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Constrained Optimization Theory

How can we recognize solutions of constrained optimization problems?
Answering this question is crucial to algorithm design.

We already covered some cases, associated with the geometric formulation

min f (x) s.t. x ∈ Ω,

where Ω is closed and convex. We’ll review these.

But we focus mainly on the case in which the feasible set is specified
algebraically, that is,

ci (x) = 0, for all i ∈ E ,

ci (x) ≤ 0, for all i ∈ I.

This general case admits a few complications! But ultimately we get a set
of “checkable” conditions.
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Closed Convex Ω

Recall: When Ω is closed and convex, we have the normal cone defined for
all x ∈ Ω by

NΩ(x) := {d | dT (y − x) ≤ 0 for all y ∈ Ω}.

Theorem

Suppose Ω is closed and convex and that f is convex with continuous
gradients. Then a necessary and sufficient condition for x∗ to be a (global)
solution of min f (x) s.t. x ∈ Ω is that

−∇f (x∗) ∈ NΩ(x∗).
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Proof.

Suppose that −∇f (x∗) ∈ NΩ(x∗). By convexity we have for any y ∈ Ω
that

f (y) ≥ f (x∗) +∇f (x∗)T (y − x∗) ≥ f (x∗),

where the last condition arises from −∇f (x∗) ∈ NΩ(x∗) and the definition
of NΩ(x∗). Thus x∗ is a global solution.

Now suppose that −∇f (x∗) /∈ NΩ(x∗). Then there exists y ∈ Ω such that
−∇f (x∗)T (y − x∗) > 0. From Taylor’s theorem and continuity of ∇f , we
have for small α > 0 that x∗ + α(y − x∗) ∈ Ω and

f (x∗ + α(y − x∗)) = f (x∗) + α∇f (x∗)T (y − x∗) + o(α) < f (x∗),

where the latter holds for sufficiently small α > 0. Thus, x∗ is not a
minimizer.
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Ω closed and convex, f smooth

When f is not convex, the condition −∇f (x∗) ∈ NΩ(x∗) is still a
necessary condition.

Theorem

Suppose Ω is closed and convex and that f has continuous gradients.
Then if x∗ is a local solution of min f (x) s.t. x ∈ Ω, we have

−∇f (x∗) ∈ NΩ(x∗).

Proof.

Suppose that −∇f (x∗) /∈ NΩ(x∗). Then we use the second path of the
previous proof to identify y ∈ Ω such that f (x∗ + α(y − x∗)) < f (x∗) for
all α sufficiently small and positive. Any neighborhood of x∗ will contain a
point of the form x∗ + α(y − x∗) for some small enough α > 0, and this
point has a lower function value than f (x∗). Thus, x∗ is not a local
solution.
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Tangent Cone

When Ω is specified algebraically and / or is nonconvex, we have the issue
of how to define the normal cone NΩ(x). We propose a more general
definition (which coincides with the one above when Ω is convex).

The new definition is based on the Tangent cone TΩ(x), which is defined
as the cone of limiting feasible directions.

We say that d is a limiting feasible direction to Ω at x if there exists a
sequence {zk} with zk ∈ Ω for all k, and a sequence {tk} of positive
scalars, such that

lim
k→∞

zk − x

tk
= d .

Do some nonconvex examples:

Ω = {(x1, x2) | x2 ≤ x2
1}, Ω = {(x1, x2) | − x2

1 ≤ x2 ≤ x2
1}.
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Tangent Cone of a Polyhedron

When Ω is defined by linear constraints, it’s easy to identify the tangent
cone algebraically.

Ω = {x | aTi x = bi , i ∈ E ; aTi x ≤ bi , i ∈ I}.

At a given point x̄ ∈ Ω, we define the active set:

A(x̄) := E ∪ {i ∈ I | aTi x̄ = bi}.

The tangent cone at x̄ is then

TΩ(x̄) = {d | aTi d = 0, i ∈ E ; aTi d ≤ 0, i ∈ A(x̄) ∩ I}.

Proof: For i ∈ A(x̄), we have

aTi d = lim
k→∞

aTi zk − aTi x̄

tk
= lim

k→∞

aTi zk − bi

tk
.

For i ∈ E , we have aTi zk − bi = 0 for all k , so aTi d = 0. For i ∈ I ∩ A(x̄),
we have aTi zk − bi ≤ 0, so in the limit we have aTi d ≤ 0.
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Nonlinear Algebraic Constraints

What about nonlinear algebraic constraints

ci (x) = 0, i ∈ E ; ci (x) ≤ 0, i ∈ I.

Can we linearize these constraints at a given feasible x̄ , then use the
polyhedron methodology to find TΩ(x̄)?

Following the previous slide, we can define the active set:

A(x̄) := E ∪ {i ∈ I | ci (x̄) = 0}

and the feasible direction set:

F(x̄) := {d | ∇ci (x̄)Td = 0, i ∈ E ; ∇ci (x̄)Td ≤ 0, i ∈ A(x̄) ∩ I}.

But we don’t necessarily have F(x̄) = TΩ(x̄)! We need extra conditions
called constraint qualifications to guarantee that this equality holds.
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Nonlinear Constraints

It’s easy to prove that TΩ(x̄) ⊂ F(x̄), provided the constraints ci are
smooth. This is a consequence of Taylor’s theorem. (Exercise!)

The issue comes with proving the converse: F(x̄) ⊂ TΩ(x̄). Here’s where
we need the constraint qualifications.

Example: x2 ≤ 0, x2 ≥ x2
1 .

Here we have a single feasible point: x∗ = (0, 0). But

TΩ(0) = {0}, F(0) = {(d1, 0) | d1 ∈ R}.

An even more elementary example: x3 ≥ 0. Here we have

TΩ(0) = {d | d ≥ 0}, F(0) = R.
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Constraint Qualifications

Two famous CQs, that ensure that F(x̄) ⊂ TΩ(x̄) are:

LICQ: (Linear Independent Constraint Qualification): the active constraint
gradients ∇ci (x̄), i ∈ A(x̄), are linearly independent. Can use the implicit
function theorem to prove F(x̄) ⊂ TΩ(x̄).

MFCQ: (Mangasarian-Fromovitz Constraint Qualification): The equality
constraint gradients are linearly independent, and there exists a vector d
such that

∇ci (x̄)Td = 0, i ∈ E ; ∇ci (x̄)Td < 0, i ∈ A(x̄) ∩ I.

(Note: Strict inequality!)
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First-Order Necessary Condition

A fundamental necessary condition for x∗ to be a local min is that

∇f (x∗)Td ≥ 0 for all d ∈ TΩ(x∗).

(Prove using Taylor’s theorem: If this condition does not hold, we can
construct a sequence {zk} with zk ∈ Ω and f (zk) < f (x∗), so x∗ cannot
be a local min.)

But as written, this condition is hard to check!

We now give the general definition of the normal cone:

NΩ(x̄) = {v | vTd ≤ 0 for all d ∈ TΩ(x̄)}.

That is, the normal cone is the polar of the tangent cone.

(Exercise: Show that this coincides with the earlier def for convex Ω!)

The first-order necessary condition then becomes −∇f (x∗) ∈ NΩ(x∗)!
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CQs and First-Order Necessary

If a CQ holds, we have F(x∗) = TΩ(x∗). To calculate the normal cone in
this case, we need to find the normal to the polyhedral set F(x∗) at x∗.

Here’s where Farkas’s Lemma is useful!

Farkas’s Lemma: Given vectors ai , i = 1, 2, . . . ,m and b, EITHER there
are coefficient λi ≥ 0 such that b =

∑m
i=1 λiai OR there is a vector w

such that bTw > 0 and aTi w ≤ 0, i = 1, 2, . . . ,m.

We apply this Lemma defining the ai vectors to be

±∇ci (x∗), i ∈ E ; ∇ci (x∗), i ∈ A(x∗) ∩ I,

and b = −∇f (x∗).
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KKT Conditions

The first order necessary condition tells us that there is no vector d with
−∇f (x∗)Td > 0 and

dT∇ci (x∗) = 0, i ∈ E ; dT∇ci (x∗) ≤ 0, i ∈ A(x∗) ∩ I.

Farkas’s Lemma tells us that the alternative must be true, that is, there
are nonnegative coefficients such that

−∇f (x∗) =
∑
i∈E

(λ+
i − λ

−
i )∇ci (x∗) +

∑
i∈A(x∗)∩I

λi∇ci (x∗).

By combining λi := λ+
i − λ

−
i for i ∈ E , we obtain the condition:

−∇f (x∗) =
∑
i∈E

λi∇ci (x∗) +
∑

i∈A(x∗)∩I

λi∇ci (x∗).

We combine this equality with other conditions that ensure feasibility of x∗

to obtain the KKT conditions.
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KKT Conditions: First-Order Necessary

Theorem

Suppose that x∗ is a local solution of the problem

min f (x) s.t. ci (x) = 0, i ∈ E , ci (x) ≤ 0, i ∈ I,

and that a constraint qualification (linear constraints, LICQ, MFCQ) is
satisfied at x∗. Then there are coefficients λi , i ∈ E ∪ I such that the
following are true:

−∇f (x∗) =
∑

i∈E∪I
λi∇ci (x∗),

0 ≤ λi ⊥ ci (x∗) ≤ 0, i ∈ I,

ci (x∗) = 0, i ∈ E .

Note that the ⊥ condition forces λi = 0 for i /∈ A(x∗).

Stephen Wright (UW-Madison) Constrained Optimization Theory IMA, August 2016 14 / 22



Lagrangian

The Lagrangian is a linear combination of objective function and
constraints, with coefficients λi called Lagrange multipliers.

L(x , λ) = f (x) +
∑

i∈E∪I
λici (x).

We can restate the first of the KKT conditions succinctly using the
Lagrangian:

∇xL(x∗, λ) = 0.

It’s also useful in defining second-order conditions that characterize
solutions.
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Unconstrained: Second-order Conditions

Go back to the unconstrained problem min f (x) with f smooth.

If f is convex, the first-order condition ∇f (x∗) = 0 is necesssary and
sufficient for x to be a solution of the problem.

If f is nonconvex, we can’t say much about global solutions (except in
special cases), but we can talk about conditions for local solutions.

We saw earlier than ∇f (x∗) = 0 is a first-order necessary (1oN) condition
for a local solution. We can also identify second-order conditions that
make reference to the Hessian ∇2f (x∗).
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Second-Order Necessary (2oN) Conditions

Theorem

If x∗ is a local minimizer of f and ∇2f is continuous in an open
neighborhood of x∗, then ∇f (x∗) = 0 and ∇2f (x∗) is positive semidefinite.

Proof.

We know from 1oN condition that ∇f (x∗) = 0 Assume for contradiction
that there is a direction p such that pT∇2f (x∗)p < 0. By Taylor’s
theorem, we have that

f (x∗ + αp) = f (x∗) +
1

2
α2pT∇2f (x∗)p + o(α2) < f (x∗)

for all α > 0 sufficiently small. Thus x∗ cannot be a local solution.
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Second-Order Sufficient (2oS) Conditions

Theorem

Suppose that ∇2f is continuous in a neighborhood of x∗ and that
∇f (x∗) = 0 and ∇2f (x∗) is positive definite. Then x∗ is a strict local
minimizer of f .

The proof follows again from Taylor’s theorem, using a second-order
expansion around x∗.
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Critical Cone

An important quantity in the second-order conditions is the critical cone
C(x∗, λ∗). This the cone of directions w in the linearized feasible set
F(x∗) for which the KKT conditions alone do not tell us whether f
increases along w . We need higher-order information to resolve the issue.

C(x∗, λ∗) = {w ∈ F(x∗) | ∇ci (x∗)Tw = 0, i ∈ A(x∗) ∩ I for which λ∗i > 0}.

This excludes directions w ∈ F(x∗) such that ∇ci (x∗)Tw < 0 for some
λ∗i > 0, i ∈ I.

For w ∈ C(x∗, λ∗) we have from KKT that

wT∇f (x∗) = −
∑

i∈E∪I
λ∗i∇ci (x∗)Tw = 0,

so the first-order conditions alone are not enough to verify that w is an
ascent direction for f . (Other directions in F(x∗) yield wT∇f (x∗) > 0.)
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Second-Order Necessary (2oN) Conditions

Theorem

Suppose that x∗ is a local solution at which a CQ holds, and suppose that
KKT conditions are satisfied by (x∗, λ∗). Then

wT∇2
xxL(x∗, λ∗)w ≥ 0, for all w ∈ C(x∗, λ∗).

Proofs uses the fact that w is a limiting feasible direction, Taylor’s
theorem applied to L(·, λ∗), definition of C(x∗, λ∗). See (Nocedal and
Wright, 2006, Theorem 12.5).
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Second-Order Sufficient (2oS) Conditions

Theorem

Suppose that x∗ is feasible and there exists λ∗ such that (x∗, λ∗) satisfy
KKT. Suppose that

wT∇2
xxL(x∗, λ∗)w > 0 for all w ∈ C(x∗, λ∗) with w 6= 0.

Then x∗ is a strict local solution.

Proof uses Taylor’s theorem, compactness of {d ∈ C(x∗, λ∗) | ‖d‖ = 1}.

Note the differences between 2oN and 2oS results:

strict inequality in the curvature condition;

strict local solution in the 2oS result, not just local solution;

2oS result does not require a CQ.
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