9	44e-17)	T	9.62e-12	I.	1.00e	+00
16	I	7.50e-11	I	3.35e-11	L	(3.	35e-11	,1.	00e+00)	I	(1	.43e-11	,-1	78e-07)	T	1.78e-07	I	1.00e	+00

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$
 $x \ge 0$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } c(x) = 0 \\ x \ge 0$$

$$abla f(x) +
abla c(x) - z = 0$$
 $c(x) = 0$
 $XZe = 0$
 $x, z \ge 0$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } c(x) = 0 \\ x \ge 0$$

$$abla f(x) +
abla c(x) - z = 0$$
 $c(x) = 0$
 $XZe = \mu e$
 $(x, z \ge 0)$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$
 $x \ge 0$

$$abla f(x) +
abla c(x) - z = 0$$
 $c(x) = 0$
 $XZe = \mu e$
 $(x, z \ge 0)$

Newton Steps

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} & \nabla c_{k} & -I \\ \nabla c_{k}^{T} & 0 & 0 \\ Z_{k} & 0 & X_{k} \end{bmatrix} \begin{pmatrix} p_{k} \\ p_{k}^{\lambda} \\ p_{k}^{z} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} + \nabla c_{k} \lambda_{k} - z_{k} \\ c_{k} \\ X_{k} Z_{k} e - \mu e \end{pmatrix}$$

Andreas Wächter

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$
 $x \ge 0$

$$abla f(x) +
abla c(x) - z = 0$$
 $c(x) = 0$
 $XZe = \mu e$
 $(x, z \ge 0)$

Newton Steps

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} & \nabla c_{k} & -I \\ \nabla c_{k}^{T} & 0 & 0 \\ Z_{k} & 0 & X_{k} \end{bmatrix} \begin{pmatrix} p_{k} \\ p_{k}^{\lambda} \\ p_{k}^{z} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} + \nabla c_{k} \lambda_{k} - z_{k} \\ c_{k} \\ X_{k} Z_{k} e - \mu e \end{pmatrix}$$

Block elimination

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + X_{k}^{-1} Z_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Primal-Dual Steps

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \sum_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

Primal-Dual Steps

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \sum_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Barrier Hessian term:

•
$$\Sigma_k = X_k^{-2}$$
: primal
• $\Sigma_k = X_k^{-1}Z_k$: primal-dual
$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \sum_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Barrier Hessian term:

•
$$\Sigma_k = X_k^{-2}$$
: primal
• $\Sigma_k = X_k^{-1}Z_k$: primal-dual

• Step for dual variables: $p_k^z = \mu X_k^{-1} e - z_k - \sum_k p_k$.

Andreas Wächter

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \sum_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Barrier Hessian term:

•
$$\Sigma_k = X_k^{-2}$$
: primal
• $\Sigma_k = X_k^{-1}Z_k$: primal-dual

- Step for dual variables: $p_k^z = \mu X_k^{-1} e z_k \sum_k p_k$.
- Can still use SQP-type globalization techniques.

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \sum_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Barrier Hessian term:

•
$$\Sigma_k = X_k^{-2}$$
: primal
• $\Sigma_k = X_k^{-1}Z_k$: primal-dual

- Step for dual variables: $p_k^z = \mu X_k^{-1} e z_k \sum_k p_k$.
- Can still use SQP-type globalization techniques.
- Now: Fast local convergence.

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \sum_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

Barrier Hessian term:

•
$$\Sigma_k = X_k^{-2}$$
: primal
• $\Sigma_k = X_k^{-1}Z_k$: primal-dual

- Step for dual variables: $p_k^z = \mu X_k^{-1} e z_k \sum_k p_k$.
- Can still use SQP-type globalization techniques.
- Now: Fast local convergence.
- Ill-conditioning in KKT system is benign for direct linear solvers.

Example Revisited with Primal-Dual Method

$$egin{array}{l} \min_{x\in\mathbb{R}^2} x_1+(x_2-1)^2 \ {
m s.t.} \ x\geq 0 \end{array}$$

k	I	mu_k	I	f_k	I	(x_k(1),	x_k(2))	I	(p_k(1),		p_k(2))	I	err_barr	I	alpha
0	1	1.00e+00	1	2.50e+00	1	(2.	00e+00,2	.00e+00)	1	(0.00e+00,	0.	00e+00)	1	7.07e-01	1	0.00e+00
1	T.	1.00e+00	T.	2.02e-01	Ľ	(2.	00e-02,1	.60e+00)	I.	(-	-2.00e+00,	-4.	00e-01)	Т	4.00e-03	T	9.90e-01
2	T.	1.00e-01	T.	1.22e-01	L	(1.	00e-01,1	.21e+00)	I.	(8.00e-02,	-3.	94e-01)	Т	4.74e-16	T	1.00e+00
3	T.	1.00e-02	T.	1.07e-02	L	(1.	00e-02,1	.04e+00)	I.	(-	-9.00e-02,	-1.	72e-01)	Т	5.55e-17	T	1.00e+00
4	T.	1.00e-03	T.	1.00e-03	L	(1.	00e-03,1	.00e+00)	I.	(-	-9.00e-03,	-3.	58e-02)	Т	5.55e-17	T	1.00e+00
5	T.	3.16e-05	T.	3.16e-05	L	(3.	16e-05,1	.00e+00)	I.	(-	-9.68e-04,	-2.	24e-03)	Т	3.64e-17	T	1.00e+00
6	T.	1.78e-07	T.	1.78e-07	L	(1.	78e-07,1	.00e+00)	I.	(-	-3.14e-05,	-3.	65e-05)	Т	1.10e-16	T	1.00e+00
7	L	7.50e-11	L	7.50e-11	L	(7.	50e-11,1	.00e+00)	L	(-	-1.78e-07,	-1.	79e-07)	Т	5.34e-17	T	1.00e+00

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

Example Revisited with Primal-Dual Method

$$\begin{array}{c} \min_{x \in \mathbb{R}^2} x_1 + (x_2 - 1)^2 \\ \text{s.t. } x \ge 0 \end{array}$$

k	I	mu_k	I	f_k	(x_k(1),	x_k(2))	I	(p_k(1),		p_k(2))	I	err_barr	I	alpha
0	I	1.00e+00	I	2.50e+00	(2.00e+00,2	.00e+00)	I	(0.00e+00,	ο.	00e+00)	I	7.07e-01	I	0.00e+00
1	T.	1.00e+00	Т	2.02e-01	(2.00e-02,1	.60e+00)	T.	(-	-2.00e+00,	-4.	00e-01)	Т	4.00e-03	T	9.90e-01
2	T.	1.00e-01	Т	1.22e-01	(1.00e-01,1	.21e+00)	T.	(8.00e-02,	-3.	94e-01)	Т	4.74e-16	T	1.00e+00
3	T.	1.00e-02	Т	1.07e-02	(1.00e-02,1	.04e+00)	T.	(-	-9.00e-02,	-1.	72e-01)	Т	5.55e-17	T	1.00e+00
4	T.	1.00e-03	Т	1.00e-03	(1.00e-03,1	.00e+00)	T.	(-	-9.00e-03,	-3.	58e-02)	Т	5.55e-17	T	1.00e+00
5	T.	3.16e-05	Т	3.16e-05	(3.16e-05,1	.00e+00)	T.	(-	-9.68e-04,	-2.	24e-03)	Т	3.64e-17	T	1.00e+00
6	T.	1.78e-07	Т	1.78e-07	(1.78e-07,1	.00e+00)	T.	(-	-3.14e-05,	-3.	65e-05)	Т	1.10e-16	T	1.00e+00
7	L	7.50e-11	T	7.50e-11	(7.50e-11,1	.00e+00)	L	(-	-1.78e-07,	-1.	79e-07)	Т	5.34e-17	T	1.00e+00

0.02 0.04 0.06 0.08

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

0.12

Table of Contents

Applications

Equality-Constrained Quadratic Programming

Active-Set Quadratic Programming Solvers

SQP for Equality-Constrained NLPs

SQP for Inequality-Constrained NLPs

Interior Point Methods

Software

Andreas Wächter

(very rough guide...)

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

(very rough guide...)

SQP methods

- Very efficient for small- to medium-sized problems
 - up to several thousand variables and constraints

(very rough guide...)

SQP methods

- Very efficient for small- to medium-sized problems
 - up to several thousand variables and constraints
- Can exploit good estimate of solution (warm starts)
 - branch-and-bound for mixed-integer nonlinear programming
 - real-time optimal control

(very rough guide...)

SQP methods

- Very efficient for small- to medium-sized problems
 - up to several thousand variables and constraints
- Can exploit good estimate of solution (warm starts)
 - branch-and-bound for mixed-integer nonlinear programming
 - real-time optimal control

Interior-point methods

- Can solve very large problems
 - up to millions of variables and constraints

(very rough guide...)

 $\mathsf{SQP}\ \mathsf{methods}$

- Very efficient for small- to medium-sized problems
 - up to several thousand variables and constraints
- Can exploit good estimate of solution (warm starts)
 - branch-and-bound for mixed-integer nonlinear programming
 - real-time optimal control

Interior-point methods

- Can solve very large problems
 - up to millions of variables and constraints
- Difficult to warm start

(This is not an exhaustive list!)

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

SQP methods

(This is not an exhaustive list!)

- ► SNOPT [Gill, Murray, Sanders]
 - Ine search with augmented Lagrangian as merit function
 - reduced Hessian BFGS

SQP methods

(This is not an exhaustive list!)

- ► SNOPT [Gill, Murray, Sanders]
 - Ine search with augmented Lagrangian as merit function
 - reduced Hessian BFGS
- FilterSQP [Fletcher, Leyffer]
 - $S\ell_1QP$ with exact Hessian
 - trust-region filter method

SQP methods

(This is not an exhaustive list!)

- SNOPT [Gill, Murray, Sanders]
 - Ine search with augmented Lagrangian as merit function
 - reduced Hessian BFGS
- FilterSQP [Fletcher, Leyffer]
 - $S\ell_1QP$ with exact Hessian
 - trust-region filter method

Primal-dual interior-point methods

- Ipopt [Wächter, Biegler]
 - line-search filter method
 - full-space step computation with regularization

SQP methods

(This is not an exhaustive list!)

- SNOPT [Gill, Murray, Sanders]
 - Ine search with augmented Lagrangian as merit function
 - reduced Hessian BFGS
- ► FilterSQP [Fletcher, Leyffer]
 - $S\ell_1QP$ with exact Hessian
 - trust-region filter method

Primal-dual interior-point methods

- Ipopt [Wächter, Biegler]
 - line-search filter method
 - full-space step computation with regularization
- Knitro [Byrd, Nocedal, Waltz et al.]
 - trust-region with exact penalty function
 - Byrd-Omojokun decomposition
 - other algorithmic options: direct method; SLP-EQP method

Augmented Lagrangian methods

- Lancelot [Conn, Gould, Toint]
 - trust region
 - gradient projection combined with conjugate gradients

Augmented Lagrangian methods

- Lancelot [Conn, Gould, Toint]
 - trust region
 - gradient projection combined with conjugate gradients
- Algencan [Birgin, Martinez]
 - trust region
 - spectral projected gradients

Augmented Lagrangian methods

- Lancelot [Conn, Gould, Toint]
 - trust region
 - gradient projection combined with conjugate gradients
- Algencan [Birgin, Martinez]
 - trust region
 - spectral projected gradients

Based on others algorithmic frameworks

- CONOPT [Arki Consulting]
 - "based on generalize reduced-gradient method"

Augmented Lagrangian methods

- Lancelot [Conn, Gould, Toint]
 - trust region
 - gradient projection combined with conjugate gradients
- Algencan [Birgin, Martinez]
 - trust region
 - spectral projected gradients

Based on others algorithmic frameworks

- CONOPT [Arki Consulting]
 - "based on generalize reduced-gradient method"
- MINOS [Murtagh, Sanders]
 - linearly-constrained augmented Lagrangian method
 - line search

Andreas Wächter

Thank You!

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

A Filter Line Search Method

Andreas Wächter

Constrained Nonlinear Optimization Algorithms

A Filter Line Search Method

Constrained Nonlinear Optimization Algorithms

Andreas Wächter

A Filter Line Search Method (Filter)

Need to avoid cycling

Andreas Wächter

A Filter Line Search Method (Filter)

Sufficient progress w.r.t. filter:

$$\begin{array}{lll} f(\mathbf{x}_{\mathrm{tr}}) & \leq & f(\mathbf{x}_{l}) - \gamma_{f}\theta(\mathbf{x}_{l}) \\ \theta(\mathbf{x}_{\mathrm{tr}}) & \leq & \theta(\mathbf{x}_{l}) - \gamma_{\theta}\theta(\mathbf{x}_{l}) \end{array}$$

for $(\theta(\mathbf{x}_l), f(\mathbf{x}_l)) \in \mathcal{F}_k$

Andreas Wächter

A Filter Line Search Method ("f-type")

Andreas Wächter

If switching condition

$$-\alpha \nabla f(\mathbf{x}_k)^T \mathbf{d}_k^{\mathsf{x}} > \delta \left[\theta(\mathbf{x}_k)\right]^{s_{\theta}}$$

holds ($s_{\theta} > 1$):

Require Armijo-condition on f(x):

 $f(x_{\rm tr}) \leq f(x_k) + \eta \alpha \nabla f(x_k)^T d_k^x$

Constrained Nonlinear Optimization Algorithms

A Filter Line Search Method ("f-type")

Andreas Wächter

If switching condition

$$-\alpha \nabla f(\mathbf{x}_k)^T \mathbf{d}_k^{\mathsf{x}} > \delta \left[\theta(\mathbf{x}_k)\right]^{s_{\theta}}$$

holds ($s_{\theta} > 1$):

Require Armijo-condition on f(x):

 $f(x_{\rm tr}) \leq f(x_k) + \eta \alpha \nabla f(x_k)^T d_k^x$

 \implies Don't augment \mathcal{F}_k in that case

A Filter Line Search Method (Restoration)

If no admissible step size α_k can be found

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY

Andreas Wächter

A Filter Line Search Method (Restoration)

Andreas Wächter

