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Constrained Nonlinear Optimization Problems

min
x∈Rn

f (x)

s.t. cE (x) = 0
cI(x) ≤ 0

(NLP)
f : Rn −→ R

cE : Rn −→ RmE

cI : Rn −→ RmI

I We assume that all functions are twice continuously differentiable.

I No is convexity required.
I Most algorithms for NLP have

I theoretical convergence guarantee only to stationary points;
I ingredients that steer towards local minimizers.
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Design and Operation of Chemical Plant

I Minimize “Costs − Profit”
I Variables: Physical quantities
I Constraints: physical relationships

(conservation laws; themodyn. rel.)
I Limits (physical and operational)
I < 105 variables; few degrees of freedom

Constraint Jacobian

∇c(x)T =

is sparse and structured
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Design Under Uncertainty

∇c(x)T =

I Scenario parameters: F l
in, x lin,T l

env , plenv , . . . (given)
(defining scenarios l = 1, . . . , L)

I Design variables: Vreact ,Ddist , htank , . . .
I Control variables: Ql

heat , r lrefl , v lvalve , . . .
I State variables: x lstr ,F l

str , Lltank ,T l , pl , . . .
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Optimal Control / Dynamic Optimization

min
z,y ,u,p

f (z(tf ), y(tf ), u(tf ), p)

s.t. F (ż(t), z(t), y(t), u(t), p) = 0
G(z(t), y(t), u(t), p) = 0
z(0) = zinit
bound constraints

u : [0, tf ]→ Rnu control variables
z : [0, tf ]→ Rnz differentiable state variables
y : [0, tf ]→ Rny algebraic state variables
p ∈ Rnp time-independent parameters
zinit initial conditions
tf final time

I Large-scale NLPs arise from discretization.
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Circuit Tuning

I Model consists of network of gates.
I Gate delays computed by simulation (expensive, noisy).
I Model has many variables (up to 1, 000, 000).
I Implemented in IBM’s circuit tuning tool EinsTuner.
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Hyperthermia Treatment Planning

min
T (x),u

1
2

∫
Ω

(T (x)− Ttarget(x))2 dx

s.t. −∆T (x)− w(T (x)− Tblood) = u∗M(x)u in Ω
∇T (x) · n = Texterior − T (x) on ∂Ω
T (x) ≤ Tmax in Ω \ ΩTumor

I Heat tumors with microwaves (support chemo- and radio-therapy).
I Model is a PDE with

I controls: Application u of microwave antennas.
I states: Temperature T (x) defined over domain Ω.

I Finite-dimensional problem obtained by discretization.
I e.g., finite differences, finite elements

I Resulting NLP is usually very large.
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Quadratic Programming

min
x∈Rn

1
2x

TQx + gT x

s.t. AEx + bE = 0
AIx + bI ≤ 0

(QP)
Q ∈ Rn×n symmetric

AE ∈ RmE×n bE ∈ RmE

AI ∈ RmI×n bI ∈ RmI

I Many applications (e.g., portfolio optimization, optimal control).
I Important building block for methods for general NLP.
I Algorithms:

I Active-set methods
I Interior-point methods

I Let’s first consider equality-constrained case.
I Assume: all rows of AE are linearly independent.
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Equality-Constrained QP

min
x∈Rn

1
2x

TQx + gT x

s.t. Ax + b = 0
(EQP)

First-order optimality conditions:

Qx + g + ATλ = 0
Ax + b = 0

Find stationary point (x∗, λ∗) by solving the linear system[
Q AT

A 0

](
x∗
λ∗

)
= −

(
g
b

)
.
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KKT System of QP

[
Q AT

A 0

](
x∗
λ∗

)
= −

(
g
b

)

I When is (x∗, λ∗) indeed a solution of (EQP)?

I Recall the second-order optimality conditions:
I Let the columns of Z ∈ Rn×(n−m) be a basis of the null-space of A,

so AZ = 0 (“null-space matrix”).
I Then x∗ is a strict local minimizer of (EQP) if ZTQZ � 0.

I On the other hand:
I If ZTQZ has negative eigenvalue, then (EQP) is unbounded below.

I There are different ways to solve the KKT system
I Best choice depends on particular problem
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Direct Solution of the KKT System
[
Q AT

A 0

]
︸ ︷︷ ︸

=:K

(
x∗
λ∗

)
= −

(
g
b

)

I How can we verify that x∗ is local minimizer without computing Z?

Definition
Let n+, n−, n0 be the number of positive, negative, and zero eigenvalues
of a matrix M. Then In(M) = (n+, n−, n0) is the inertia of M.

Theorem
Suppose that A has full rank. Then: In(K ) = In(ZTQZ ) + (m,m, 0).

Corollary
If In(K ) = (n,m, 0), then x∗ is the unique global minimizer.
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Computing the Inertia

[
Q AT

A 0

]
︸ ︷︷ ︸

=:K

(
x∗
λ∗

)
= −

(
g
b

)

I Symmetric indefinite factorization PKPT = LBLT
I P: permutation matrix
I L: unit lower triangular matrix
I B: block diagonal matrix with 1× 1 and 2× 2 diagonal blocks

I Can be computed efficiently, exploits sparsity.
I Obtain inertia simply from counting eigenvalues of the blocks in B.
I Used also to solve the linear system.
I Will be important later when we need to “convexify” QPs

(Q ← Q + γI).
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Schur-Complement Method

Qx + g + ATλ = 0
Ax + b = 0

I Assume, Q is positive definite. Then AQ−1AT is nonsingular.

I Pre-multiply first equation by AQ−1.
I Then solve

[AQ−1AT ]λ∗ = b − AQ−1g

Qx = −g − ATλ∗

I Requirements:
I Solutions with Q can be done efficiently
I Need to compute [AQ−1AT ] and solve linear system with it
I Works best if m is small
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Step Decomposition

0

I Decompose x∗ = xY + xZ into two steps:
I “range-space step” xY : step into constraints
I “null-space step” xZ : optimize within null space

I xY = YpY and xZ = ZpZ
I where [Y Z ] is basis of Rn and Z is null space matrix for A.

I Decomposition depends on choice of Y and Z
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Step Decomposition

Qx + g + ATλ = 0
Ax + b = 0

0

x∗

xY

xZ

I xY = YpY is a step into the constraints:

0 = Ax + b = AYpY + AZpZ + b

=⇒ pY = −[AY ]−1b
I xZ = ZpZ optimizes in the null space

pZ = −[ZTQZ ]−1ZT (g + QYpY )
I Solves minpZ 1

2p
T
Z [ZTQZ ]pZ + (g + QYpY )TZpZ (“reduced QP”)

I λ = −[AY ]−TY (Qx∗ + g)

Andreas Wächter Constrained Nonlinear Optimization Algorithms



Step Decomposition

Qx + g + ATλ = 0
Ax + b = 0

0

x∗

xY

xZ

I xY = YpY is a step into the constraints:

0 = Ax + b = AYpY + AZpZ + b =⇒ pY = −[AY ]−1b

I xZ = ZpZ optimizes in the null space

pZ = −[ZTQZ ]−1ZT (g + QYpY )
I Solves minpZ 1

2p
T
Z [ZTQZ ]pZ + (g + QYpY )TZpZ (“reduced QP”)

I λ = −[AY ]−TY (Qx∗ + g)

Andreas Wächter Constrained Nonlinear Optimization Algorithms



Step Decomposition

Qx + g + ATλ = 0
Ax + b = 0

0

x∗

xY

xZ

I xY = YpY is a step into the constraints:

0 = Ax + b = AYpY + AZpZ + b =⇒ pY = −[AY ]−1b
I xZ = ZpZ optimizes in the null space

pZ = −[ZTQZ ]−1ZT (g + QYpY )

I Solves minpZ 1
2p

T
Z [ZTQZ ]pZ + (g + QYpY )TZpZ (“reduced QP”)

I λ = −[AY ]−TY (Qx∗ + g)

Andreas Wächter Constrained Nonlinear Optimization Algorithms



Step Decomposition

Qx + g + ATλ = 0
Ax + b = 0

0

x∗

xY

xZ

I xY = YpY is a step into the constraints:

0 = Ax + b = AYpY + AZpZ + b =⇒ pY = −[AY ]−1b
I xZ = ZpZ optimizes in the null space

pZ = −[ZTQZ ]−1ZT (g + QYpY )
I Solves minpZ 1

2p
T
Z [ZTQZ ]pZ + (g + QYpY )TZpZ (“reduced QP”)

I λ = −[AY ]−TY (Qx∗ + g)

Andreas Wächter Constrained Nonlinear Optimization Algorithms



Step Decomposition

Qx + g + ATλ = 0
Ax + b = 0

0

x∗

xY

xZ

I xY = YpY is a step into the constraints:

0 = Ax + b = AYpY + AZpZ + b =⇒ pY = −[AY ]−1b
I xZ = ZpZ optimizes in the null space

pZ = −[ZTQZ ]−1ZT (g + QYpY )
I Solves minpZ 1

2p
T
Z [ZTQZ ]pZ + (g + QYpY )TZpZ (“reduced QP”)

I λ = −[AY ]−TY (Qx∗ + g)
Andreas Wächter Constrained Nonlinear Optimization Algorithms



Example: PDE-Constrained Optimization

min
T ,u

1
2

∫
(T (z)− T̂ (z))2dz + α

2 ‖u‖
2

s.t. −∆T (z) =
nu∑
i=1

ki(z)ui on Ω

T (z) = b(z) on ∂Ω

I Given the (independent) control variable u:
I (Dependent) state T is solution of PDE
I Can use well-established solution techniques

I We have only nu degrees of freedom
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Discretized PDE-Constrained Problem

min
T ,u

1
2

∫
(T (z)− T̂ (z))2dz + α

2 ‖u‖
2

s.t. −∆T (z) =
nu∑
i=1

ki(z)ui on Ω

T (z) = b(z) on ∂Ω

min
t,u

n∑
i=1

(ti − t̂i)2 +
nu∑
i=1

u2
i

s.t. D t + Ku + b = 0

I Discretized state variables t ∈ RN

I Discretized non-singular(!) differential operator D ∈ RN×N

I Given controls u, the state variables can be computed from

t = −D−1(Ku + b).

I We could just eliminate t and solve lower-dimensional problem in u
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Generalization: Elimination of Variables

min
x∈Rn

1
2(xTB xTN )Q

(
xB
xN

)
+ gTB xB + gTN xN

s.t. BxB + NxN + b = 0

Y =
[
I
0

]

Z =
[
−B−1N

I

]

pY = −[AY ]−1d = −B−1b
pZ = −[ZTQZ ]−1ZT (g + QYpY )
λ = −[AY ]−TY (Qx∗ + g) = −B−TY (Qx∗ + g)

I Can use existing implementations of operator B−1:
I Compute Z and pZ (assuming N has few columns).
I Compute λ∗ (assuming that we have implementation for B−T ).

I Tailored implementation for “simulation” often already exist.
I Exploit problem structure!
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Solution of EQP Summary

I Direct method:
I Factorize KKT matrix
I If LTBL factorization is used, we can determine if x∗ is indeed a

minimizer
I Easy general purpose option

I Schur-complement Method
I Requires that Q is positive definite and easy to solve (e.g., diagonal)
I Number of constraints m should not be large

I Null-space method
I Step decomposition into range-space step and null-space step
I Permits exploitation of constraint matrix structure
I Number of degrees of freedom (n −m) should not be large
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Inequality-Constrained QPs

min
x∈Rn

1
2x

TQx + gT x

s.t. aTi x + bi = 0 for i ∈ E
aTi x + bi ≤ 0 for i ∈ I

Qx + g +
∑

i∈E∪I
aiλi = 0

aTi x + bi = 0 for i ∈ E
aTi x + bi ≤ 0 for i ∈ I

λi ≥ 0 for i ∈ I
(aTi x + bi)λi = 0 for i ∈ I

I Assume:
I Q is positive definite;
I {ai}i∈E are linearly independent.

I Difficulty: Decide, which inequality constraints are active.
I We know how to solve equality-constrained QPs.

I Can we use that here?
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Working Set
Choose working set W ⊆ I and solve

min
x∈Rn

1
2x

TQx + gT x

s.t. aTi x + bi = 0 for i ∈ E
aTi x + bi = 0 for i ∈ W

Qx + g +
∑

i∈E∪W
aiλi = 0

aTi x + bi = 0 for i ∈ E
aTi x + bi = 0 for i ∈ W

Set missing multipliers λi = 0 for i ∈ I \W and verify

aTi x + bi
?
≤ 0 for i ∈ I \W

λi
?
≥ 0 for i ∈ I

I If satisfied, (x , λ) is the (unique) optimal solution
I Otherwise, let’s try a different working set
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Example QP

(3)

(1)
(2)

(4)

(5)

min (x1 − 1)2 + (x2 − 2.5)2

s.t. − x1 + 2x2 − 2 ≤ 0 (1) −x1 ≤ 0 (4)
x1 + 2x2 − 6 ≤ 0 (2) −x2 ≤ 0 (5)
x1 − 2x2 − 2 ≤ 0 (3)
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3, 5}

x = (0, 2)

xEQP = (0, 2)
λ3 = −2
λ5 = −1

Initialization:
Choose feasible starting iterate x

Choose working set W ⊆ I with
I i ∈ W =⇒ aTi x + bi = 0
I {ai}i∈E∪W are linear independent

(Algorithm will maintain these properties)
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3, 5}
x = (0, 2)

xEQP = (0, 2)
λ3 = −2
λ5 = −1

Status: Current iterate is optimal for (EQP).

Release Constraint:
I Pick constraint i with λi < 0.

I Remove i from working set:
W ←W \ {3} = {5}

I Keep iterate x = (0, 2).
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Primal Active-Set QP Solver Iteration 2

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (2, 0)

xEQP = (1, 0)
λ5 = −5

Solve (EQP)
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Primal Active-Set QP Solver Iteration 2

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (2, 0)

xEQP = (1, 0)
λ5 = −5

Status: Current iterate is not optimal for (EQP).

Take step (xEQP is feasible):
I Update iterate x ← xEQP

I Keep W
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Primal Active-Set QP Solver Iteration 3
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I Pick constraint i with λi < 0.
I Remove i from working set:

W ←W \ {5} = ∅
I Keep iterate x = (1, 0).
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Primal Active-Set QP Solver Iteration 5
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W = {1}
x = (1, 1.5)

xEQP = (1.4, 1.7)
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(3)

(1)
(2)

(4)

(5)

W = {1}
x = (1, 1.5)

xEQP = (1.4, 1.7)
λ1 = 0.8

Status: Current iterate is not optimal for (EQP).

Take step (xEQP feasible):
I Update iterate x ← xEQP.
I Keep W.
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(4)

(5)

W = {1}
x = (1.4, 1.7)

xEQP = (1.4, 1.7)
λ1 = 0.8

Status: Current iterate is optimal for (EQP)

I λi ≥ 0 for all i ∈ W.

Declare Optimality!
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Primal Active-Set QP Method

1. Select feasible x and W ⊆ I ∩A(x).

2. Solve (EQP) to get xEQP and λEQP.
3. If x = xEQP:

I If λEQP ≥ 0: Done!
I Otherwise, select λEQP

i < 0 and set W ←W \ {i}.
4. If x 6= xEQP:

I Compute step p = xEQP − x .
I Compute α = argmax{α ∈ [0, 1] : x + αp is feasible}.
I If α < 1, pick i ∈ I \W with aTi p > 0 and aTi (x + αp) + bi = 0, and

set W ←W ∪ {i}.
I Update x ← x + αp.

5. Go to step 2.
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Active-Set QP Algorithms
I Primal active-set method:

I Keeps all iterates feasible.
I Changes W by at most one constraint per iteration.
I {ai}i∈E∪W remain linearly independent.

I Convergence
I Finite convergence:

I Finitely many options for W.
I Objective decreases with every step; as long as α > 0!

I Special handling of degeneracy necessary (α = 0 steps)
I Efficient solution of (EQP)

I Update the factorization when W changes.
I Complexity

I Fast convergence if good estimate of optimal working set is given.
I Worst case exponential complexity.
I Alternative: Interior-point QP solvers (polynomial complexity).

I There are variants that allow Q to be indefinite.
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Equality-Constrained Nonlinear Problems

min
x∈Rn

f (x)

s.t. c(x) = 0

−→ ∇f (x) +∇c(x)λ = 0
c(x) = 0

I System of nonlinear equations in (x , λ) ∈ Rn × Rm

I Apply Newton’s method: Fast local convergence!
I Issues:

I Guarantees only (fast) local convergence.
I We would like to find local minima and not just any kind of

stationary point.
I Need:

I Globalization scheme (for convergence from any starting point)
I Mechanisms that encourage convergence to local minima
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Newton’s Method

∇f (x) +∇c(x)λ = 0
c(x) = 0

At iterate (xk , λk) compute step pk , pλk from

[
Hk ∇ck
∇cTk 0

](
pk
pλk

)
= −

(
∇fk +∇ckλk

ck

)

I Update iterate (xk+1, λk+1) = (xk , λk) + (pk , pλk )

∇fk := ∇f (xk) ∇ck := ∇c(xk) ck := c(xk)

L(x , λ) := f (x) +
m∑
j=1

cj(x)λj Hk := ∇2
xxL(xk , λk)
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Sequential Quadratic Programming

[
Hk ∇ck
∇cTk 0

](
pk
pλk

)
= −

(
∇fk+∇ckλk

ck

)

These are the optimality conditions of

min
p∈Rn

1
2p

THkp +∇f Tk p + fk

s.t. ∇cTk p + ck = 0

with multipliers

λ̃k+1 = λk + pλk
I Newton step can be interpreted as solution of a local QP model!
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Local QP Model

x∗

xk

c(x) = 0

Original Problem

min
x∈Rn

f (x)

s.t. c(x) = 0

Local QP model (QPk)

min
p∈Rn

fk +∇f Tk p + 1
2p

THkp

s.t. ck +∇cTk p = 0
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Exact Penalty Function
I Need tool to facilitate convergence from any starting point.

I Here, we have two (usually competing) goals:

Optimality
min f (x)

Feasibility
min ‖c(x)‖

I Combined in (non-differentiable) exact penalty function:

φρ(x) = f (x) + ρ‖c(x)‖1 (ρ > 0)

Lemma
Suppose, x∗ is a local minimizer of (NLP) with multipliers λ∗ and LICQ
holds. Then x∗ is a local minimizer of φρ if ρ > ‖λ∗‖∞.

I We can use decrease in φρ as a measure of progress towards a local
minimizer of (NLP).
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Line Search

φρ(x) = f (x) + ρ‖c(x)‖1

I Backtracking line search: Try αk ∈ {1, 1
2 ,

1
4 , . . .} until

φρ(xk + αkpk) ≤ φρ(xk) + ηαkDφρ(xk ; pk). (η ∈ (0, 1))

Dφρ(xk ; pk): Directional derivative of φρ at xk in direction pk .

Lemma
Let pk be an optimal solution of (QPk). Then

Dφρ(xk ; pk) ≤ −pTk Hkpk − (ρ− ‖λ̃k+1‖∞)‖ck‖1.

I So, pk is a descent direction for φρ if Hk � 0 and ρ > ‖λ̃k+1‖∞.
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Basic SQP Algorithm

1. Choose x1, λ1, ρ0 > 0. Set k ← 1.

2. Solve (QPk) to get pk and λ̃k+1.
3. Update penalty parameter: (β > 0)

ρk =
{
ρk−1 if ρk−1 ≥ ‖λ̃k+1‖∞ + β

‖λ̃k+1‖∞ + 2β otherwise.

4. Perform backtracking line search:
Find largest αk ∈ {1, 1

2 ,
1
4 , . . .} with

φρk (xk + αkpk) ≤ φρ(xk) + ηαkDφρk (xk ; pk).

5. Update iterate xk+1 = xk + αkpk and λk+1 = λ̃k+1.
6. Set k ← k + 1 and to go Step 2.
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Convergence Result for Basic SQP Algorithm

Assumptions
I f and c are twice continuously differentiable.

I The matrices Hk are bounded and uniformly positive definite.
I The smallest singular value of ∇ck is uniformly bounded away from

zero.

Theorem
Under these assumptions, we have

lim
k→∞

∥∥∥∥∥
(
∇fk +∇ck λ̃k+1

ck

)∥∥∥∥∥ = 0.

In other words, each limit point of {xk} is a stationary point for (NLP).
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Choice of Hessian Hk

min
p∈Rn

1
2p

THkp +∇f Tk p

s.t. ∇cTk p + ck = 0
(QPk)

I For fast local convergence, want to choose Hk = ∇2
xxLk .

I ∇2
xxLk is positive definite, if f and c are convex.

I In general, ∇2
xxLk might be indefinite.

I (QPk) might be unbounded.
I pk might not be a descent direction for φρ.
I Would like ZT

k HkZk � 0 (Zk null-space matrix for ∇cTk ).
I Hk = BFGS approximation of ∇2

xxL(xk , λk).
I Potentially slow local convergence, since ∇2

xxL(x∗, λ∗) may be
indefinite.
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Regularization

min
p∈Rn

1
2p

THkp +∇f Tk p

s.t. ∇cTk p + ck = 0

Recall optimality conditions[
Hk ∇ck
∇cTk 0

]
︸ ︷︷ ︸

=:Kk

(
pk
λ̃k+1

)
= −

(
∇fk
ck

)

I Choose γ ≥ 0 so that Kk has inertia (n,m, 0).

I E.g.: Trial and error, computing inertia via factorization
I Then ZT

k HkZk is positive definite.
I No regularization necessary close to second-order sufficient solution.
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Step Decomposition Revisited

min
p∈Rn

1
2p

THkp +∇f Tk p

s.t. ∇cTk p + ck = 0
(QPk)

Decomposition pk = YkpY ,k + ZkpZ ,k

I Range space step
pY ,k = −[∇cTk Yk ]−1∇fk

I Reduced space QP

min
pZ

1
2p

T
Z [ZT

k HkZk ]pZ + (∇fk + HkYkpY ,k)TZkpZ

I Make sure ZT
k HkZk is positive definite (e.g., BFGS)
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Trust-Region SQP Method

min
p∈Rn

1
2p

THkp +∇f Tk p

s.t. ∇cTk p + ck = 0, ‖p‖ ≤ ∆k

(QPk)

I Trust-region radius ∆k , updated throughout iterations

I No positive-definiteness requirements for Hk
I Step pk is accepted if predk

aredk ≥ η with (η ∈ (0, 1))

predk = mk(0)−mk(pk), aredk = φρ(xk)− φρ(xk + pk)

I Piece-wise quadratic model of φρ(x) = f (x) + ρ‖c(x)‖1:

mk(p) = fk +∇f Tk p + 1
2p

THkp + ρ‖ck +∇cTk p‖1

I Otherwise, decrease ∆k
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Inconsistent QPs

x∗

xk

c(x) = 0

p

I If xk is not feasible and ∆k small, (QPk) might not be feasible

I One remedy: Penalize constraint violation

min
p∈Rn

;t,s∈Rm

1
2p

THkp +∇f Tk p

+ ρ
m∑
j=1

(sj + tj)

s.t. ∇cTk p + ck = 0
‖p‖ ≤ ∆k

, s, t ≥ 0
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Fletcher’s S`1QP

min
p∈Rn;t,s∈Rm

1
2p

THkp +∇f Tk p + ρ
m∑
j=1

(sj + tj)

s.t. ∇cTk p + ck = s − t
‖p‖ ≤ ∆k , s, t ≥ 0

is equivalent to

min
p∈Rn

mk(p) = fk +∇f Tk p + 1
2p

THkp + ρ‖ck +∇cTk p‖1

I Natural algorithm for minimizing φρ(x).
I Difficulty: Selecting sufficiently large value of ρ.

I This motivated the invention of filter methods.
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Byrd-Omojokun Trust-Region Algorithm

x∗

xk

nk

I Decompose step pk = nk + tk

Normal component nk
towards feasibility

min
n
‖∇cTk n + ck‖22

s.t. ‖n‖2 ≤ 0.8∆k

Tangential component tk
towards optimality

min
t

1
2(nk +t)THk(nk +t) +∇f Tk (nk +t)

s.t. ∇cTk t = 0

‖t‖2 ≤
√

∆2
k − ‖nk‖22
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I Subproblems can be solved inexactly

I Normal problem: Dogleg method.
I Tangential problem: Conjugate-gradients method in null space.

I `2-norm penalty function φρ(x) = f (x) + ρ‖c(x)‖2.
I Strong convergence result:

I If (NLP) is infeasible, limit points of {xk} are stationary points for
infeasibility minimization problem minx ‖c(x)‖2

2.
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Maratos Effect

I Even arbitrarily close to solution, full step α = 1 might be rejected
because the non-smooth merit function φρ increases.

I Degrades fast local convergence.

I Remedies: Second-order correction steps or “watchdog” method.
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SQP For Inequality-Constrained Nonlinear Problems

min
x∈Rn

f (x)

s.t. cE (x) = 0

cI(x) ≤ 0

Compute pk from local QP model

min
p∈Rn

1
2p

THkp +∇f (xk)Tp

s.t. ∇cE (xk)Tp + cE (xk) = 0

∇cI(xk)Tp + cI(xk) ≤ 0

(QPk)
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Local Behavior

min
x∈Rn

f (x)

s.t. ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I

ci(x) ≤ 0 i ∈ ANLP
∗

min
p∈Rn

1
2p

THkp +∇f Tk p

s.t. ∇cTk,ip + ck,i = 0 i ∈ E
∇cTk,ip + ck,i = 0 i ∈ AQPk

∗

((((
((((

(
∇cTk,ip + ck,i ≤ 0 i ∈ AQPk

∗

ANLP
∗ = {i ∈ I : ci(x∗) = 0} ANLP

∗ = {i ∈ I : ci(x∗) < 0}

Lemma
Suppose x∗ is a local minimizer satisfying the sufficient second-order
optimality conditions, at which LICQ and strict optimality hold. Then
ANLP
∗ = AQPk∗ for all xk sufficiently close to x∗.
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Back to Newton’s Method
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∇cTk,ip + ck,i ≤ 0 i ∈ ANLP
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I When xk is close to x∗, (QPk) produces the same steps as SQP for
equality-constrained NLP.

I We are back to Newton’s method. . .
I Fast local convergence!
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Global Convergence

min
x∈Rn

f (x)

s.t. cE (x) = 0
cI(x) ≤ 0

Methods for equality constraints can be generalized.
I For example, penalty function

φρ(x) = f (x) + ρ‖cE (x)‖1 + ρ‖max{cI(x), 0}‖1.

min
p∈Rn;t,s∈RmE ;r∈RmI

1
2p

THkp +∇f Tk p + ρ
mE∑
j=1

(sj + tj) + ρ
mI∑
j=1

rj

s.t. ∇cTE ,kp + cE ,k = s − t
∇cTE ,kp + cE ,k ≤ r
‖p‖ ≤ ∆k , s, t, r ≥ 0
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Barrier Problem

min
x∈Rn

f (x)

s.t. c(x) = 0
x ≥ 0

−→
min
x∈Rn

f (x)− µ
n∑

i=1
log(xi)

s.t. c(x) = 0

µ = 10
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min
x∈R

f (x)

s.t. ���x ≥ 0
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��x ≤ 10

−→ min
x∈R

f (x)− µ log(x)− µ log(10− x)
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min
x∈R
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s.t. ���x ≥ 0
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��x ≤ 10

−→ min
x∈R

f (x)− µ log(x)− µ log(10− x)
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Barrier Problem

min
x∈R

f (x)

s.t. ���x ≥ 0
��

��x ≤ 10

−→ min
x∈R

f (x)− µ log(x)− µ log(10− x)

µ = 0.001
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Barrier Method

min
x∈Rn

f (x)

s.t. c(x) = 0
���x ≥ 0

−→
min
x∈Rn

f (x)− µ
n∑

i=1
log(xi)

s.t. c(x) = 0
(BPµ)

Basic Algorithm:
1. Choose x0 ∈ Rn, µ0 > 0, ε0 > 0. Set k ← 0.

2. Starting from x0, solve (BPµk ) to tolerance εk and obtain xk+1.

→ Use SQP techniques

3. Decrease µk+1 < µk and εk+1 < εk ; set k ← k + 1; go to 2.

(Ensure µk → 0 and εk → 0.)
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SQP Techniques for Solving the Barrier Problem

min
x∈Rn

ϕµ(x) = f (x)− µ
n∑

i=1
log(xi)

s.t. c(x) = 0

Can re-use SQP techniques:
I Step computation

I KKT system with regularization
I Decomposition

I Step acceptance
I Line search
I Trust region

I Measuring progress
I Exact penalty function
I Filter method

Andreas Wächter Constrained Nonlinear Optimization Algorithms



SQP Techniques for Solving the Barrier Problem

min
x∈Rn

ϕµ(x) = f (x)− µ
n∑

i=1
log(xi)

s.t. c(x) = 0

Can re-use SQP techniques:
I Step computation

I KKT system with regularization
I Decomposition

I Step acceptance
I Line search
I Trust region

I Measuring progress
I Exact penalty function
I Filter method

Andreas Wächter Constrained Nonlinear Optimization Algorithms



SQP Techniques for Solving the Barrier Problem

min
x∈Rn

ϕµ(x) = f (x)− µ
n∑

i=1
log(xi)

s.t. c(x) = 0

Can re-use SQP techniques:
I Step computation

I KKT system with regularization
I Decomposition

I Step acceptance
I Line search
I Trust region

I Measuring progress
I Exact penalty function
I Filter method

Andreas Wächter Constrained Nonlinear Optimization Algorithms



Barrier Term Considerations

min
x∈Rn

ϕµ(x) = f (x)− µ
n∑

i=1
log(xi)

s.t. c(x) = 0

I Variables must stay positive

I Fraction-to-the-boundary rule (τ ∈ (0, 1), e.g., τ = 0.99)

αmax
k = argmax {α ∈ (0, 1] : xk + αpk ≥ (1− τ)xk}

I Ill-conditioning in linear system

[
∇2

xxLk + µX−2
k ∇ck

∇cTk 0

](
pk
λ̃k+1

)
= −

(
∇fk − µX−1

k e
ck

)
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Example

min
x∈R2

x1 + (x2 − 1)2

s.t. x ≥ 0

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

k | mu_k | f_k | ( x_k(1), x_k(2)) | ( p_k(1), p_k(2)) | err_barr | alpha
--------------------------------------------------------------------------------------------
0 | 1.00e+00 | 2.50e+00 | (2.00e+00,2.00e+00) | ( 0.00e+00, 0.00e+00) | 7.07e-01 | 0.00e+00
1 | 1.00e+00 | 2.02e-01 | (2.00e-02,1.60e+00) | (-2.00e+00,-4.00e-01) | 2.04e+00 | 9.90e-01
2 | 1.00e+00 | 2.31e-01 | (3.96e-02,1.62e+00) | ( 1.96e-02, 1.40e-02) | 2.41e-02 | 1.00e+00
3 | 1.00e-01 | 6.69e-02 | (6.35e-02,1.08e+00) | ( 2.39e-02,-5.36e-01) | 5.36e-01 | 1.00e+00
4 | 1.00e-01 | 9.09e-02 | (8.67e-02,1.09e+00) | ( 2.32e-02, 9.33e-03) | 2.50e-02 | 1.00e+00
5 | 1.00e-02 | 4.15e-03 | (8.67e-04,1.08e+00) | (-6.65e-01,-8.18e-02) | 6.70e-01 | 1.29e-01
6 | 1.00e-02 | 1.71e-03 | (1.66e-03,1.01e+00) | ( 7.92e-04,-7.12e-02) | 7.12e-02 | 1.00e+00
...

12 | 3.16e-05 | 2.70e-05 | (2.70e-05,1.00e+00) | ( 7.45e-06, 2.95e-11) | 7.45e-06 | 1.00e+00
13 | 1.78e-07 | 4.98e-10 | (4.81e-12,1.00e+00) | (-4.09e-03,-3.14e-05) | 4.09e-03 | 6.62e-03
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.300371e-16.
14 | 1.78e-07 | 9.63e-12 | (9.62e-12,1.00e+00) | ( 4.81e-12,-3.12e-05) | 3.12e-05 | 1.00e+00
15 | 1.78e-07 | 1.93e-11 | (1.92e-11,1.00e+00) | ( 9.62e-12, 9.44e-17) | 9.62e-12 | 1.00e+00
16 | 7.50e-11 | 3.35e-11 | (3.35e-11,1.00e+00) | ( 1.43e-11,-1.78e-07) | 1.78e-07 | 1.00e+00
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Primal-Dual System

min
x∈Rn

f (x)

s.t. c(x) = 0
x ≥ 0

∇f (x) +∇c(x)− z = 0
c(x) = 0
XZe = 0

(

x , z ≥ 0

)

Newton Steps∇2
xxLk ∇ck −I
∇cTk 0 0
Zk 0 Xk


pk
pλk
pzk

 = −

∇fk +∇ckλk − zk
ck

XkZke − µe


Block elimination[

∇2
xxLk + X−1

k Zk ∇ck
∇cTk 0

](
pk
λ̃k+1

)
= −

(
∇fk − µX−1

k e
ck

)
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Newton Steps∇2
xxLk ∇ck −I
∇cTk 0 0
Zk 0 Xk


pk
pλk
pzk

 = −

∇fk +∇ckλk − zk
ck

XkZke − µe


Block elimination[

∇2
xxLk + X−1

k Zk ∇ck
∇cTk 0

](
pk
λ̃k+1

)
= −

(
∇fk − µX−1

k e
ck

)
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Primal-Dual Steps

[
∇2

xxLk + Σk ∇ck
∇cTk 0

](
pk
λ̃k+1

)
= −

(
∇fk − µX−1

k e
ck

)

I Barrier Hessian term:
I Σk = X−2

k : primal
I Σk = X−1

k Zk : primal-dual

I Step for dual variables: pzk = µX−1
k e − zk − Σkpk .

I Can still use SQP-type globalization techniques.
I Now: Fast local convergence.
I Ill-conditioning in KKT system is benign for direct linear solvers.
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Example Revisited with Primal-Dual Method

min
x∈R2

x1 + (x2 − 1)2

s.t. x ≥ 0

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

k | mu_k | f_k | ( x_k(1), x_k(2)) | ( p_k(1), p_k(2)) | err_barr | alpha
--------------------------------------------------------------------------------------------
0 | 1.00e+00 | 2.50e+00 | (2.00e+00,2.00e+00) | ( 0.00e+00, 0.00e+00) | 7.07e-01 | 0.00e+00
1 | 1.00e+00 | 2.02e-01 | (2.00e-02,1.60e+00) | (-2.00e+00,-4.00e-01) | 4.00e-03 | 9.90e-01
2 | 1.00e-01 | 1.22e-01 | (1.00e-01,1.21e+00) | ( 8.00e-02,-3.94e-01) | 4.74e-16 | 1.00e+00
3 | 1.00e-02 | 1.07e-02 | (1.00e-02,1.04e+00) | (-9.00e-02,-1.72e-01) | 5.55e-17 | 1.00e+00
4 | 1.00e-03 | 1.00e-03 | (1.00e-03,1.00e+00) | (-9.00e-03,-3.58e-02) | 5.55e-17 | 1.00e+00
5 | 3.16e-05 | 3.16e-05 | (3.16e-05,1.00e+00) | (-9.68e-04,-2.24e-03) | 3.64e-17 | 1.00e+00
6 | 1.78e-07 | 1.78e-07 | (1.78e-07,1.00e+00) | (-3.14e-05,-3.65e-05) | 1.10e-16 | 1.00e+00
7 | 7.50e-11 | 7.50e-11 | (7.50e-11,1.00e+00) | (-1.78e-07,-1.79e-07) | 5.34e-17 | 1.00e+00
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Advantages of Different Algorithms

(very rough guide. . . )

SQP methods
I Very efficient for small- to medium-sized problems

I up to several thousand variables and constraints
I Can exploit good estimate of solution (warm starts)

I branch-and-bound for mixed-integer nonlinear programming
I real-time optimal control

Interior-point methods
I Can solve very large problems

I up to millions of variables and constraints
I Difficult to warm start
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Some Optimization Software for NLP

SQP methods

(This is not an exhaustive list!)

I SNOPT [Gill, Murray, Sanders]
I line search with augmented Lagrangian as merit function
I reduced Hessian BFGS

I FilterSQP [Fletcher, Leyffer]
I S`1QP with exact Hessian
I trust-region filter method

Primal-dual interior-point methods
I Ipopt [Wächter, Biegler]

I line-search filter method
I full-space step computation with regularization

I Knitro [Byrd, Nocedal, Waltz et al.]
I trust-region with exact penalty function
I Byrd-Omojokun decomposition
I other algorithmic options: direct method; SLP-EQP method
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Some Optimization Software for NLP

Augmented Lagrangian methods
I Lancelot [Conn, Gould, Toint]

I trust region
I gradient projection combined with conjugate gradients

I Algencan [Birgin, Martinez]
I trust region
I spectral projected gradients

Based on others algorithmic frameworks
I CONOPT [Arki Consulting]

I “based on generalize reduced-gradient method”
I MINOS [Murtagh, Sanders]

I linearly-constrained augmented Lagrangian method
I line search
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Thank You!
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A Filter Line Search Method

θ(x) = ‖c(x)‖

f (x)

(θ(xk), f (xk))

(0
,f
(x
∗)
)

γθ(xk)

Idea: Bi-objective optimization

min f (x)
s.t. c(x) = 0

min θ(x) min f (x)

xtr = xk + αdxk

Sufficient progress w.r.t. xk :

f (xtr) ≤ f (xk)− γf θ(xk)
θ(xtr) ≤ θ(xk)− γθθ(xk)
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A Filter Line Search Method (Filter)

θ(x) = ‖c(x)‖

f (x)

(θ(xk), f (xk))

(0
,f
(x
∗)
)

γθ(xlL)

γθ(xlR)

Need to avoid cycling

⇓

Store some previous
(θ(xl), f (xl)) pairs in filter Fk

Sufficient progress w.r.t. filter:

f (xtr) ≤ f (xl)− γf θ(xl)
θ(xtr) ≤ θ(xl)− γθθ(xl)

for (θ(xl), f (xl)) ∈ Fk
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A Filter Line Search Method (“f -type”)

θ(x) = ‖c(x)‖

f (x)

(θ(xk), f (xk))

(0
,f
(x
∗)
)

γθ(xlL)

γθ(xlR)

If switching condition

−α∇f (xk)Tdxk > δ [θ(xk)]sθ

holds (sθ > 1):

Require Armijo-condition on f (x):

f (xtr) ≤ f (xk) + ηα∇f (xk)Tdxk

=⇒ Don’t augment Fk in that case
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A Filter Line Search Method (Restoration)

θ(x) = ‖c(x)‖

f (x)

(θ(xk), f (xk))

(0
,f
(x
∗)
)

γθ(xlL)

γθ(xlR)

If no admissible step size αk can
be found

⇓

Revert to
feasibility restoration phase:

Decrease θ(x) until
I found acceptable new

iterate xk+1, or
I converged to local

minimizer of constraint
violation
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