Constrained Optimization Theory

Stephen J. Wright¹

²Computer Sciences Department, University of Wisconsin-Madison.

IMA, August 2016

How can we recognize solutions of constrained optimization problems? Answering this question is crucial to algorithm design.

We already covered some cases, associated with the geometric formulation

min
$$f(x)$$
 s.t. $x \in \Omega$,

where Ω is closed and convex. We'll review these.

But we focus mainly on the case in which the feasible set is specified algebraically, that is,

$$c_i(x) = 0$$
, for all $i \in \mathcal{E}$,
 $c_i(x) \le 0$, for all $i \in \mathcal{I}$.

This general case admits a few complications! But ultimately we get a set of "checkable" conditions.

Recall: When Ω is closed and convex, we have the normal cone defined for all $x\in\Omega$ by

$$N_{\Omega}(x) := \{ d \mid d^T(y-x) \leq 0 \text{ for all } y \in \Omega \}.$$

Theorem

Suppose Ω is closed and convex and that f is convex with continuous gradients. Then a necessary and sufficient condition for x^* to be a (global) solution of min f(x) s.t. $x \in \Omega$ is that

$$-\nabla f(x^*) \in N_{\Omega}(x^*).$$

Proof.

Suppose that $-\nabla f(x^*) \in N_{\Omega}(x^*)$. By convexity we have for any $y \in \Omega$ that

$$f(y) \ge f(x^*) + \nabla f(x^*)^T (y - x^*) \ge f(x^*),$$

where the last condition arises from $-\nabla f(x^*) \in N_{\Omega}(x^*)$ and the definition of $N_{\Omega}(x^*)$. Thus x^* is a global solution.

Now suppose that $-\nabla f(x^*) \notin N_{\Omega}(x^*)$. Then there exists $y \in \Omega$ such that $-\nabla f(x^*)^T(y-x^*) > 0$. From Taylor's theorem and continuity of ∇f , we have for small $\alpha > 0$ that $x^* + \alpha(y - x^*) \in \Omega$ and

$$f(x^* + \alpha(y - x^*)) = f(x^*) + \alpha \nabla f(x^*)^T (y - x^*) + o(\alpha) < f(x^*),$$

where the latter holds for sufficiently small $\alpha > 0$. Thus, x^* is not a minimizer.

Ω closed and convex, f smooth

When f is not convex, the condition $-\nabla f(x^*) \in N_{\Omega}(x^*)$ is still a necessary condition.

Theorem

Suppose Ω is closed and convex and that f has continuous gradients. Then if x^* is a local solution of min f(x) s.t. $x \in \Omega$, we have

 $-\nabla f(x^*) \in N_{\Omega}(x^*).$

Proof.

Suppose that $-\nabla f(x^*) \notin N_{\Omega}(x^*)$. Then we use the second path of the previous proof to identify $y \in \Omega$ such that $f(x^* + \alpha(y - x^*)) < f(x^*)$ for all α sufficiently small and positive. Any neighborhood of x^* will contain a point of the form $x^* + \alpha(y - x^*)$ for some small enough $\alpha > 0$, and this point has a lower function value than $f(x^*)$. Thus, x^* is not a local solution.

Tangent Cone

When Ω is specified algebraically and / or is nonconvex, we have the issue of how to define the normal cone $N_{\Omega}(x)$. We propose a more general definition (which coincides with the one above when Ω is convex).

The new definition is based on the Tangent cone $T_{\Omega}(x)$, which is defined as the cone of limiting feasible directions.

We say that *d* is a *limiting feasible direction* to Ω at *x* if there exists a sequence $\{z_k\}$ with $z_k \in \Omega$ for all *k*, and a sequence $\{t_k\}$ of positive scalars, such that

$$\lim_{k\to\infty}\frac{z_k-x}{t_k}=d.$$

Do some nonconvex examples:

$$\Omega = \{(x_1, x_2) | x_2 \le x_1^2\}, \quad \Omega = \{(x_1, x_2) | -x_1^2 \le x_2 \le x_1^2\}.$$

Tangent Cone of a Polyhedron

When Ω is defined by linear constraints, it's easy to identify the tangent cone algebraically.

$$\Omega = \{ x \mid a_i^T x = b_i, \ i \in \mathcal{E}; \ a_i^T x \le b_i, \ i \in \mathcal{I} \}.$$

At a given point $\bar{x} \in \Omega$, we define the active set:

$$\mathcal{A}(\bar{x}) := \mathcal{E} \cup \{i \in \mathcal{I} \mid a_i^T \bar{x} = b_i\}.$$

The tangent cone at \bar{x} is then

$$\mathcal{T}_{\Omega}(\bar{x}) = \{ d \mid a_i^T d = 0, \ i \in \mathcal{E}; \ a_i^T d \leq 0, \ i \in \mathcal{A}(\bar{x}) \cap \mathcal{I} \}.$$

Proof: For $i \in \mathcal{A}(\bar{x})$, we have

$$a_i^T d = \lim_{k \to \infty} \frac{a_i^T z_k - a_i^T \bar{x}}{t_k} = \lim_{k \to \infty} \frac{a_i^T z_k - b_i}{t_k}.$$

For $i \in \mathcal{E}$, we have $a_i^T z_k - b_i = 0$ for all k, so $a_i^T d = 0$. For $i \in \mathcal{I} \cap \mathcal{A}(\bar{x})$, we have $a_i^T z_k - b_i \leq 0$, so in the limit we have $a_i^T d \leq 0$.

Nonlinear Algebraic Constraints

What about nonlinear algebraic constraints

$$c_i(x) = 0, i \in \mathcal{E}; \quad c_i(x) \leq 0, i \in \mathcal{I}.$$

Can we linearize these constraints at a given feasible \bar{x} , then use the polyhedron methodology to find $T_{\Omega}(\bar{x})$?

Following the previous slide, we can define the active set:

$$\mathcal{A}(\bar{x}) := \mathcal{E} \cup \{i \in \mathcal{I} \mid c_i(\bar{x}) = 0\}$$

and the feasible direction set:

$$\mathcal{F}(\bar{x}) := \{ d \mid \nabla c_i(\bar{x})^T d = 0, \ i \in \mathcal{E}; \quad \nabla c_i(\bar{x})^T d \leq 0, \ i \in \mathcal{A}(\bar{x}) \cap \mathcal{I} \}.$$

But we don't necessarily have $\mathcal{F}(\bar{x}) = T_{\Omega}(\bar{x})!$ We need extra conditions called constraint qualifications to guarantee that this equality holds.

It's easy to prove that $T_{\Omega}(\bar{x}) \subset \mathcal{F}(\bar{x})$, provided the constraints c_i are smooth. This is a consequence of Taylor's theorem. (Exercise!)

The issue comes with proving the converse: $\mathcal{F}(\bar{x}) \subset T_{\Omega}(\bar{x})$. Here's where we need the constraint qualifications.

Example: $x_2 \le 0, x_2 \ge x_1^2$.

Here we have a single feasible point: $x^* = (0, 0)$. But

$$T_{\Omega}(0) = \{0\}, \quad \mathcal{F}(0) = \{(d_1, 0) \mid d_1 \in \mathbb{R}\}.$$

An even more elementary example: $x^3 \ge 0$. Here we have

$$T_{\Omega}(0) = \{ d \mid d \geq 0 \}, \quad \mathcal{F}(0) = \mathbb{R}.$$

Two famous CQs, that ensure that $\mathcal{F}(\bar{x}) \subset \mathcal{T}_{\Omega}(\bar{x})$ are:

LICQ: (Linear Independent Constraint Qualification): the active constraint gradients $\nabla c_i(\bar{x})$, $i \in \mathcal{A}(\bar{x})$, are linearly independent. Can use the implicit function theorem to prove $\mathcal{F}(\bar{x}) \subset T_{\Omega}(\bar{x})$.

MFCQ: (Mangasarian-Fromovitz Constraint Qualification): The equality constraint gradients are linearly independent, and there exists a vector d such that

$$abla c_i(ar{x})^T d = 0, \ i \in \mathcal{E}; \quad
abla c_i(ar{x})^T d < 0, \ i \in \mathcal{A}(ar{x}) \cap \mathcal{I}.$$

(Note: Strict inequality!)

A fundamental necessary condition for x^* to be a local min is that

$$abla f(x^*)^T d \geq 0$$
 for all $d \in T_\Omega(x^*)$.

(Prove using Taylor's theorem: If this condition does not hold, we can construct a sequence $\{z_k\}$ with $z_k \in \Omega$ and $f(z_k) < f(x^*)$, so x^* cannot be a local min.)

But as written, this condition is hard to check!

We now give the general definition of the normal cone:

$$N_{\Omega}(\bar{x}) = \{ v \mid v^T d \leq 0 \text{ for all } d \in T_{\Omega}(\bar{x}) \}.$$

That is, the normal cone is the polar of the tangent cone.

(Exercise: Show that this coincides with the earlier def for convex Ω !)

The first-order necessary condition then becomes $-\nabla f(x^*) \in N_{\Omega}(x^*)!$

If a CQ holds, we have $\mathcal{F}(x^*) = T_{\Omega}(x^*)$. To calculate the normal cone in this case, we need to find the normal to the polyhedral set $\mathcal{F}(x^*)$ at x^* .

Here's where Farkas's Lemma is useful!

Farkas's Lemma: Given vectors a_i , i = 1, 2, ..., m and b, EITHER there are coefficient $\lambda_i \ge 0$ such that $b = \sum_{i=1}^m \lambda_i a_i$ OR there is a vector w such that $b^T w > 0$ and $a_i^T w \le 0$, i = 1, 2, ..., m.

We apply this Lemma defining the a_i vectors to be

$$\pm
abla c_i(x^*), \ i \in \mathcal{E}; \quad
abla c_i(x^*), \ i \in \mathcal{A}(x^*) \cap \mathcal{I},$$

and $b = -
abla f(x^*).$

KKT Conditions

The first order necessary condition tells us that there is no vector d with $-\nabla f(x^*)^T d > 0$ and

$$d^T \nabla c_i(x^*) = 0, \ i \in \mathcal{E}; \quad d^T \nabla c_i(x^*) \leq 0, \ i \in \mathcal{A}(x^*) \cap \mathcal{I}.$$

Farkas's Lemma tells us that the alternative must be true, that is, there are nonnegative coefficients such that

$$-
abla f(x^*) = \sum_{i\in\mathcal{E}} (\lambda_i^+ - \lambda_i^-)
abla c_i(x^*) + \sum_{i\in\mathcal{A}(x^*)\cap\mathcal{I}} \lambda_i
abla c_i(x^*).$$

By combining $\lambda_i := \lambda_i^+ - \lambda_i^-$ for $i \in \mathcal{E}$, we obtain the condition:

$$-\nabla f(x^*) = \sum_{i\in\mathcal{E}} \lambda_i \nabla c_i(x^*) + \sum_{i\in\mathcal{A}(x^*)\cap\mathcal{I}} \lambda_i \nabla c_i(x^*).$$

We combine this equality with other conditions that ensure feasibility of x^* to obtain the KKT conditions.

Suppose that x^* is a local solution of the problem

min
$$f(x)$$
 s.t. $c_i(x) = 0$, $i \in \mathcal{E}$, $c_i(x) \le 0$, $i \in \mathcal{I}$,

and that a constraint qualification (linear constraints, LICQ, MFCQ) is satisfied at x^* . Then there are coefficients λ_i , $i \in \mathcal{E} \cup \mathcal{I}$ such that the following are true:

$$egin{aligned} -
abla f(x^*) &= \sum_{i\in\mathcal{E}\cup\mathcal{I}}\lambda_i
abla c_i(x^*), \ 0 &\leq \lambda_i\perp c_i(x^*) \leq 0, \quad i\in\mathcal{I}, \ c_i(x^*) &= 0, \quad i\in\mathcal{E}. \end{aligned}$$

Note that the \perp condition forces $\lambda_i = 0$ for $i \notin \mathcal{A}(x^*)$.

The Lagrangian is a linear combination of objective function and constraints, with coefficients λ_i called Lagrange multipliers.

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x).$$

We can restate the first of the KKT conditions succinctly using the Lagrangian:

$$\nabla_{x}\mathcal{L}(x^*,\lambda)=0.$$

It's also useful in defining second-order conditions that characterize solutions.

Go back to the unconstrained problem min f(x) with f smooth.

If f is convex, the first-order condition $\nabla f(x^*) = 0$ is necessary and sufficient for x to be a solution of the problem.

If f is nonconvex, we can't say much about global solutions (except in special cases), but we can talk about conditions for local solutions.

We saw earlier than $\nabla f(x^*) = 0$ is a first-order necessary (10N) condition for a local solution. We can also identify second-order conditions that make reference to the Hessian $\nabla^2 f(x^*)$.

If x^* is a local minimizer of f and $\nabla^2 f$ is continuous in an open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite.

Proof.

We know from 1oN condition that $\nabla f(x^*) = 0$ Assume for contradiction that there is a direction p such that $p^T \nabla^2 f(x^*) p < 0$. By Taylor's theorem, we have that

$$f(x^* + \alpha p) = f(x^*) + \frac{1}{2}\alpha^2 p^T \nabla^2 f(x^*) p + o(\alpha^2) < f(x^*)$$

for all $\alpha > 0$ sufficiently small. Thus x^* cannot be a local solution.

Suppose that $\nabla^2 f$ is continuous in a neighborhood of x^* and that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite. Then x^* is a strict local minimizer of f.

The proof follows again from Taylor's theorem, using a second-order expansion around x^* .

Critical Cone

An important quantity in the second-order conditions is the critical cone $C(x^*, \lambda^*)$. This the cone of directions w in the linearized feasible set $\mathcal{F}(x^*)$ for which the KKT conditions alone do not tell us whether f increases along w. We need higher-order information to resolve the issue.

$$\mathcal{C}(x^*,\lambda^*) = \{w \in \mathcal{F}(x^*) \,|\,
abla c_i(x^*)^{\mathsf{T}} w = 0, \;\; i \in \mathcal{A}(x^*) \cap \mathcal{I} \; ext{for which} \; \lambda_i^* > 0 \}$$

This excludes directions $w \in \mathcal{F}(x^*)$ such that $\nabla c_i(x^*)^T w < 0$ for some $\lambda_i^* > 0$, $i \in \mathcal{I}$.

For $w \in \mathcal{C}(x^*,\lambda^*)$ we have from KKT that

$$w^T \nabla f(x^*) = -\sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i^* \nabla c_i(x^*)^T w = 0,$$

so the first-order conditions alone are not enough to verify that w is an ascent direction for f. (Other directions in $\mathcal{F}(x^*)$ yield $w^T \nabla f(x^*) > 0$.)

Suppose that x^* is a local solution at which a CQ holds, and suppose that KKT conditions are satisfied by (x^*, λ^*) . Then

$$w^T
abla^2_{xx} \mathcal{L}(x^*,\lambda^*) w \geq 0, \quad ext{ for all } w \in \mathcal{C}(x^*,\lambda^*).$$

Proofs uses the fact that w is a limiting feasible direction, Taylor's theorem applied to $\mathcal{L}(\cdot, \lambda^*)$, definition of $\mathcal{C}(x^*, \lambda^*)$. See (Nocedal and Wright, 2006, Theorem 12.5).

Suppose that x^* is feasible and there exists λ^* such that (x^*, λ^*) satisfy KKT. Suppose that

 $w^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w > 0$ for all $w \in \mathcal{C}(x^*, \lambda^*)$ with $w \neq 0$.

Then x^* is a strict local solution.

Proof uses Taylor's theorem, compactness of $\{d \in \mathcal{C}(x^*, \lambda^*) \mid ||d|| = 1\}$.

Note the differences between 2oN and 2oS results:

- strict inequality in the curvature condition;
- strict local solution in the 2oS result, not just local solution;
- 2oS result does not require a CQ.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York.