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Constrained Nonlinear Optimization Problems

Xmelilgn f(x) f:R" —R
s.t CE(X) — O (NLP) CE: Rn — RmE
a(x) <0 ¢:R" — R™

» We assume that all functions are twice continuously differentiable.
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Constrained Nonlinear Optimization Problems

Xmelilgn f(x) f:R" —R
s.t CE(X) — O (NLP) CE: Rn — RmE
a(x) <0 ¢:R" — R™

» We assume that all functions are twice continuously differentiable.
» No is convexity required.

» Most algorithms for NLP have
> theoretical convergence guarantee only to stationary points;
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Constrained Nonlinear Optimization Problems

Xmelilgn f(x) f:R" —R
s.t CE(X) — O (NLP) CE: Rn — RmE
a(x) <0 ¢:R" — R™

» We assume that all functions are twice continuously differentiable.
» No is convexity required.

» Most algorithms for NLP have

> theoretical convergence guarantee only to stationary points;
> ingredients that steer towards local minimizers.
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Design and Operation of Chemical Plant
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Design and Operation of Chemical Plant

| G Ghamo00

- [Ernirzes]

v

Minimize “Costs — Profit”

v

Variables: Physical quantities

» Constraints: physical relationships
(conservation laws; themodyn. rel.)

v

Limits (physical and operational)

> < 105 variables; few degrees of freedom
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Design and Operation of Chemical Plant

| G Ghamo00

- [Ernirzes]

v

Minimize “Costs — Profit” . .
Constraint Jacobian

v

Variables: Physical quantities

» Constraints: physical relationships
(conservation laws; themodyn. rel.)

Ve()T =

v

Limits (physical and operational)

5 is sparse and structured
» < 10° variables; few degrees of freedom
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Design Under Uncertainty
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» Scenario parameters:  FL x) T  pl . ... (given)
(defining scenarios | = 1,...,L)

» Design variables: Vieact, Ddists Prank, - - -
» Control variables: Q,’,eat, rr’ef,, v"/a,ve, e
» State variables: Xl Pl LU TPl
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» Scenario parameters:  FL x) T pl . ... (given)
(defining scenarios | = 1,...,L)

» Design variables: Vieact, Ddists Prank, - - -
» Control variables: Q,’,eat, rr’ef,, v"/a,ve, e
» State variables: Xl Pl LU TP
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Optimal Control / Dynamic Optimization

z’r},’]’ilﬂp f(z(tf)7y(tf), U(t,r)’ p)

s.t. F(2(t), z(t), y(t),u(t),p) =0
G(z(t),y(t),u(t),p) =0
2(0) = Zinit
bound constraints

u: [0, tr] — R™
z: [0, tf] - R"™
y . [0, t¢]] = R™
p R

Zinit

tf

control variables
differentiable state variables
algebraic state variables
time-independent parameters
initial conditions

final time

> Large-scale NLPs arise from discretization.
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Circuit Tuning

Tools Design Window Edit Add Check Sheet Hyp CTE Alliance Help

9 2@

[ = D% | |2

Model consists of network of gates.

Gate delays computed by simulation (expensive, noisy).
Model has many variables (up to 1,000, 000).
Implemented in IBM’s circuit tuning tool EinsTuner.

vV v v v
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Hyperthermia Treatment Planning

min
T(x),u

s.t.

% / (T(x) — Trarger (x))? dx
Q

7AT(X) - W(T(X) - Tblood) = U*M(X)U in Q

VT(X) - n = Texterior — T(X)
T(X) < Trax

on 0RQ2
in Q \ QTumor

» Heat tumors with microwaves (support chemo- and radio-therapy).
» Model is a PDE with
» controls: Application u of microwave antennas.

> states: Temperature T(x) defined over domain Q.

> Finite-dimensional problem obtained by discretization.
» e.g., finite differences, finite elements

» Resulting NLP is usually very large.
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Quadratic Programming

Xné]ilgn IxTQx +g7x Q € R™" symmetric
E
st. Aex+ b =0 (QP) Afg € RM*n bg € R™ME
!
Ax+b <0 A[ERmXH by € R™
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Quadratic Programming

m]iRn IxTQx +g7x Q € R™" symmetric
xeR"?
st. Aex+ b =0 (QP) Afg € RmEX” bg € R™ME
Ax + by <0 Al €R™*" b e R™

» Many applications (e.g., portfolio optimization, optimal control).
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Quadratic Programming

m]iRn IxTQx +g7x Q € R™" symmetric
xeR"?
st. Aex+ b =0 (QP) Afg € RmExn bg € R™ME
Ax + by <0 Al €R™*" b e R™

» Many applications (e.g., portfolio optimization, optimal control).
» Important building block for methods for general NLP.
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Quadratic Programming

m]iRn IxTQx +g7x Q € R™" symmetric
xeR"?
st. Aex+ b =0 (QP) Afg € RmExn bg € R™ME
Ax + by <0 Al €R™*" b e R™

» Many applications (e.g., portfolio optimization, optimal control).
» Important building block for methods for general NLP.

» Algorithms:

» Active-set methods
> Interior-point methods
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Quadratic Programming

m]iRn IxTQx +g7x Q € R™" symmetric
xeR"?
st. Aex+ b =0 (QP) Afg € RmExn bg € R™ME
Ax + by <0 Al €R™*" b e R™

v

Many applications (e.g., portfolio optimization, optimal control).

v

Important building block for methods for general NLP.

v

Algorithms:

» Active-set methods
> Interior-point methods

v

Let's first consider equality-constrained case.

v

Assume: all rows of Ag are linearly independent.
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Equality-Constrained QP

Andreas Wachter

min %XTQX +g7x
x€ERN

st. Ax +b=0

(EQP)
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Equality-Constrained QP

min 1xTQx +g"x
xeler 2 ¢ (EQP)
st. Ax+b=0

First-order optimality conditions:

Qx+g+ATA=0
Ax+b=20
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Equality-Constrained QP

min 1xTQx +g"x
xeler 2 ¢ (EQP)
st. Ax+b=0

First-order optimality conditions:

Qx+g+ATA=0
Ax+b=20

Find stationary point (x*, A*) by solving the linear system
Q AT| [x* _ (&
A 0 PN b/)"
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KKT System of QP

2 5)6)=(0

» When is (x*, \*) indeed a solution of (EQP)?
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KKT System of QP

Q AT| [x* _ (&
A 0 ¥ b
» When is (x*, \*) indeed a solution of (EQP)?

> Recall the second-order optimality conditions:

» Let the columns of Z € R™("=™) be a basis of the null-space of A,
so AZ =0 (“null-space matrix").
» Then x* is a strict local minimizer of (EQP) if ZTQZ = 0.
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KKT System of QP

Q AT| [x* _ (&
A 0 ¥ b
» When is (x*, \*) indeed a solution of (EQP)?

> Recall the second-order optimality conditions:

» Let the columns of Z € R™("=™) be a basis of the null-space of A,
so AZ =0 (“null-space matrix").
» Then x* is a strict local minimizer of (EQP) if ZTQZ = 0.

» On the other hand:
» If ZT QZ has negative eigenvalue, then (EQP) is unbounded below.
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KKT System of QP

Q AT| [x* _ (&
A 0 ¥ b
When is (x*, A*) indeed a solution of (EQP)?

Recall the second-order optimality conditions:
» Let the columns of Z € R™("=™) be a basis of the null-space of A,
so AZ =0 (“null-space matrix").
» Then x* is a strict local minimizer of (EQP) if ZTQZ = 0.

v

v

On the other hand:
» If ZT QZ has negative eigenvalue, then (EQP) is unbounded below.

v

v

There are different ways to solve the KKT system
» Best choice depends on particular problem
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Direct Solution of the KKT System

B3 (6)

=K

» How can we verify that x* is local minimizer without computing Z7
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Direct Solution of the KKT System

B3 (6)

=K

» How can we verify that x* is local minimizer without computing Z7

Definition

Let ny, n_, ng be the number of positive, negative, and zero eigenvalues
of a matrix M. Then In(M) = (ny, n_, ng) is the inertia of M.
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Direct Solution of the KKT System

B3 (6)

=K
» How can we verify that x* is local minimizer without computing Z7

Let ny, n_, ng be the number of positive, negative, and zero eigenvalues
of a matrix M. Then In(M) = (ny, n_, ng) is the inertia of M.

v

Suppose that A has full rank. Then: In(K) = In(ZT QZ) + (m, m,0).
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Direct Solution of the KKT System

B3 (6)

=K
» How can we verify that x* is local minimizer without computing Z7

Let ny, n_, ng be the number of positive, negative, and zero eigenvalues
of a matrix M. Then In(M) = (ny, n_, ng) is the inertia of M.

Theorem
Suppose that A has full rank. Then: In(K) = In(ZT QZ) + (m, m,0).

| \

If In(K) = (n,m,0), then x* is the unique global minimizer.
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Computing the Inertia

2 4](5)-- 9

» Symmetric indefinite factorization PKPT = LBLT

» P: permutation matrix
> L: unit lower triangular matrix
» B: block diagonal matrix with 1 x 1 and 2 x 2 diagonal blocks
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Computing the Inertia

2 4](5)-- 9

» Symmetric indefinite factorization PKPT = LBLT

» P: permutation matrix
> L: unit lower triangular matrix
» B: block diagonal matrix with 1 x 1 and 2 x 2 diagonal blocks

» Can be computed efficiently, exploits sparsity.
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Computing the Inertia

2 4](5)-- 9

» Symmetric indefinite factorization PKPT = LBLT

» P: permutation matrix
> L: unit lower triangular matrix
» B: block diagonal matrix with 1 x 1 and 2 x 2 diagonal blocks

» Can be computed efficiently, exploits sparsity.

» Obtain inertia simply from counting eigenvalues of the blocks in B.
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Computing the Inertia

A 5)0)=(0

=K

v

Symmetric indefinite factorization PKPT = LBLT
» P: permutation matrix
> L: unit lower triangular matrix
» B: block diagonal matrix with 1 x 1 and 2 x 2 diagonal blocks

v

Can be computed efficiently, exploits sparsity.

v

Obtain inertia simply from counting eigenvalues of the blocks in B.

v

Used also to solve the linear system.
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Computing the Inertia

A 5)0)=(0

=K

v

Symmetric indefinite factorization PKPT = LBLT
» P: permutation matrix
> L: unit lower triangular matrix
» B: block diagonal matrix with 1 x 1 and 2 x 2 diagonal blocks

» Can be computed efficiently, exploits sparsity.
» Obtain inertia simply from counting eigenvalues of the blocks in B.
> Used also to solve the linear system.
» Will be important later when we need to “convexify” QPs
(Q + Q+~).
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Schur-Complement Method

x+g+A™A=0
Ax+b=0

» Assume, Q is positive definite. Then AQ1AT is nonsingular.
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Schur-Complement Method

x+g+A™A=0
Ax+b=0

» Assume, Q is positive definite. Then AQ1AT is nonsingular.

» Pre-multiply first equation by AQ~!.
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Schur-Complement Method

x+g+A™A=0
Ax+b=0

» Assume, Q is positive definite. Then AQ1AT is nonsingular.
» Pre-multiply first equation by AQ~!.
» Then solve

[AQIATIN = b — AQ g
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Schur-Complement Method

x+g+A™A=0
Ax+b=0

» Assume, Q is positive definite. Then AQ1AT is nonsingular.
» Pre-multiply first equation by AQ~!.
» Then solve
[AQIATIN = b — AQ g
Qx=—g— AT
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Schur-Complement Method

x+g+A™A=0
Ax+b=0

v

Assume, @ is positive definite. Then AQ 1A is nonsingular.

v

Pre-multiply first equation by AQ~1.

v

Then solve
[AQIATIN = b — AQ g
Qx=—g— AT

v

Requirements:
» Solutions with Q can be done efficiently
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Schur-Complement Method

x+g+A™A=0
Ax+b=0

v

Assume, @ is positive definite. Then AQ 1A is nonsingular.

v

Pre-multiply first equation by AQ~1.

v

Then solve
[AQIATIN = b — AQ g
Qx=—g— AT

v

Requirements:

» Solutions with Q can be done efficiently
» Need to compute [AQ~1AT] and solve linear system with it
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Schur-Complement Method

x+g+A™A=0
Ax+b=0

v

Assume, @ is positive definite. Then AQ 1A is nonsingular.

v

Pre-multiply first equation by AQ~1.

v

Then solve
[AQIATIN = b — AQ g
Qx=—g— AT

v

Requirements:

» Solutions with Q can be done efficiently
» Need to compute [AQ~1AT] and solve linear system with it
» Works best if m is small
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Step Decomposition
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Step Decomposition

» Decompose x* = xy + xz into two steps:
> ‘“range-space step” xy: step into constraints
> “null-space step” xz: optimize within null space
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Step Decomposition

» Decompose x* = xy + xz into two steps:
> ‘“range-space step” xy: step into constraints
> “null-space step” xz: optimize within null space
» xy = Ypy and xz = Zpz
» where [Y Z] is basis of R" and Z is null space matrix for A.
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Step Decomposition

» Decompose x* = xy + xz into two steps:

> ‘“range-space step” xy: step into constraints

> “null-space step” xz: optimize within null space
» xy = Ypy and xz = Zpz

» where [Y Z] is basis of R" and Z is null space matrix for A.
» Decomposition depends on choice of Y and Z
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Step Decomposition

x+g+ATA=0
Ax+b=0

» xy = Ypy is a step into the constraints:

0=Ax+b=AYpy +AZps + b
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Step Decomposition

x+g+ATA=0
Ax+b=0

» xy = Ypy is a step into the constraints:

0=Ax+b=AYpy +AZp;+b = py=—[AY] b
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Step Decomposition

x+g+ATA=0
Ax+b=0

» xy = Ypy is a step into the constraints:
0=Ax+b=AYpy +AZp;+b = py=—[AY] b
> xz = Zpz optimizes in the null space

pz=-12TQZ]'Z7 (g + QYpy)
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Step Decomposition

x+g+ATA=0
Ax+b=0

» xy = Ypy is a step into the constraints:
0=Ax+b=AYpy +AZp;+b = py=—[AY] b
> xz = Zpz optimizes in the null space
pz=-12TQZ]'Z7 (g + QYpy)
> Solves min,, 1pl[Z7QZ|pz + (g + QYpy)"Zpz  (“reduced QP")
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Step Decomposition

x+g+ATA=0
Ax+b=0

» xy = Ypy is a step into the constraints:
0=Ax+b=AYpy +AZp;+b = py=—[AY] b
> xz = Zpz optimizes in the null space
pz=-12TQZ]'Z7 (g + QYpy)
> Solves min,, 3p2[Z"QZ]pz + (g + QYpy)"Zpz  (“reduced QP")
» A= —[AY]"TY(Qx* +g)
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Example: PDE-Constrained Optimization

1 A 5 a5
min o [(T(2) = Tz + S lul
st. —AT(z Z ki(z)u; on Q

T(z) = b(z) on 09
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Example: PDE-Constrained Optimization

1 A 5 a5
min o [(T(2) = Tz + S lul
st. —AT(z Z ki(z)u; on Q

T(z) = b(z) on 09

» Given the (independent) control variable u:

» (Dependent) state T is solution of PDE
» Can use well-established solution techniques
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Example: PDE-Constrained Optimization

1 A 5 a5
min o [(T(2) = Tz + S lul
st. —AT(z Z ki(z)u; on Q

T(z) = b(z) on 09

» Given the (independent) control variable u:

» (Dependent) state T is solution of PDE
» Can use well-established solution techniques

» We have only n, degrees of freedom
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Discretized PDE-Constrained Problem

min ;/(T(z) ~ T(2)Ple + 5 ol

T,u

m|n Z(t, — t, Z ,2

st. —AT(z Zk )ui on Q
s.t.Dt+Ku b:O

T(z) = b(z) on 0Q

» Discretized state variables t € RN
» Discretized non-singular(!) differential operator D € RNV*N
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Discretized PDE-Constrained Problem

min ;/(T(z) ~ T(2)Ple + 5 ol

T,u

m|n Z(t, — t, Z ,2

st. —AT(z Zk )ui on Q
s.t.Dt+Ku b:O

T(z) = b(z) on 0Q

» Discretized state variables t € RV
» Discretized non-singular(!) differential operator D € RNV*N
» Given controls u, the state variables can be computed from

t=-D (Ku+Db).
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Discretized PDE-Constrained Problem

min ;/(T(z) ~ T(2)Ple + 5 ol

T,u

m|n Z(t, — t, Z ,2

st. —AT(z Zk )ui on Q
s.t.Dt+Ku b:O

T(z) = b(z) on 0Q

» Discretized state variables t € RV
» Discretized non-singular(!) differential operator D €
» Given controls u, the state variables can be computed from

RNXN

— 1 ,— —
t=-D (Ku+ b).
» We could just eliminate t and solve lower-dimensional problem in u
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Generalization: Elimination of Variables

/
Y =
s 1 T T XB T T
min 5(xg XN)Q< ) + gz xB + gy XN lO]
x€eR XN
BN
S.t.BXB+NXN+b:0 Z:[ | ]
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Generalization: Elimination of Variables

I
[ " Y B [ ‘|
i e )0 (12 + e + o 0
_p—1
S.t.BXB+NXN+b:0 Z:[ BI Af|
py = —[AY]1d =—B'b
pz =—1Z7QZ|*Z7 (g + QYpy)
A=—[AY]TY(Qx" +g) =-BTY(Qx" +g)

» Can use existing implementations of operator B~ !:

» Compute Z and pz (assuming N has few columns).
» Compute \* (assuming that we have implementation for B~ 7).
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Generalization: Elimination of Variables

I
[ " Y B [ ‘|
i e )0 (12 + e + o 0
_p—1
S.t.BXB+NXN+b:0 Z:[ BI Af|
py = —[AY]1d =—B'b
pz =—1Z7QZ|*Z7 (g + QYpy)
A=—[AY]TY(Qx" +g) =-BTY(Qx" +g)

» Can use existing implementations of operator B~ !:

» Compute Z and pz (assuming N has few columns).
» Compute \* (assuming that we have implementation for B~ 7).

» Tailored implementation for “simulation” often already exist.
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Generalization: Elimination of Variables

I
[ " Y B [ ‘|
i e )0 (12 + e + o 0
_p—1
S.t.BXB+NXN+b:0 Z:[ BI Af|
py = —[AY]1d =—B'b
pz =—1Z7QZ|*Z7 (g + QYpy)
A=—[AY]TY(Qx" +g) =-BTY(Qx" +g)

» Can use existing implementations of operator B~ !:

» Compute Z and pz (assuming N has few columns).
» Compute \* (assuming that we have implementation for B~ 7).

» Tailored implementation for “simulation” often already exist.

» Exploit problem structure!
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Solution of EQP Summary

» Direct method:
» Factorize KKT matrix
» If LT BL factorization is used, we can determine if x* is indeed a
minimizer
» Easy general purpose option
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Solution of EQP Summary

» Direct method:
» Factorize KKT matrix
» If LT BL factorization is used, we can determine if x* is indeed a
minimizer
» Easy general purpose option
» Schur-complement Method

» Requires that Q is positive definite and easy to solve (e.g., diagonal)
» Number of constraints m should not be large

Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY




Solution of EQP Summary

» Direct method:
» Factorize KKT matrix
» If LT BL factorization is used, we can determine if x* is indeed a
minimizer
» Easy general purpose option
» Schur-complement Method

» Requires that Q is positive definite and easy to solve (e.g., diagonal)
» Number of constraints m should not be large

» Null-space method
» Step decomposition into range-space step and null-space step
» Permits exploitation of constraint matrix structure
» Number of degrees of freedom (n — m) should not be large
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Inequality-Constrained QPs

min %XTQX +g7x
x€eRn

st.alx+b=0foricé
a/x+ b <0foricT
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Inequality-Constrained QPs
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alx+b<0foricZ N >0foriel
(3] x + b))\i=0foricT
» Assume:

» Q@ is positive definite;
» {a;}ice are linearly independent.

Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY



Inequality-Constrained QPs

Qx+g+ Y a\=0
i€eEUT
Q]iRn" %XTQX+gTX lex+b,:0fori€5
st.alx+b=0foricé alx+b<0foriel
alx+b<0foricZ N >0foriel
(3] x + b))\i=0foricT
» Assume:

» Q@ is positive definite;
» {a;}ice are linearly independent.

» Difficulty: Decide, which inequality constraints are active.
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Inequality-Constrained QPs

Qx+g+ Z ai\i =10

LT T iecuT

min >

Xg]'Rn 2% @ +g x a,-Tx+b,-:0fori€5

s.t. a,-Tx+b;:Ofori€€ a,-Tx—i—b,-SOforieI
alx+b<0foricZ N >0foriel

(3] x + b))\i=0foricT

» Assume:
» Q@ is positive definite;
» {a;}ice are linearly independent.

» Difficulty: Decide, which inequality constraints are active.

» We know how to solve equality-constrained QPs.
» Can we use that here?
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Working Set

Choose working set WW C Z and solve

min %XTQX +g7x
x€eR"

s.t. a,-Tx—i-b,-:OforieS
a/x+bj=0foriecw
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Working Set

Choose working set WW C Z and solve

min %XTQx+ng QRx+ g+ Z aixi=0
x€R" i€EUW
T .
st.a; x+bj=0foriecé& a/x+bj=0foricé
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Working Set

Choose working set WW C Z and solve

min %XTQX +g"x x+g+ Z ajAi =0
x€ER" ieEuw
st.a/ x+bj=0foricé afx+bj=0fricé&

a/x+bj=0foriecw

a/x+bj=0foriecw

Set missing multipliers A\; = 0 for i € Z \ W and verify
?
a/x+ b <0foricT\W
?
>

Ai>0foriel
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Working Set

Choose working set WW C Z and solve

min %XTQX +g"x x+g+ Z ajAi =0
x€ER" ieEuw
st.a/ x+bj=0foricé afx+bj=0fricé&

a/x+bj=0foriecw

a/x+bj=0foriecw

Set missing multipliers A\; = 0 for i € Z \ W and verify
?
a/x+ b <0foricT\W
?
Ai>0foriel

» If satisfied, (x, A) is the (unique) optimal solution
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Working Set

Choose working set WW C Z and solve

min %XTQX +g"x x+g+ Z ajAi =0
x€ER" ieEuw
st.a/ x+bj=0foricé afx+bj=0fricé&

a/x+bj=0foriecw

a/x+bj=0foriecw

Set missing multipliers A\; = 0 for i € Z \ W and verify

a/x+ b <0foricT\W

IV~ A~

Ai>0foriel

» If satisfied, (x, A) is the (unique) optimal solution

» Otherwise, let's try a different working set

Constrained Nonlinear Optimization Algorithms
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Example QP

Andreas Wachter

(2)
(1
“) &
)
min (x1 — 1)> 4 (x2 — 2.5)?
s.t. —X1+2X2—2§0(1) —X1§0(4)
X1—|-2X2—6§0(2) —X2§0(5)
x1 —2x—2<0(3)
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Primal Active-Set QP Solver lteration 1

)

3
5)
Initialization:
Choose feasible starting iterate x
x =(0,2)
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Primal Active-Set QP Solver lteration 1

)

5)

Initialization:
W =1{3,5} Choose feasible starting iterate x
x=(0,2) Choose working set W C 7 with

> iGW:>a,-Tx+b,-:O
» {a;}iccuw are linear independent

(Algorithm will maintain these properties)
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Primal Active-Set QP Solver lteration 1

)

@)
®)

W = {3,5}

x =(0,2)

xEQF = (0,2) Solve (EQP)
Az = —2
As = —1
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Primal Active-Set QP Solver lteration 1

)

3

5)

Status: Current iterate is optimal for (EQP).

W = {3,5}
x =(0,2)
xEQP = (0,2)
A3 =2
Xs = —1
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Primal Active-Set QP Solver lteration 1

)

3

5)

Status: Current iterate is optimal for (EQP).

W = {3,5}
x = (0,2) Release Constraint:
» Pick constraint i with \; < 0.
XEQP — (O, 2) /
A3 =2
A =—1
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Primal Active-Set QP Solver lteration 1

) 3)

5)

Status: Current iterate is optimal for (EQP).

W ={3,5}
x = (0,2) Release Constraint:
EQP _ (0 2 » Pick constraint i with \; < 0.
X =(0,2) » Remove i from working set:
Az = =2 W+ W\ {3} = {5}
As = —1
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Primal Active-Set QP Solver lteration 1

) 3)

5)

Status: Current iterate is optimal for (EQP).

W ={3,5}
x = (0,2) Release Constraint:
EQP _ (0 2 » Pick constraint i with \; < 0.
X =(0,2) » Remove i from working set:
Az = =2 W+ W\ {3} = {5}
As = —1 » Keep iterate x = (0, 2).
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Primal Active-Set QP Solver lteration 2

) 3)
5)

W = {5}

x=(2,0

Eop (2,0) Solve (EQP)

xEQP — (1, 0)

As = =5
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Primal Active-Set QP Solver lteration 2

)

3

5)

Status: Current iterate is not optimal for (EQP).

W = {5}
x=(2,0)
xEQP = (1,0)
As = =5
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Primal Active-Set QP Solver lteration 2

)

3

5)

Status: Current iterate is not optimal for (EQP).

W = {5}
x = (2,0) Take step (xEQP is feasible):
xEQP — (1, 0) » Update iterate x < xEQF
As = =5
Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY



Primal Active-Set QP Solver lteration 2

)

3

5)

Status: Current iterate is not optimal for (EQP).

W = {5}
x = (2,0) Take step (xEQP is feasible):
xEQP = (1,0) » Update iterate x < xEQF
A5 = —5 > Keep W
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Primal Active-Set QP Solver lteration 3

) 3)
5)

W = {5}

x=(1,0

Eop (1,0) Solve (EQP)

xEQP — (1, 0)

As = =5
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Primal Active-Set QP Solver lteration 3

)

3

5)

Status: Current iterate is optimal for (EQP)

W = {5}
x =(1,0)
xEQP = (1,0)
As = =5
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Primal Active-Set QP Solver lteration 3

)

3

5)

Status: Current iterate is optimal for (EQP)

W = {5} Release Constraint:
x = (L,0) » Pick constraint i with \; < 0.
xEQP = (1,0)
As = =5
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Primal Active-Set QP Solver lteration 3

)

3

5)

W = {5}

x = (1,0)
xEQP = (1,0)

A5 = —b

Andreas Wachter

Status: Current iterate is optimal for (EQP)

Release Constraint:

» Pick constraint i with \; < 0.
» Remove i/ from working set:

W W\ {5} =0

Constrained Nonlinear Optimization Algorithms
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Primal Active-Set QP Solver lteration 3

) 3)

5)

Status: Current iterate is optimal for (EQP)

W = {5} Release Constraint:
x =(1,0) » Pick constraint i with \; < 0.
EQP _ (1,0) » Remove i from working set:
s W W\ {5} =0
5= > Keep iterate x = (1,0).
Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY



Primal Active-Set QP Solver lteration 4

“

3)
(5)
wW=10
x = (1,0) Solve (EQP)
xEQP = (1,2.5)
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Primal Active-Set QP Solver lteration 4

)

3

5)

Status: Current iterate not optimal for (EQP)

w
X

XEQP

I
—_ =
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Primal Active-Set QP Solver lteration 4

)

3

5)

Status: Current iterate not optimal for (EQP)

EQP

Take step (x=%" not feasible):

w
X

XEQP

I
—_ =
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Primal Active-Set QP Solver lteration 4

)

3

5)

Status: Current iterate not optimal for (EQP)

EQP

Take step (x=%" not feasible):

W=190
x = (1.0) » Largest o € [0,1]: x + a(xEQP — x) feasible
xEQP = (1,2.5)
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Primal Active-Set QP Solver lteration 4

) 3)

5)

Status: Current iterate not optimal for (EQP)

EQP

Take step (x=%" not feasible):

W =10
x = (1.0) » Largest a € [0,1]: x + a(xFQ® — x) feasible
S » Update iterate x + x + a(xFQP — x
xEQP = (1,2.5) P ( )
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Primal Active-Set QP Solver lteration 4

) 3)

5)

Status: Current iterate not optimal for (EQP)

EQP

Take step (x=%" not feasible):

2%
o » Largest a € [0,1]: x + a(xFQ® — x) feasible

» Update iterate x <+ x + a(xFQF — x)

» Update W+ WU {i} = {1}

» where constraint i = 1 is “blocking”

Andreas Wachter Constrained Nonlinear Optimization Algorithms
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I
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X




Primal Active-Set QP Solver lteration 5

/ 2
n NG
) 3)
5)
w={1}
x=(1,1.5
(1,1.5) Solve (EQP)
xEQP — (1.4,1.7)
A1 =0.38
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Primal Active-Set QP Solver lteration 5

)

3

5)

Status: Current iterate is not optimal for (EQP).

w={1}
x = (1,1.5)
xEQP — (1.4,1.7)
A1 =0.8
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Primal Active-Set QP Solver lteration 5

)

3

5)

Status: Current iterate is not optimal for (EQP).

w={1}
x = (1,1.5) Take step (xEQP feasible):
xEQP = (1.4,1.7) » Update iterate x < xEQP.
A1 =0.8 > Keep W.
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Primal Active-Set QP Solver lteration 6

2 @
(€]
) 3)
5)
w={1}
= (1.4,1.
x=(14,1.7) Solve (EQP)
xEQP — (1.4,1.7)
A1 =0.38
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Primal Active-Set QP Solver lteration 6

(€]
) 3)
5)
w={1} Status: Current iterate is optimal for (EQP)
x=(1.4,1.7)
xEQP — (1.4,1.7)
A1 =0.38
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Primal Active-Set QP Solver lteration 6

(€]
) 3)
5)
w={1} Status: Current iterate is optimal for (EQP)
x=(1.4,1.7) \ o
» \; >0 forall i eW.
xEQP — (1.4,1.7) :
A1 =0.38
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Primal Active-Set QP Solver lteration 6

> @
(€]
) 3)
5)
w={1} Status: Current iterate is optimal for (EQP)
x=(1.4,1.7) \ o
» \; >0 forall i eW.
xEQP — (1.4,1.7) :
. o
A =08 Declare Optimality!
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xEQP and \EQP,
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xEQP and \EQP,
3. If x = xEQP:
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xEQP and \EQP,

3. If x = xEQP:
» If AEQP > 0: Donel!
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xFQP and \EQP,
3. If x = xEQP:

» If AEQP > 0: Donel!
» Otherwise, select \*®F < 0 and set W « W\ {i}.
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xFQP and \EQP,
3. If x = xEQP:
» If AEQP > 0: Donel!
» Otherwise, select \*®F < 0 and set W « W\ {i}.
4. If x # xEQP;
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xFQP and \EQP,
3. If x = xEQP:
» If AEQP > 0: Donel!
» Otherwise, select \*®F < 0 and set W « W\ {i}.
4. If x # xEQP;
» Compute step p = xFQP — x.
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xFQP and \EQP,
3. If x = xEQP:
» If AEQP > 0: Donel!
» Otherwise, select \*®F < 0 and set W « W\ {i}.
4. If x # xEQP;
» Compute step p = xFQP — x.
» Compute o = argmax{a € [0,1] : x + ap is feasible}.
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xFQP and \EQP,
3. If x = xEQP:
» If AEQP > 0: Donel!
» Otherwise, select \*®F < 0 and set W « W\ {i}.
4. If x # xEQP;
» Compute step p = xFQP — x.
» Compute o = argmax{a € [0,1] : x + ap is feasible}.
» If @ <1, pick i € Z\ W with a7 p > 0 and a] (x + ap) + b; = 0, and
set W+ WU {i}.
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Primal Active-Set QP Method

1. Select feasible x and W C Z N A(x).
2. Solve (EQP) to get xFQP and \EQP,
3. If x = xEQP:
» If AEQP > 0: Donel!
» Otherwise, select \*®F < 0 and set W « W\ {i}.
4. If x # xEQP;

» Compute step p = xFQP — x.

» Compute o = argmax{a € [0,1] : x + ap is feasible}.

» If @ <1, pick i € Z\ W with a7 p > 0 and a] (x + ap) + b; = 0, and
set W+ WU {i}.

» Update x <— x + ap.

5. Go to step 2.
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Active-Set QP Algorithms

» Primal active-set method:
» Keeps all iterates feasible.
» Changes W by at most one constraint per iteration.
» {ai}iceuw remain linearly independent.
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Active-Set QP Algorithms

» Primal active-set method:
» Keeps all iterates feasible.
» Changes W by at most one constraint per iteration.
» {ai}iceuw remain linearly independent.
» Convergence
» Finite convergence:

> Finitely many options for W.
> Objective decreases with every step;
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Active-Set QP Algorithms

» Primal active-set method:
» Keeps all iterates feasible.
» Changes W by at most one constraint per iteration.
» {ai}iceuw remain linearly independent.
» Convergence
» Finite convergence:
> Finitely many options for W.
> Objective decreases with every step; as long as « > 0!
» Special handling of degeneracy necessary (o = 0 steps)
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Active-Set QP Algorithms

» Primal active-set method:
» Keeps all iterates feasible.
» Changes W by at most one constraint per iteration.
» {ai}iceuw remain linearly independent.
» Convergence
» Finite convergence:

> Finitely many options for W.
> Objective decreases with every step; as long as « > 0!

» Special handling of degeneracy necessary (o = 0 steps)
» Efficient solution of (EQP)
» Update the factorization when W changes.
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Active-Set QP Algorithms

» Primal active-set method:
» Keeps all iterates feasible.
» Changes W by at most one constraint per iteration.
» {ai}iceuw remain linearly independent.
» Convergence
» Finite convergence:

> Finitely many options for W.
> Objective decreases with every step; as long as « > 0!

» Special handling of degeneracy necessary (o = 0 steps)
» Efficient solution of (EQP)
» Update the factorization when W changes.
» Complexity
» Fast convergence if good estimate of optimal working set is given.
» Worst case exponential complexity.
» Alternative: Interior-point QP solvers (polynomial complexity).
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Active-Set QP Algorithms

» Primal active-set method:
» Keeps all iterates feasible.
» Changes W by at most one constraint per iteration.
» {ai}iceuw remain linearly independent.
» Convergence
» Finite convergence:

> Finitely many options for W.
> Objective decreases with every step; as long as « > 0!

» Special handling of degeneracy necessary (o = 0 steps)
» Efficient solution of (EQP)
» Update the factorization when W changes.
» Complexity
» Fast convergence if good estimate of optimal working set is given.
» Worst case exponential complexity.
» Alternative: Interior-point QP solvers (polynomial complexity).

» There are variants that allow @ to be indefinite.
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Equality-Constrained Nonlinear Problems

xng{é]” f(X)

stt. ¢(x) =0
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Equality-Constrained Nonlinear Problems

min f(x) V) + Ve(x)A=0
stt. ¢(x) =0 c(x)=0
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Equality-Constrained Nonlinear Problems

min f(x) V) + Ve(x)A=0
stt. ¢(x) =0 c(x)=0
» System of nonlinear equations in (x, ) € R” x R™
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Equality-Constrained Nonlinear Problems

min f(x) V) + Ve(x)A=0
stt. ¢(x) =0 c(x)=0
» System of nonlinear equations in (x, ) € R” x R™
» Apply Newton's method: Fast local convergence!
Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY



Equality-Constrained Nonlinear Problems

min f(x) V£(x) + Ve(x)A =0
stt. ¢(x) =0 c(x)=0
» System of nonlinear equations in (x, ) € R” x R™
» Apply Newton's method: Fast local convergence!
> Issues:
» Guarantees only (fast) local convergence.
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Equality-Constrained Nonlinear Problems

min f(x) V) + Ve(x)A=0
stt. ¢(x) =0 c(x)=0

» System of nonlinear equations in (x, ) € R” x R™

» Apply Newton's method: Fast local convergence!
> Issues:

» Guarantees only (fast) local convergence.
» We would like to find local minima and not just any kind of
stationary point.
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Equality-Constrained Nonlinear Problems

min f(x) V) + Ve(x)A=0
stt. ¢(x) =0 c(x)=0
» System of nonlinear equations in (x, ) € R” x R™
» Apply Newton's method: Fast local convergence!
> Issues:

» Guarantees only (fast) local convergence.
» We would like to find local minima and not just any kind of
stationary point.

> Need:

» Globalization scheme (for convergence from any starting point)
» Mechanisms that encourage convergence to local minima
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Newton's Method

Vf(x)+ Ve(x)A=0
c(x)=0
At iterate (xk, Ax) compute step pk, pp from
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Newton's Method

Vf(x)+ Ve(x)A =
c(x)

At iterate (xk, Ax) compute step pk, pp from

Hk Vck Pkl _ ka—i—Vck)\k
Vel 0 | \p) Ck

0
0

ka = Vf(Xk) VCk = VC(Xk) Ck = C(Xk)
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Newton's Method

Vf(x)+ Ve(x)A =
c(x)

At iterate (xk, Ax) compute step pk, pp from

Hk Vck Pkl _ ka—i—Vck)\k
Vel 0 | \p) Ck

0
0

ka = Vf(Xk) VCk = VC(Xk) Ci = C(Xk)
L(x,\) :=f(x)+ Z Gi(x)Aj Hy = Vixﬁ(xk, Ak)
j=1
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Newton's Method

Vf(x)+ Ve(x)A =
c(x)

At iterate (xk, Ax) compute step pk, pp from

Hk Vck Pkl _ ka—i—Vck)\k
Vel 0 | \p) Ck

» Update iterate (Xk+1, )\k+1) = (Xk, >\k) + (pk, p,;\)

0
0

ka = Vf(Xk) VCk = VC(Xk) Ci = C(Xk)
L(x,\) :=f(x)+ Z Gi(x)Aj Hy = Vixﬁ(xk, Ak)
j=1
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Sequential Quadratic Programming

Hk VCk Pk _ ka+Vck)\k
vel 0 | \pp) Ck
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Sequential Quadratic Programming

Hx Ve Pk _ [ ViEV e
vel 0 |\ N+ pp Ck
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Sequential Quadratic Programming

Hi Ve Pk _ [V
VCZ 0 >\k+1 - Ck

M1 = M+ pp

Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY




Sequential Quadratic Programming

Hi Ve Pk _ [V
VCZ 0 >\k+1 - Ck

These are the optimality conditions of

. T
~p"H f, 7
min 5P kp+ Vi p+ fx

st. Ve p+c=0

with multipliers 5\k+1 =M + p,’(\
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Sequential Quadratic Programming

Hi Ve Pk _ [V
VCZ 0 >\k+1 - Ck

These are the optimality conditions of

. T
~p"H f, 7
min 5P kp+ Vi p+ fx

st. Ve p+c=0

with multipliers 5\k+1 =M + p,’(\

» Newton step can be interpreted as solution of a local QP model!
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Local QP Model

Original Problem

a1

s.t. ¢(x) =0
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Local QP Model

Original Problem Local QP model (QP)
: 1
min f(x) in i + Vi p+=p H
xERN ,[2]'1{‘" kT Vi p—|—2p kP
st ¢(x) =0 st.a+Ve/p=0
Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY



Exact Penalty Function

> Need tool to facilitate convergence from any starting point.
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Exact Penalty Function

> Need tool to facilitate convergence from any starting point.

» Here, we have two (usually competing) goals:
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Exact Penalty Function

> Need tool to facilitate convergence from any starting point.

» Here, we have two (usually competing) goals:

Optimality Feasibility
min f(x) min || c(x)]|
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Exact Penalty Function

> Need tool to facilitate convergence from any starting point.

» Here, we have two (usually competing) goals:

Optimality Feasibility

min f(x) min [[c(x)|

» Combined in (non-differentiable) exact penalty function:

Po(x) = F(x) + plle(x)1 (p>0)
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Exact Penalty Function

> Need tool to facilitate convergence from any starting point.

» Here, we have two (usually competing) goals:

Optimality Feasibility

min f(x) min [[c(x)|

» Combined in (non-differentiable) exact penalty function:

Po(x) = F(x) + plle(x)1 (p>0)

Suppose, x* is a local minimizer of (NLP) with multipliers \* and LICQ
holds. Then x* is a local minimizer of ¢, if p > ||A\*||sc.
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Exact Penalty Function

> Need tool to facilitate convergence from any starting point.

» Here, we have two (usually competing) goals:

Optimality Feasibility

min f(x) min [[c(x)|

» Combined in (non-differentiable) exact penalty function:

Po(x) = F(x) + plle(x)1 (p>0)

Suppose, x* is a local minimizer of (NLP) with multipliers \* and LICQ
holds. Then x* is a local minimizer of ¢, if p > ||A\*||sc.

» We can use decrease in ¢, as a measure of progress towards a local
minimizer of (NLP).
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Line Search

Andreas Wachter

¢o(x) = F(x) + pllc(x)1
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Line Search

» Backtracking line search: Try ay € {1

Andreas Wachter

¢o(x) = F(x) + pllc(x)1

11

1D 40

..} until
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Line Search

¢o(x) = F(x) + pllc(x)1

» Backtracking line search: Try ay € {1, %, %, ...} until

Gp(Xk + akpic) < dp(xic) + nouDpy(xi; pr). (€ (0,1))
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Line Search

¢o(x) = F(x) + pllc(x)1

» Backtracking line search: Try ay € {1, %, %, ...} until
Gp(xk + akpi) < ¢p(xk) + nokDdp(xi; pk).  (n € (0,1))

Do, (xk; pk): Directional derivative of ¢, at xi in direction py.
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Line Search

¢o(x) = F(x) + pllc(x)1

» Backtracking line search: Try ay € {1, %, %, ...} until
Gp(xk + akpi) < ¢p(xk) + nokDdp(xi; pk).  (n € (0,1))

Dé,(xk; pk): Directional derivative of ¢, at xj in direction py.

Let py be an optimal solution of (QPx). Then

Debp(xk; P) < —Pi Hipk = (p = I Mkalloo) k-
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Line Search

¢o(x) = F(x) + pllc(x)1

» Backtracking line search: Try ay € {1, %, %, ...} until
Gp(xk + akpi) < ¢p(xk) + nokDdp(xi; pk).  (n € (0,1))

Dé,(xk; pk): Directional derivative of ¢, at xj in direction py.

Let py be an optimal solution of (QPx). Then

Debp(xk; P) < —Pi Hipk = (p = I Mkalloo) k-

> So, px is a descent direction for ¢, if
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Line Search

¢o(x) = F(x) + pllc(x)1

» Backtracking line search: Try ay € {1, %, %, ...} until
Gp(xk + akpi) < ¢p(xk) + nokDdp(xi; pk).  (n € (0,1))

Dé,(xk; pk): Directional derivative of ¢, at xj in direction py.

Let py be an optimal solution of (QPx). Then

Debp(xk; P) < —Pi Hipk = (p = I Mkalloo) k-

> So, py is a descent direction for ¢, if Hx > 0 and p > H:\k+1Hoo-
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Basic SQP Algorithm

1. Choose x1, A1, po > 0. Set k «+ 1.
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Basic SQP Algorithm

1. Choose x1, A1, po > 0. Set k «+ 1.
2. Solve (QPy) to get px and 5\k+1.
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Basic SQP Algorithm

1. Choose x1, A1, po > 0. Set k «+ 1.
2. Solve (QPy) to get px and 5\k+1.

3. Update penalty parameter: (8>0)
o = L P if pr—1 > [ Aslloo + B
[Aks1lloo +26  otherwise.
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Basic SQP Algorithm

1. Choose x1, A1, po > 0. Set k «+ 1.
2. Solve (QPy) to get px and 5\k+1.
3. Update penalty parameter: (8>0)
o = L P if pr—1 > [ Aslloo + B
[Aks1lloo +26  otherwise.

4. Perform backtracking line search:

Find largest o € {1, %, %, ...} with

G (X + akpr) < Gp(xk) + nou Doy, (X Pk)-

Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY




Basic SQP Algorithm

1. Choose x1, A1, po > 0. Set k «+ 1.
2. Solve (QPy) to get px and 5\k+1.
3. Update penalty parameter: (8>0)
o = L P if pr—1 > [ Aslloo + B
[Aks1lloo +26  otherwise.

4. Perform backtracking line search:
Find largest ax € {1,%,1 ...} with

)29 4
G (X + akpr) < Gp(xk) + nou Doy, (X Pk)-
5. Update iterate xx4+1 = Xk + akpk and Ag41 = 5\k+1.
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Basic SQP Algorithm

1. Choose x1, A1, po > 0. Set k «+ 1.
2. Solve (QPy) to get px and 5\k+1.
3. Update penalty parameter: (8>0)
o = L P if pr—1 > [ Aslloo + B
[Aks1lloo +26  otherwise.

4. Perform backtracking line search:
Find largest o € {1, %, %, ...} with

G (X + akpr) < Gp(xk) + nou Doy, (X Pk)-

. Update iterate xx4+1 = Xk + akpkx and Ag41 = 5\k+1.
6. Set k + k41 and to go Step 2.

(6;]
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Convergence Result for Basic SQP Algorithm

» f and c are twice continuously differentiable.
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Convergence Result for Basic SQP Algorithm

» f and c are twice continuously differentiable.

» The matrices Hy are bounded and uniformly positive definite.
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Convergence Result for Basic SQP Algorithm

» f and c are twice continuously differentiable.

» The matrices Hy are bounded and uniformly positive definite.

» The smallest singular value of Vcy is uniformly bounded away from
zero.
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Convergence Result for Basic SQP Algorithm

» f and c are twice continuously differentiable.
» The matrices Hy are bounded and uniformly positive definite.

» The smallest singular value of Vcy is uniformly bounded away from
zero.

v

Under these assumptions, we have

lim H (ka = VCkS\k_H) H —o.

k—o0 Ck
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Convergence Result for Basic SQP Algorithm

» f and c are twice continuously differentiable.
» The matrices Hy are bounded and uniformly positive definite.

» The smallest singular value of Vcy is uniformly bounded away from
zero.

v

Under these assumptions, we have

lim H (ka = VCkS\k_H) H —o.

k—o0 Ck

In other words, each limit point of {xy} is a stationary point for (NLP).
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Choice of Hessian H,

17 T
min —p' H.p + V1,
pein 2P kP kP (QPx)

st. Vel p+co=0

» For fast local convergence, want to choose Hx = V2, Ly.

Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY




Choice of Hessian H,

17 T
min —p' H.p + V1,
pein 2P kP kP (QPx)

st. Vel p+co=0

» For fast local convergence, want to choose Hx = V2, Ly.

» V2 Ly is positive definite, if f and ¢ are convex.
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Choice of Hessian H,

17 T
min —p' H.p + V1,
pein 2P kP kP (QPx)

st. Vel p+co=0

» For fast local convergence, want to choose Hx = V2, Ly.

» V2 Ly is positive definite, if f and ¢ are convex.
» In general, V2 L, might be indefinite.
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Choice of Hessian H,

17 T
min —p' Hgp + VT,
o 2P kP k P (QP)

st. Vel p+c=0

» For fast local convergence, want to choose Hx = V2, Ly.
» V2 Ly is positive definite, if f and ¢ are convex.
» In general, V2 L, might be indefinite.

» (QPx) might be unbounded.
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Choice of Hessian H,

17 T
min —p' Hgp + VT,
o 2P kP k P (QP)

st. Vel p+c=0

» For fast local convergence, want to choose Hx = V2, Ly.
» V2 Ly is positive definite, if f and c are convex.
» In general, V2, L, might be indefinite.

» (QPx) might be unbounded.
> pr might not be a descent direction for ¢,.
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Choice of Hessian H,

17 T
min —p' Hgp + VT,
o 2P kP k P (QP)

st. Vel p+c=0

» For fast local convergence, want to choose Hx = V2, Ly.

» V2 Ly is positive definite, if f and ¢ are convex.
» In general, V2 L, might be indefinite.

» (QPx) might be unbounded.
> pr might not be a descent direction for ¢,.
» Would like ZkTHka > 0 (Zk null-space matrix for VckT).
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Choice of Hessian H,

17 T
min —p' H.p + V1,
pein 2P kP kP (QPx)

st. Vel p+co=0

v

For fast local convergence, want to choose Hx = V2, Ly.

» V2 Ly is positive definite, if f and ¢ are convex.
In general, V2 L, might be indefinite.
» (QPx) might be unbounded.

> pr might not be a descent direction for ¢,.
» Would like ZkTHka > 0 (Zk null-space matrix for VckT).

Hy = BFGS approximation of V2, £(xx, Ax).

v

v
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Choice of Hessian H,

17 T
min —p' Hgp + VT,
o 2P kP k P (QP)

st. Vel p+c=0

v

For fast local convergence, want to choose Hx = V2, Ly.

» V2 Ly is positive definite, if f and c are convex.
In general, V2, L might be indefinite.
» (QPx) might be unbounded.
> pr might not be a descent direction for ¢,.
» Would like ZkTHka > 0 (Zk null-space matrix for VckT).
Hy = BFGS approximation of V2, £(xk, A).
» Potentially slow local convergence, since V2 L(x*, \*) may be
indefinite.

v

v
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Regularization

. T
ZpTHep + VT,
min P Hp + Vi p

s.t. VckTp—i— c =0

Recall optimality conditions

He  Vad ( pc\ _  [Vi
Vel 0 |\ Mt/ Ck

| S ——
:ZKk
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Regularization

. T
ZpT (He+ 1 f,
min >p (He +~D)p+ Vi p

s.t. VckTp+ ¢ =0

Recall optimality conditions

Hi +~1 Vi Pk _ Vi
Vel 0 |\ e/ Ck

:ZKk

» Choose v > 0
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Regularization

. T
ZpT (He+ 1 f,
min >p (He +~D)p+ Vi p

s.t. VckTp+ ¢ =0

Recall optimality conditions

Hi +~1 Vi Pk _ Vi
Vel 0 |\ e/ Ck

:ZKk

» Choose v > 0 so that K has inertia (n, m,0).

» Then ZkTHka is positive definite.
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Regularization

. T
ZpT (He+ 1 f,
min >p (He +~D)p+ Vi p

s.t. VckTp+ ¢ =0

Recall optimality conditions

Hi +~1 Vi Pk _ Vi
Vel 0 |\ e/ Ck

:ZKk

» Choose v > 0 so that K has inertia (n, m,0).
» E.g.: Trial and error, computing inertia via factorization

» Then ZkTHka is positive definite.
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Regularization

1
min =p’ (Hx +~v)p+ V£ p
pERM 2

s.t. VckTp+ ¢ =0

Recall optimality conditions

Hi +~1 Vi Pk _ Vi
Vel 0 |\ e/ Ck

:ZKk

» Choose v > 0 so that K has inertia (n, m,0).
» E.g.: Trial and error, computing inertia via factorization

» Then ZkTHka is positive definite.
» No regularization necessary close to second-order sufficient solution.
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Step Decomposition Revisited

1 7 T
min —p' H,p + VT,
pERN 2p kP k P (QP)

st. Ve p+c=0

Decomposition px = Yipy k + Zkpz k
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Step Decomposition Revisited

1 7 T
min —p' H,p + VT,
pERN 2p kP k P (QP)

st. Ve p+c=0

Decomposition px = Yipy k + Zkpz k
» Range space step
py k= —[Veil Y IV
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Step Decomposition Revisited

1
m|n “p"H p+VH
PeR 2P kP K P (ka)

s.t. Vck p+ck=0

Decomposition px = Yipy k + Zkpz k
» Range space step
py k= —[Veil Y IV

» Reduced space QP

1
min EPZT[ZkTHka]PZ + (Vi + HeYepy k)T Zipz
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Step Decomposition Revisited

1
m|n “p"H p+VH
PeR 2P kP K P (ka)

s.t. Vck p+ck=0

Decomposition px = Yipy k + Zkpz k
» Range space step
py k= —[Veil Y IV

» Reduced space QP
o1
min EPZT[ZkTHka]PZ + (Vi + HeYepy k)T Zipz
» Make sure ZkTHka is positive definite
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Step Decomposition Revisited

1
m|n “p"H p+VH
PeR 2P kP K P (ka)

s.t. Vck p+ck=0

Decomposition px = Yipy k + Zkpz k
» Range space step
py k= —[Veil Y IV

» Reduced space QP
1
min EPZT[ZkTHka]PZ + (Vi + HeYepy k)T Zipz

» Make sure Z;J HyZy is positive definite (e.g., BFGS)
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Trust-Region SQP Method

17 T
Z—pTHyp + Vf,
min > Hip + Vi p

st. Vel p+ca=0, |p| <Ak

(QPx)

» Trust-region radius Ay, updated throughout iterations
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Trust-Region SQP Method

17 T
Z—pTHyp + Vf,
min > Hip + Vi p

st. Vel p+ca=0, |p| <Ak

(QPx)

» Trust-region radius Ay, updated throughout iterations
» No positive-definiteness requirements for Hj
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Trust-Region SQP Method

1
min =p' Hyp + V£
min 5p" Hip + Vi p Q)

st. Vel p+ca=0, |p| <Ak

» Trust-region radius Ay, updated throughout iterations
» No positive-definiteness requirements for Hj
Prede > 1) with (n€(0,1))

aredy

» Step px is accepted if

pred, = mk(0) — mi(px),  aredx = ¢p(xk) — Pp(xk + pk)
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Trust-Region SQP Method

17 T
Z—pTHyp + Vf,
min > Hip + Vi p

st. Vel p+ca=0, |p| <Ak

(QPx)

v

Trust-region radius Ay, updated throughout iterations

v

No positive-definiteness requirements for Hy
ek > 77 with (n€(0,1))

ared

v

Step pk is accepted if

pred, = m(0) — mi(pk),  aredx = dp(xk) — dp(xk + px)
> Piece-wise quadratic model of ¢,(x) = f(x) + pllc(x)]1:
1
mi(p) = fx + VI p+ ipTHkp + pllek + Vel pla
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Trust-Region SQP Method

17 T
Z—pTHyp + Vf,
min > Hip + Vi p

st. Vel p+ca=0, |p| <Ak

(QPx)

v

Trust-region radius Ay, updated throughout iterations

v

No positive-definiteness requirements for Hy
ek > 77 with (n€(0,1))

ared

v

Step pk is accepted if

pred, = mk(0) — mi(px),  aredx = ¢p(xk) — Pp(xk + pk)
> Piece-wise quadratic model of ¢,(x) = f(x) + pllc(x)]1:
mi(p) = fx + VI p+ %pTHkp + pllek + Vel pla
» Otherwise, decrease Ay
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Inconsistent QPs

> If xi is not feasible and Ay small, (QPx) might not be feasible

Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY




Inconsistent QPs

> If xi is not feasible and Ay small, (QPx) might not be feasible
» One remedy: Penalize constraint violation

min
peR”

1
§pTHkp + kaTp

st.Ve/p+ca=0
Pl < Ak

Andreas Wachter
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Inconsistent QPs

> If xi is not feasible and Ay small, (QPx) might not be feasible
» One remedy: Penalize constraint violation

: L r T -
-p'H Vi, i+t
peR'r’?tl,'s]eRm 2P kP VP pj; (5 + )

s.t. Vclz-p+ck:s—t
Pl <Ak, s,t>0
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Fletcher's S/1QP

Andreas Wachter

min
pERN;t sERM 2

1
5P Hip + V1 p+pZ sj + t))

st.Velpta=s—t

Pl < A,

s;,t>0

j=1
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Fletcher's S/1QP

1
i —p'H, f, t
PER'mtseRm p' Hkp + Vi p+p; (si+ 1)

st.Velpta=s—t
Pl < Ak, s,t>0

is equivalent to

1
pn€11|é1" mi(p) = f + VI p + EpTHkp + pllex + Vel pla
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Fletcher's S/1QP

1
i —p'H, f, t
PER'mtseRm p' Hkp + Vi p+p; (si+ 1)

st.Velpta=s—t
Pl < Ak, s,t>0

is equivalent to

1
pnewﬁgn mi(p) = f + VI p + EpTHkp + pllex + Vel pla

» Natural algorithm for minimizing ¢,(x).
» Difficulty: Selecting sufficiently large value of p.
» This motivated the invention of filter methods.
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Byrd-Omojokun Trust-Region Algorithm

» Decompose step px = ng + tx
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Byrd-Omojokun Trust-Region Algorithm

» Decompose step px = ng + tx

Normal component ny Tangential component ty
towards feasibility towards optimality

min [ Vi n+ el

s.t. ”n”2 < 0.8A
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Byrd-Omojokun Trust-Region Algorithm

» Decompose step px = ng + tx

Normal component ny Tangential component ty
towards feasibility towards optimality
min [|Ved n + i3 min %(nk+t)THk(nk—|—t) + VET (n+t)
s.t. |[n]2 < 0.8A st. Vel t=0
Itll2 < /A% = lInkll3
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Byrd-Omojokun Trust-Region Algorithm

Normal component ng Tangential component t
towards feasibility towards optimality
min Vel n+ cl3 min %(nk—kt)THk(nk—H) + VA (ne+1)
s.t. ||n]l2 < 0.8A st. Ve t=0
Itll2 < /A = lInel3

» Subproblems can be solved inexactly
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Byrd-Omojokun Trust-Region Algorithm

Normal component ng Tangential component t
towards feasibility towards optimality
min Vel n+ cl3 min %(nk—kt)THk(nk—H) + VA (ne+1)
s.t. ||n]l2 < 0.8A st. Ve t=0
Itll2 < /A = lInel3

» Subproblems can be solved inexactly
» Normal problem: Dogleg method.
» Tangential problem: Conjugate-gradients method in null space.

» {>-norm penalty function ¢,(x) = f(x) + p|c(x)|2.

Andreas Wachter Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY




Byrd-Omojokun Trust-Region Algorithm

Normal component ng Tangential component t
towards feasibility towards optimality
min Vel n+ cl3 min %(nk—kt)THk(nk—H) + VA (ne+1)
s.t. ||n]l2 < 0.8A st. Ve t=0
Itll2 < /A = lInel3

» Subproblems can be solved inexactly

» Normal problem: Dogleg method.

» Tangential problem: Conjugate-gradients method in null space.
» {>-norm penalty function ¢,(x) = f(x) + p|c(x)|2.
» Strong convergence result:
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Byrd-Omojokun Trust-Region Algorithm

Normal component ng Tangential component t
towards feasibility towards optimality
min Vel n+ cl3 min %(nk—kt)THk(nk—H) + VA (ne+1)
s.t. ||n]l2 < 0.8A st. Ve t=0
Itll2 < /A = lInel3

» Subproblems can be solved inexactly
» Normal problem: Dogleg method.
» Tangential problem: Conjugate-gradients method in null space.

» {>-norm penalty function ¢,(x) = f(x) + p|c(x)|2.
» Strong convergence result:

» If (NLP) is infeasible, limit points of {xx} are stationary points for
infeasibility minimization problem min, ||c(x)|/3.
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Maratos Effect

» Even arbitrarily close to solution, full step o = 1 might be rejected
because the non-smooth merit function ¢, increases.

» Degrades fast local convergence.

» Remedies: Second-order correction steps or “watchdog” method.
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SQP For Inequality-Constrained Nonlinear Problems

Xne"lllg" f(X)

sit. ce(x) =0

Compute py from local QP model

. T
ZpTHep + VF
min >p" Hip + (xc) " p

sit. Vee(x) T p+ ce(xx) =0 (QP)
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SQP For Inequality-Constrained Nonlinear Problems

Xne"lllg" f(X)
sit. ce(x) =0
a(x) <0

Compute py from local QP model

. T
ZpTHep + VF
min >p" Hip + (xc) " p

sit. Vee(x) T p+ ce(xx) =0 (QP)
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SQP For Inequality-Constrained Nonlinear Problems

Xne"lllg" f(X)
sit. ce(x) =0
a(x) <0

Compute py from local QP model

1
n §pTHkp + Vf(x) p

mi
pER”
s.t. VCE(Xk)Tp + ce(xx) =0 (ka)
Ve(xk)p+alx) <0
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Local Behavior

i 7
s.t. ci(x) =0
C,'(X) < 0

ie&
iel
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Local Behavior

. 1)

st.ci(x)=0 ieé&
c(x) <0 ie AP

a(x) <0 ie AP

ANLP — {ieZ:c(x*)=0} X!:“_P ={ie€eZl:c(x")<0}
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Local Behavior

1
Xné]iRnn f(x) ;2'” 5P THyp + V£l p
st.ci(x)=0 €& s.t. Vck7,-p +ci=0 i€
c(x)=0 ie AP Veliptai=0 i AP
—NLP _
Gl)<T i€ A Vel pt+ai<0 i€ ATt
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AP — fie T q(x) =0y AT ={ieT:c(x*) <0}

Andreas Wachter Constrained Nonlinear Optimization Algorithms
NORTHWESTERN UNIVERSITY




Local Behavior

1
Xng]iRnn f(x) ;2'” 5P THyp + V£l p
st.ci(x)=0 €& s.t. Vck7,-p +ci=0 i€
c(x)=0 ie AP Veliptai=0 i AP
—NLP _
Gl)<T i€ A Vel pt+ai<0 i€ ATt

—N

AP — fie T q(x) =0y AT ={ieT:c(x*) <0}

Suppose x* is a local minimizer satisfying the sufficient second-order
optimality conditions, at which LICQ and strict optimality hold. Then
ANLP — APk for all x, sufficiently close to x.
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Back to Newton's Method

1
m]llg f(x) min 5P THp+ Vi p
xeRn peR
st.c(x)=0 ief s.t. Vckﬂ-p +ci=0 i€l
c(x)=0 iecANP Veliptai=0 ie AP
—NLP
a(xy<T €A, Vel p+ai<0 i€ A

» When x is close to x*, (QPx) produces the same steps as SQP for
equality-constrained NLP.
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Back to Newton's Method

1
f ~p"H \v7
min f(x) min 5P Hep + Vi p
st.c(x)=0 ief s.t. Vckﬂ-p +ci=0 i€l
c(x)=0 iecANP Veliptai=0 ie AP
—NLP
a(xy<T €A, Vel p+ai<0 i€ A

» When x is close to x*, (QPx) produces the same steps as SQP for
equality-constrained NLP.

» We are back to Newton's method. ..

> Fast local convergence!
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Global Convergence

xnglllg” f(X)

sit. ce(x) =0

c(x) <0

Methods for equality constraints can be generalized.

» For example, penalty function

Gp(x) = f£(x) + pllce(x)llx + pl| max{c/(x), 0}
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Global Convergence

xnglllg” f(X)
s.t. ce(x) =0
C/(X) < 0

Methods for equality constraints can be generalized.

» For example, penalty function

Gp(x) = f£(x) + pllce(x)llx + pl| max{c/(x), 0}

. 1+ T - o
—p' H Vi, P+t ;
PeR";t,s?ﬂ!&gE;reR’"/ 2p kP Vi P+Pj§::1 (SJ + J)+pj§::1rj
s.t. VCEkP +CEk=5—1
chkp +cer <r

||p|| SAk7 S, tarZO
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Barrier Problem

xngﬁ]" f(X)

st. ¢(x) =0
x>0
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Barrier Problem

min f(x) _ n
min £(x) > log(x)
xeR" :
sit. c(x) =0 / i=1
x>0 s.t. ¢(x) =0
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Barrier Problem

R )

st x>0 || minf(x)—ulog(x) — ulog(10 - x)

10

=
I
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Barrier Problem

R )

st. x>0 | — Q”E'IE f(x) — plog(x) — plog(10 — x)
x =10
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Barrier Problem

R )

st x>0 || minf(x)—ulog(x) — ulog(10 - x)
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Barrier Problem

R )

st x>0 || minf(x)—ulog(x) — ulog(10 - x)

w=0.01
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Barrier Problem

R )

st x>0 || minf(x)—ulog(x) — ulog(10 - x)

w=0.001
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Barrier Method

min f(x n
xERN (x) m]iR?n f(x)— ,uz log(xi)
st.c(x)=0 — xe i=1 (BPL)
>0 s.t. ¢(x) =0
Basic Algorithm:
1. Choose xg € R", g >0, g > 0. Set k + 0.
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Barrier Method

. f n
min f(x) min £(x) — 1> log(x)
st.c(x)=0 — xeR i=1 (BPL)
x>0 s.t. ¢(x) =0

Basic Algorithm:
1. Choose xg € R", g >0, g > 0. Set k + 0.

2. Starting from xg, solve (BPM) to tolerance €4 and obtain xy1.
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Barrier Method

. f n
min f(x) min £(x) — 1> log(x)
st.c(x)=0 — xeR i=1 (BPL)
x>0 s.t. ¢(x) =0

Basic Algorithm:
1. Choose xg € R", g >0, g > 0. Set k + 0.

2. Starting from xg, solve (BPM) to tolerance €4 and obtain xy1.

3. Decrease pix+1 < pik and €x+1 < €; set k < k+1; go to 2.

(Ensure px — 0 and ¢, — 0.)
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Barrier Method

. f n
min f(x) min £(x) — 1> log(x)
st.c(x)=0 — xeR i=1 (BPL)
x>0 s.t. ¢(x) =0

Basic Algorithm:
1. Choose xg € R", g >0, g > 0. Set k + 0.

2. Starting from xg, solve (BP,,,) to tolerance €, and obtain xy1.

— Use SQP techniques
3. Decrease pix+1 < pik and €x+1 < €; set k < k+1; go to 2.

(Ensure px — 0 and ¢, — 0.)
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SQP Techniques for Solving the Barrier Problem

m|n ou(x) = f(x uZIog X;)

s.t. ¢(x) =0

Can re-use SQP techniques:
» Step computation

» KKT system with regularization
» Decomposition
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Can re-use SQP techniques:
» Step computation

» KKT system with regularization
» Decomposition

» Step acceptance

» Line search
» Trust region
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SQP Techniques for Solving the Barrier Problem

m|n ou(x) = f(x uZIog X;)

s.t. ¢(x) =0

Can re-use SQP techniques:

» Step computation
» KKT system with regularization
» Decomposition

» Step acceptance
» Line search
» Trust region

» Measuring progress

» Exact penalty function
» Filter method

Constrained Nonlinear Optimization Algorithms

NORTHWESTERN UNIVERSITY
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Barrier Term Considerations

= f(x |
min pu(x) = Z og (i)

s.t. ¢(x) =0

» Variables must stay positive
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Barrier Term Considerations

m|n ou(x) = f(x ,uZIog X;)

s.t. ¢(x) =0

» Variables must stay positive
» Fraction-to-the-boundary rule (r €(0,1), e.g., 7=10.99)

max

ap®™ =argmax{a € (0,1] : xx + apx > (1 — 7)xx}
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Barrier Term Considerations

m|n ou(x) = f(x ,uZIog X;)

s.t. ¢(x) =0

» Variables must stay positive
» Fraction-to-the-boundary rule (r €(0,1), e.g., 7=10.99)

max

af™ =argmax{a € (0,1] : xx + apx > (1 — 7)xk }
Vit pXi 2 Ve (pe ) (Vho-nXcte
vel 0 Met1) Ck
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Barrier Term Considerations

m|n ou(x) = f(x ,uZIog X;)

s.t. ¢(x) =0

» Variables must stay positive
» Fraction-to-the-boundary rule (r €(0,1), e.g., 7=10.99)

ap® =argmax{a € (0,1] : xx + apx > (1 — 7)xk}
> lll-conditioning in linear system

V2 L+ ,uX Vi Pk _ Vi — uX,:le
VCk 0 /\k+1 - Ck
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Example s

2
. 1 2 b
min xi + (X2 — 5
x€R?
st. x>0 ‘
05
0
0 05 1 15 2 25
k| mu_k | f k| ( xk(@), x k(@) | ( pk(1), pk(2) | err_barr | alpha
0 | 1.00e+00 | 2.50e+00 | (2.00e+00,2.00e+00) | ( 0.00e+00, 0.00e+00) | 7.07e-01 | 0.00e+00
1| 1.00e+00 | 2.02e-01 | (2.00e-02,1.60e+00) | (-2.00e+00,-4.00e-01) | 2.04e+00 | 9.90e-01
2 | 1.00e+00 | 2.31e-01 | (3.96e-02,1.62e+00) | ( 1.96e-02, 1.40e-02) | 2.41e-02 | 1.00e+00
3| 1.00e-01 | 6.69e-02 | (6.35e-02,1.08e+00) | ( 2.39e-02,-5.36e-01) | 5.36e-01 | 1.00e+00
4 | 1.00e-01 | 9.09e-02 | (8.67e¢-02,1.09e+00) | ( 2.32e-02, 9.33e-03) | 2.50e-02 | 1.00e+00
5 | 1.00e-02 | 4.15e-03 | (8.67e-04,1.08e+00) | (-6.65e-01,-8.18e-02) | 6.70e-01 | 1.29e-01
6 | 1.00e-02 | 1.71e-03 | (1.66e-03,1.01e+00) | ( 7.92e-04,-7.12e-02) | 7.12e-02 | 1.00e+00
12 | 3.16e-05 | 2.70e-05 | (2.70e-05,1.00e+00) | ( 7.45e-06, 2.95e-11) | 7.45e-06 | 1.00e+00
13 | 1.78e-07 | 4.98e-10 | (4.81e-12,1.00e+00) | (-4.09e-03,-3.14e-05) | 4.09e-03 | 6.62e-03
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.300371e-16.
14 | 1.78e-07 | 9.63e-12 | (9.62e-12,1.00e+00) | ( 4.81e-12,-3.12e-05) | 3.12e-05 | 1.00e+00
15 | 1.78e-07 | 1.93e-11 | (1.92e-11,1.00e+00) | ( 9.62e-12, 9.44e-17) | 9.62e-12 | 1.00e+00
16 | 7.50e-11 | 3.35e-11 | (3.35e-11,1.00e+00) | ( 1.43e-11,-1.78e-07) | 1.78e-07 | 1.00e+00
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Example

16 o
15
min x1 + (X2 — 1)2 1
x€ER2 13
st. x>0 2

0 0.02 004 0.06 008 0.1
k | mu_k | f k| ( xk(@), x k(@) | ( p_k(), pk(2) | err_barr | alpha
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13 | 1.78e-07 | 4.98e-10 | (4.81e-12,1.00e+00) | (-4.09e-03,-3.14e-05) | 4.09e-03 | 6.62e-03
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.300371e-16.
14 | 1.78e-07 | 9.63e-12 | (9.62e-12,1.00e+00) | ( 4.81e-12,-3.12e-05) | 3.12e-05 | 1.00e+00
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Primal-Dual System

. 1

stt. ¢(x) =0
x>0
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Primal-Dual System

min f(X) Vf(X)“‘VC(X)—Z:O
x€R" c(x)=0
stt. c(x) =0 XZe =
x20 x,z>0
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Primal-Dual System

min f(X) Vf(X)“‘VC(X)—Z:O
x€R" c(x)=0
stt. ¢(x) =0 XZe — jie
x20 (x,z>0)
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Primal-Dual System

min f(X) Vf(X)“‘VC(X)—Z:O
XERT c(x)=0
stt. ¢(x) =0 XZe — jie
x20 (x,z>0)
Newton Steps
V)%X,Ck Ve, -1 Pk Vi + Ve — zx
vel 0 0 | =- Ck
Zk 0 Xk pi Xkae — ue
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Primal-Dual System

min f(X) Vf(X)“‘VC(X)—Z:O
XERT c(x)=0
stt. ¢(x) =0 XZe — jie
x20 (x,z>0)
Newton Steps
V)%X,Ck Ve, -1 Pk Vi + Ve — zx
vel 0 0 | =- Ck
Zk 0 Xk pi Xkae — ue

Block elimination

VZLe+ X2k Vo [ e\ _ (Vi —pXle
vel 0 Met1) Ck
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Primal-Dual Steps

ViLe+ T Veo| [ o\ (Vh—pX e
Vel 0 | \Mks1) Ck
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Primal-Dual Steps

ViLe+ T Veo| [ o\ (Vh—pX e
Vel 0 | \Mks1) Ck

» Barrier Hessian term:
> 3= Xk_2: primal
> Y, = Xk_IZk . primal-dual
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Primal-Dual Steps

ViLe+ T Veo| [ o\ (Vh—pX e
Vel 0 | \Mks1) Ck

» Barrier Hessian term:
> 3= Xk_2: primal
> Y, = Xk_IZk . primal-dual

» Step for dual variables: p; = ,uXk_le — Zk — X Pk-
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Primal-Dual Steps

ViLe+ T Veo| [ o\ (Vh—pX e
Vel 0 | \Mks1) Ck

» Barrier Hessian term:
> 3= Xk_2: primal
> Y, = Xk_IZk . primal-dual

» Step for dual variables: p; = ,uXk_le — Zk — X Pk-

» Can still use SQP-type globalization techniques.
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Primal-Dual Steps

ViLe+ T Veo| [ o\ (Vh—pX e
Vel 0 | \Mks1) Ck

» Barrier Hessian term:
> 3= Xk_2: primal
> Y, = Xk_IZk . primal-dual

v

Step for dual variables: pf = ,uXk_le — Zk — X Pk-

v

Can still use SQP-type globalization techniques.

» Now: Fast local convergence.
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Primal-Dual Steps

ViLe+ T Veo| [ o\ (Vh—pX e
Vel 0 | \Mks1) Ck

Barrier Hessian term:

v

> 3= Xk_2: primal
> Y, = Xk_IZk . primal-dual

v

Step for dual variables: pf = ,uXk_le — Zk — X Pk-

v

Can still use SQP-type globalization techniques.

» Now: Fast local convergence.

v

Ill-conditioning in KKT system is benign for direct linear solvers.
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Example Revisited with Primal-Dual Method

2
: 2
min xi _F ()(2 - 1) 15
x€R2
°
st. x>0 '
05
0
0 05 1 15 2 25
k| mu_k | f k| ( xk(@), xk(©2) | ( pk(), p_k(2) | err_barr | alpha
0 | 1.00e+00 | 2.50e+00 | (2.00e+00,2.00e+00) | ( 0.00e+00, 0.00e+00) | 7.07e-01 | 0.00e+00
1 | 1.00e+00 | 2.02e-01 | (2.00e-02,1.60e+00) | (-2.00e+00,-4.00e-01) | 4.00e-03 | 9.90e-01
2 | 1.00e-01 | 1.22e-01 | (1.00e-01,1.21e+00) | ( 8.00e-02,-3.94e-01) | 4.74e-16 | 1.00e+00
3 | 1.00e-02 | 1.07e-02 | (1.00e-02,1.04e+00) | (-9.00e-02,-1.72e-01) | 5.55e-17 | 1.00e+00
4 | 1.00e-03 | 1.00e-03 | (1.00e-03,1.00e+00) | (-9.00e-03,-3.58e-02) | 5.55e-17 | 1.00e+00
5 | 3.16e-05 | 3.16e-05 | (3.16e-05,1.00e+00) | (-9.68e-04,-2.24e-03) | 3.64e-17 | 1.00e+00
6 | 1.78e-07 | 1.78e-07 | (1.78e-07,1.00e+00) | (-3.14e-05,-3.65e-05) | 1.10e-16 | 1.00e+00
7 | 7.50e-11 | 7.50e-11 | (7.50e-11,1.00e+00) | (-1.78e-07,-1.79e-07) | 5.34e-17 | 1.00e+00
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Example Revisited with Primal-Dual Method

6 o
15
. ]- 2 .
min x; + (X2 — '
x€R2
13
S t . X 2 O 12 °
11
°
1
0.02 0.04 0.06 0.08 0.1 0.12

k| mu_k | f k| ( xk(@), xk(©2) | ( pk(), p_k(2) | err_barr | alpha

0 | 1.00e+00 | 2.50e+00 | (2.00e+00,2.00e+00) | ( 0.00e+00, 0.00e+00) | 7.07e-01 | 0.00e+00

1 | 1.00e+00 | 2.02e-01 | (2.00e-02,1.60e+00) | (-2.00e+00,-4.00e-01) | 4.00e-03 | 9.90e-01

2 | 1.00e-01 | 1.22e-01 | (1.00e-01,1.21e+00) | ( 8.00e-02,-3.94e-01) | 4.74e-16 | 1.00e+00

3 | 1.00e-02 | 1.07e-02 | (1.00e-02,1.04e+00) | (-9.00e-02,-1.72e-01) | 5.55e-17 | 1.00e+00

4 | 1.00e-03 | 1.00e-03 | (1.00e-03,1.00e+00) | (-9.00e-03,-3.58e-02) | 5.55e-17 | 1.00e+00

5 | 3.16e-05 | 3.16e-05 | (3.16e-05,1.00e+00) | (-9.68e-04,-2.24e-03) | 3.64e-17 | 1.00e+00

6 | 1.78e-07 | 1.78e-07 | (1.78e-07,1.00e+00) | (-3.14e-05,-3.65e-05) | 1.10e-16 | 1.00e+00

7 | 7.50e-11 | 7.50e-11 | (7.50e-11,1.00e+00) | (-1.78e-07,-1.79e-07) | 5.34e-17 | 1.00e+00
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Advantages of Different Algorithms

(very rough guide. . .)

SQP methods
> Very efficient for small- to medium-sized problems
> up to several thousand variables and constraints
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SQP methods
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> up to several thousand variables and constraints
» Can exploit good estimate of solution (warm starts)

» branch-and-bound for mixed-integer nonlinear programming
> real-time optimal control
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SQP methods
> Very efficient for small- to medium-sized problems
> up to several thousand variables and constraints
» Can exploit good estimate of solution (warm starts)

» branch-and-bound for mixed-integer nonlinear programming
> real-time optimal control

Interior-point methods

» Can solve very large problems
» up to millions of variables and constraints
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Advantages of Different Algorithms

(very rough guide. . .)

SQP methods
> Very efficient for small- to medium-sized problems
> up to several thousand variables and constraints
» Can exploit good estimate of solution (warm starts)

» branch-and-bound for mixed-integer nonlinear programming
> real-time optimal control

Interior-point methods

» Can solve very large problems
» up to millions of variables and constraints

» Difficult to warm start
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Some Optimization Software for NLP

(This is not an exhaustive list!)
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Some Optimization Software for NLP

SQP methods (This is not an exhaustive list!)
» SNOPT [Gill, Murray, Sanders]

> line search with augmented Lagrangian as merit function
» reduced Hessian BFGS
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Some Optimization Software for NLP

SQP methods (This is not an exhaustive list!)
» SNOPT [Gill, Murray, Sanders]

> line search with augmented Lagrangian as merit function
» reduced Hessian BFGS

> FilterSQP [Fletcher, Leyffer]

» S/1QP with exact Hessian
> trust-region filter method
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Some Optimization Software for NLP

SQP methods (This is not an exhaustive list!)
» SNOPT [Gill, Murray, Sanders]

> line search with augmented Lagrangian as merit function
» reduced Hessian BFGS

> FilterSQP [Fletcher, Leyffer]

» S/1QP with exact Hessian
> trust-region filter method

Primal-dual interior-point methods

> lpopt [Wichter, Biegler]
> line-search filter method
» full-space step computation with regularization
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Some Optimization Software for NLP

SQP methods (This is not an exhaustive list!)
» SNOPT [Gill, Murray, Sanders]

> line search with augmented Lagrangian as merit function
» reduced Hessian BFGS

> FilterSQP [Fletcher, Leyffer]

» S/1QP with exact Hessian
> trust-region filter method

Primal-dual interior-point methods

> lpopt [Wichter, Biegler]

» line-search filter method

» full-space step computation with regularization
» Khnitro [Byrd, Nocedal, Waltz et al.]

> trust-region with exact penalty function
» Byrd-Omojokun decomposition
» other algorithmic options: direct method; SLP-EQP method
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Some Optimization Software for NLP

Augmented Lagrangian methods
» Lancelot [Conn, Gould, Toint]

> trust region
» gradient projection combined with conjugate gradients
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Some Optimization Software for NLP

Augmented Lagrangian methods
» Lancelot [Conn, Gould, Toint]

> trust region
» gradient projection combined with conjugate gradients

» Algencan [Birgin, Martinez]
> trust region
> spectral projected gradients
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Some Optimization Software for NLP

Augmented Lagrangian methods
» Lancelot [Conn, Gould, Toint]

> trust region
» gradient projection combined with conjugate gradients

» Algencan [Birgin, Martinez]
> trust region
> spectral projected gradients

Based on others algorithmic frameworks
» CONOPT [Arki Consulting]

> “based on generalize reduced-gradient method”
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Some Optimization Software for NLP

Augmented Lagrangian methods
» Lancelot [Conn, Gould, Toint]

> trust region
» gradient projection combined with conjugate gradients

» Algencan [Birgin, Martinez]
> trust region
> spectral projected gradients

Based on others algorithmic frameworks
» CONOPT [Arki Consulting]
> “based on generalize reduced-gradient method”
» MINOS [Murtagh, Sanders]

> linearly-constrained augmented Lagrangian method
> line search
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Thank You!
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A Filter Line Search Method

£(x) Idea: Bi-objective optimization
’YE(X") min f(x)
s.t. c(x)=0
min 6(x) min f(x)
x
L (6030, F(x0))
O
S
)
6(x) = llc(x)]
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A Filter Line Search Method

£(x) Idea: Bi-objective optimization
')'g(x") min  f(x)
s.t. c(x)=0
min 6(x) min f(x)
X
y Xer = Xk + adf
(B0, F(x) -
e AT Sufficient progress w.r.t. x:
N x
S Fxe) < ) —veb(xi)
8(x) = lc(x)l 0(xr) < 0(x) — 790(xx)

Constrained Nonlinear Optimization Algorithms
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A Filter Line Search Method (Filter)

Need to avoid cycling

(0. F(x.))
1
3
X

0(x) = [l
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A Filter Line Search Method (Filter)

f(x) Need to avoid cycling
’YQ(X/L) U’

Store some previous
(0(x1), f(x/)) pairs in filter Fy

Sufficient progress w.r.t. filter:

8(x) = [[c(x)|| | for (6(x1), F(x1)) € Tk

(0. F(x.))
1
3
X

Constrained Nonlinear Optimization Algorithms
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A Filter Line Search Method ("f-type")

} ’YQ(X/R)

0(x) = llc(x)]

Andreas Wachter

If switching condition

—aVF(x) di > 6 [0(x)]"

holds (sp > 1):

Require Armijo-condition on f(x):

f(xe) < F(xi) +naVi(x) T df
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A Filter Line Search Method ("f-type")

If switching condition

—aVF(x) di > 6 [0(x)]"

>< ”””””””””””” holds (sy > 1):

Require Armijo-condition on f(x):

f(xe) < F(xi) +naVi(x) T df

} ’YQ(X/R)

—> Don't augment F in that case

0(x) = llc(x)]
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A Filter Line Search Method (Restoration)

f(x)
Y6(x,) If no admissible step size o can
| ‘ be found
E ,,,,,,,,,,,,,,,, % ,,,,,
- $v0(xie)
2
0(x) = [[c()l
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A Filter Line Search Method (Restoration)

f(x)
Y6(x,) If no admissible step size a, can
1 | be found

4

Revert to
feasibility restoration phase:

Decrease 0(x) until

» found acceptable new
iterate xy1, or

» converged to local
minimizer of constraint
0(x) = llc(l violation

(0. F(x))
1
2
=
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