
First-Order Methods

Stephen J. Wright1

2Computer Sciences Department,
University of Wisconsin-Madison.

IMA, August 2016

Stephen Wright (UW-Madison) First-Order Methods IMA, August 2016 1 / 48



Smooth Convex Functions

Consider min
x∈Rn

f (x), with f smooth and convex.

Usually assume mI � ∇2f (x) � LI , ∀x , with 0 ≤ m ≤ L.

Thus L is a Lipschitz constant of ∇f :

‖∇f (x)−∇f (z)‖ ≤ L‖x − z‖,

and

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖2

2.

If m > 0, then f is m-strongly convex and

f (y) ≥ f (x) +∇f (x)T (y − x) +
m

2
‖y − x‖2

2.

Define conditioning (or condition number) as κ := L/m.
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What’s the Setup?

We consider iterative algorithms: generate {xk}, k = 0, 1, 2, . . . from

xk+1 = Φ(xk) or xk+1 = Φ(xk , xk−1) or xk+1 = Φ(xk , xk−1, . . . , x1, x0).

For now, assume we can evaluate f (xt) and ∇f (xt) at each iteration.
Some of the techniques we discuss are extendible to more general
situations:

nonsmooth f ;

f not available (or too expensive to evaluate exactly);

only an estimate of the gradient is available;

a constraint x ∈ Ω, usually for a simple Ω (e.g. ball, box, simplex);

nonsmooth regularization; i.e., instead of simply f (x), we want to
minimize f (x) + τψ(x).

We focus on algorithms that can be adapted to those scenarios.
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Steepest Descent

Minimizer x∗ of f is characterized by ∇f (x∗) = 0.

At a point for which ∇f (x) 6= 0, can get decrease in f by moving in any
direction d such that dT∇f (x) < 0. Proof is from Taylor’s theorem:

f (x +αd) = f (x) +α∇f (x)Td + O(α2) < f (x), for α sufficiently small.

Among all d with ‖d‖ = 1, the minimizer of dT∇f (x) is attained at
d = −∇f (x). This is the steepest descent direction.

Even when f is not convex, the direction d with dT∇f (x) = 0 will
decrease f from any point for which ∇f (x) 6= 0. Algorithms that take
“reasonable” steps along d = −∇f (x) at each iteration cannot
accumulate at points x̄ for which ∇f (x̄) 6= 0 — can always escape from a
neighnorhood of such points.
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

xk+1 = xk − αk∇f (xk), for some αk > 0.

Different ways to select an appropriate αk .

1 Interpolating scheme with safeguarding to identify an approximate
minimizing αk .

2 Backtrack. Try ᾱ, 1
2 ᾱ, 1

4 ᾱ, 1
8 ᾱ, ... until sufficient decrease in f .

3 Don’t test for function decrease; use rules based on L and m.

4 Set αk based on experience with similar problems. Or adaptively.

Analysis for 1 and 2 usually yields global convergence at unspecified rate.
The “greedy” strategy of getting good decrease in the current search
direction may lead to better practical results.

Analysis for 3: Focuses on convergence rate, and leads to accelerated
multi-step methods.
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Fixed Steps

By elementary use of Taylor’s theorem, and since ∇2f (x) � LI ,

f (xk+1) ≤ f (xk)− αk‖∇f (xk)‖2 + α2
k

L

2
‖∇f (xk)‖2

2.

For αk ≡ 1/L, f (xk+1) ≤ f (xk)− 1

2L
‖∇f (xk)‖2

2,

thus ‖∇f (xk)‖2 ≤ 2L[f (xk)− f (xk+1)]

Summing over first T − 1 iterates (k = 0, 1, . . . ,T − 1) and telescoping
the sum,

T−1∑
k=0

‖∇f (xk)‖2 ≤ 2L[f (x0)− f (xT )].

It follows that ∇f (xk)→ 0 if f is bounded below.
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Convergence Rates

From the sum above we have that

T min
k=0,1,...,T−1

‖∇f (xk)‖2 ≤
T−1∑
k=0

‖∇f (xk)‖2 ≤ 2L[f (x0)− f (xT )],

and so

min
k=0,1,...,T−1

‖∇f (xk)‖ ≤
√

2L[f (x0)− f (xT )]

T
.

“Smallest gradient encountered in first T iterations shrinks like 1/
√
T .”

This result doesn’t require convexity!

For convergence of function values {f (xk)} to their optimal value f ∗ in the
convex case, we have the following remarkably bound:

f (xT )− f ∗ ≤ L

2T
‖x0 − x∗‖2

2.

Proof on following slides!
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Proof of 1/T Convergence of {f (xT )}
For any solution x∗, have

f (xk+1) ≤ f (xk)− 1

2L
‖∇f (xk)‖2

≤ f ∗ +∇f (xk)T (xk − x∗)− 1

2L
‖∇f (xk)‖2 (convexity)

= f (x∗) +
L

2

(
‖xk − x∗‖2 − ‖xk − x∗ − 1

L
∇f (xk)‖2

)
= f (x∗) +

L

2

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.

By summing over k = 0, 1, 2, . . . ,T − 1, we have

T−1∑
k=0

(f (xk+1)− f ∗) ≤ L

2

T−1∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
=

L

2

(
‖x0 − x∗‖2 − ‖xT − x∗‖2

)
≤ L

2
‖x0 − x∗‖2.
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Continued...

Since {f (xk)} is nonincreasing, have

f (xT )− f (x∗) ≤ 1

T

T−1∑
k=0

(f (xk+1)− f?) ≤ L

2T
‖x0 − x∗‖2

2

as required. That’s it!
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Strongly convex: Linear Rate

From strong convexity condition, we have for any z :

f (z) ≥ f (xk) +∇f (xk)T (z − xk) +
m

2
‖z − xk‖2.

By minimizing both sides w.r.t. z we obtain

f (x∗) ≥ f (xk)− 1

2m
‖∇f (xk)‖2,

so that
‖∇f (xk)‖2 ≥ 2m(f (xk)− f (x∗)). (1)

Recall too that for step αk ≡ 1/L we have

f (xk+1) ≤ f (xk)− 1

2L
‖∇f (xk)‖2

2.

Subtract f (x∗) from both sides of this expression and use (1):

(f (xk+1)− f (x∗)) ≤
(

1− m

L

)
(f (xk)− f (x∗)).

A linear (geometric) rate!
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A Word on Convergence Rates

Typical rates of convergence to zero for sequences such as {‖∇f (xk)‖},
{f (xk)− f ∗}, and {‖xk − x∗‖} are

φk ≤
C1√
k
,
C2

k
,
C3

k2
(sublinear)

φk+1 ≤ (1− c)φk for some c ∈ (0, 1) (linear)

φk+1 = o(φk) (superlinear).

To achieve φT ≤ ε for some small positive tolerance ε, need

T = O(1/ε2), T = O(1/ε), T = O(1/
√
ε) for sublinear rates,

T = O

(
1

c
log ε

)
, for linear rate.

Question: For a quadratic convergence rate φk+1 ≤ Cφ2
k , how many

iterations are required to obtain φT ≤ ε?
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Convergence Rates: Standard Plots
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Convergence Rates: Log Plots
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Linear convergence without strong convexity

The linear convergence analysis depended on two bounds:

f (xk+1) ≤ f (xk)− a1‖∇f (xk)‖2, (2)

‖∇f (xk)‖2 ≥ a2(f (xk)− f (x∗)), (3)

for some positive a1, a2. In fact, many algorithms that use first derivatives,
or crude estimates of first derivatives (as in stochastic gradient or
coordinate descent) satisfy a bound like (2).

We derived (3) from strong convexity, but it also holds for interesting
cases that are not strongly convex.

(3) is a special case of a Kurdyka-Lojasewicz (KL) property, which holds in
many interesting situations — even for nonconvex f , near a local min.
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More on KL

The KL property holds when f grows quadratically from its solution set:

f (x)− f ∗ ≥ a3 dist(x , solution set)2, for some a3 > 0.

Allows nonunique solution. Proof:

f (x)− f ∗ ≤ −∇f (x)T (x − x∗)

≤ ‖∇f (x)‖‖x − x∗‖

≤ ‖∇f (x)‖
√

(f (x)− f ∗)/a3.

So obtain by rearrangement that

‖∇f (x)‖2 ≤ a3(f (x)− f ∗).

Kl also holds when f (x) =
∑m

i=1 h(aTi x), where h : R→ R is strongly
convex, even when m < n, in which case ∇2f (x) is singular. This form of
f arises in Empirical Risk Minimization (ERM).
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The 1/k2 Speed Limit

Nesterov (2004) gives a simple example of a smooth function for which no
method that generates iterates of the form xk+1 = xk − αk∇f (xk) can
converge at a rate faster than 1/k2, at least for its first n/2 iterations.

Note that xk+1 ∈ x0 + span(∇f (x0),∇f (x1), . . . ,∇f (xk)).

A =


2 −1 0 0 . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0

. . .
. . .

. . .

0 . . . 0 −1 2

 , e1 =


1
0
0
...
0


and set f (x) = (1/2)xTAx − eT1 x . The solution has x∗(i) = 1− i/(n + 1).

If we start at x0 = 0, each ∇f (xk) has nonzeros only in its first k entries.
Hence, xk+1(i) = 0 for i = k + 1, k + 2, . . . , n. Can show

f (xk)− f ∗ ≥ 3L‖x0 − x∗‖2

32(k + 1)2
.
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Descent Directions and Line Search

Consider iteration scheme

xk+1 = xk + αkdk , k = 0, 1, 2, . . . ,

where dk makes an acute angle with −∇f (xk), that is,

− dT
k ∇f (xk) ≥ ε̄‖∇f (xk)‖‖dk‖. (4)

We impose weak Wolfe conditions on steplength αk :

f (xk + αdk) ≤ f (xk) + c1α∇f (xk)Tdk , (5a)

∇f (xk + αdk)Tdk ≥ c2∇f (xk)Tdk . (5b)

where 0 < c1 < c2 < 1. (Typically c1 = .001, c2 = .5.)

(5a) is a sufficient decrease condition;

(5b) ensures that the step is not too short.
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Second weak Wolfe condition
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Convergence under Weak Wolfe

From condition (5b) and the Lipschitz property for ∇f , we have

−(1− c2)∇f (xk)Tdk ≤ [∇f (xk + αkdk)−∇f (xk)]Tdk ≤ Lαk‖dk‖2,

and thus

αk ≥ −
(1− c2)

L

∇f (xk)Tdk
‖dk‖2

.

Substituting into (5a), and using (4), we have

f (xk+1) = f (xk + αkdk) ≤ f (xk) + c1αk∇f (xk)Tdk

≤ f (xk)− c1(1− c2)

L

(∇f (xk)Tdk)2

‖dk‖2

≤ f (xk)− c1(1− c2)

L
ε̄2‖∇f (xk)‖2.

Thus the decrease in f per iteration is a multiple of ‖∇f (xk)‖2, just as in
vanilla steepest descent with fixed steps. We thus get the same sublinear
and linear convergence results.
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Backtracking

Try αk = ᾱ, ᾱ2 ,
ᾱ
4 ,

ᾱ
8 , ... until the sufficient decrease condition is satisfied.

No need to check the second Wolfe condition: the αk thus identified is
“within striking distance” of an α that’s too large — so it is not too short.

Backtracking is widely used in applications, but doesn’t work on
nonsmooth problems, or when f is not available / too expensive.

Can show again that the decrease in f at each iteration is a multiple of
‖∇f (xk)‖2, so the usual rates apply.
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Exact minimizing αk : Faster rate?

Question: does taking αk as the exact minimizer of f along −∇f (xk) yield
better rate of linear convergence?

Consider f (x) = 1
2x

TAx (thus x∗ = 0 and f (x∗) = 0.)

We have ∇f (xk) = Axk . Exactly minimizing w.r.t. αk ,

αk = arg min
α

1

2
(xk − αAxk)TA(xk − αAxk) =

xTk A2xk

xTk A3xk
∈
[

1

L
,

1

m

]
Thus

f (xk+1) ≤ f (xk)− 1

2

(xTk A2xk)2

(xTk Axk)(xTk A3xk)
,

so, defining zk := Axk , we have

f (xk+1)− f (x∗)

f (xk)− f (x∗)
≤ 1− ‖zk‖4

(zTk A−1zk)(zTk Azk)
.
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Exact minimizing αk : Faster rate?

Using Kantorovich inequality:

(zTAz)(zTA−1z) ≤ (L + m)2

4Lm
‖z‖4.

Thus
f (xk+1)− f (x∗)

f (xk)− f (x∗)
≤ 1− 4Lm

(L + m)2
≈ 1− 4m

L
,

Only a small factor of improvement in the linear rate over constant
steplength.
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Convergence of Iterates xk

Can we say something about the rate of convergence of {xk} to x∗? That
is, convergence of ‖xk − x∗‖ or dist(xk ,minimizing set) to zero?

In the weakly convex case, not much! f (xk)− f ∗ can be small while xk is
still far from x∗.

If strong convexity or quadratic growth holds, we have

f (xk)− f (x∗) ≥ a3 dist(x , solution set)2, for some a3 > 0.

so that

dist(x , solution set) ≤
√

1

a3
(f (xk)− f ∗).

So we can derive convergence rates on dist(x , solution set) from those of
f (xk)− f ∗.
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The slow linear rate is typical!

Not just a pessimistic bound! In the strongly convex case, complexity to
achieve f (xT )− f ∗ ≤ ε(f (x0)− f ∗) is O((L/m) log ε).
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Accelerated First-Order Methods

Can we get faster rates (e.g. faster linear rates for strongly convex, faster
sublinear rates for general convex) while still using only first-order
information?

YES! The key idea is MOMENTUM. Search direction depends on the
latest gradient −∇f (xk) and also on the search direction at iteration
k − 1, which encodes gradient information from all earlier iterations.

Several popular methods use momentum:

Heavy-ball method

Nesterov’s accelerated gradient

Conjugate gradient (linear and nonlinear).
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Heavy Ball and Nesterov

Heavy Ball:
xk+1 = xk − α∇f (xk) + β(xk − xk−1).

Nesterov’s optimal method:

xk+1 = xk − αk∇f (xk + βk(xk − xk−1)) + βk(xk − xk−1).

Typically αk ≈ 1/L and βk ≈ 1.

Can rewrite Nesterov by introducing an intermediate sequence {yk}:

yk = xk + βk(xk − xk−1),

xk+1 = xk − αk∇f (yk) + βk(xk − xk−1).
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Nesterov, illustrated

k

xk+1

xk

y
k+1

xk+2

y
k+2

y

Separates the “gradient descent” and “momentum” step components.
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Accelerated Gradient Convergence

Typical convergence:

Weakly convex m = 0: f (xk)− f ∗ = O(1/k2);

Strongly convex m > 0: f (xk)− f ∗ ≤ M

(
1− c

√
m

L

)k

[f (x0)− f ∗],

for some modest positive c.

Approach can be extended to regularized functions f (x) + λψ(x):
Beck and Teboulle (2009b).

Partial-gradient approaches (stochastic gradient, coordinate descent)
can be accelerated in similar ways.
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Heavy Ball

Consider heavy-ball applied to a convex quadratic:

f (x) =
1

2
xTQx ,

where Q is symmetric positive definite with eigenvalues

0 < m = λn ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ1 = L.

The minimizer is clearly x∗ = 0.

Heavy ball applied to this function is

xk+1 = xk − α∇f (xk) + β(xk − xk−1) = xk − αQxk + β(xk − xk−1).

Analyze by defining a composite iterate vector:

wk :=

[
xk − x∗

xk−1 − x∗

]
=

[
xk
xk−1

]
Thus

wk = Twk−1, T :=

[
(1 + β)I − αQ −βI

I 0

]
.
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Multistep Methods: The Heavy-Ball

Matrix T has same eigenvalues as[
−αΛ + (1 + β)I −βI

I 0

]
, Λ = diag(λ1, λ2, . . . , λn).

Can rearrange this matrix to get 2× 2 blocks on the diagonal:

Ti :=

[
(1 + β)− αλi −β

1 0

]
.

Get eigenvalues by solving quadratics:

u2 − (1 + β − αλi )u + β = 0,

Eigenvalues are all complex provided that (1 + β − αλi )2 − 4β < 0, which
happens when

β ∈
(

(1−
√
αλi )

2, (1 +
√
αλi )

2
)
.
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Heavy Ball, continued

Thus the eigenvalues of T are all complex:

λ̄i ,1 =
1

2

[
(1 + β − αλi ) + i

√
4β − (1 + β − αλi )2

]
,

λ̄i ,2 =
1

2

[
(1 + β − αλi )− i

√
4β − (1 + β − αλi )2

]
.

All eigenvalues have magnitude β!

Thus can do an eigenvalue decomposition T = VSV−1, where S is
diagonal with entries λ̄i ,1, λ̄i ,2, i = 1, 2, . . . , n.

The recurrence becomes

wk = Twk−1 = T kw0 = VSkV−1w0.

Thus we have

‖V−1wk‖ = ‖SkV−1w0‖ ≤ ‖Sk‖‖V−1w0‖ = βk‖V−1w0‖.
Note that this does not imply monotonic decrease in ‖wk‖, only in the
scaled norm ‖V−1wk‖.
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Heavy-Ball: Optimal choice of α and β

We want to minimize β, but need β to satisfy

β ∈
(

(1−
√
αλi )

2, (1 +
√
αλi )

2
)
, with λi ∈ [m, L],

which is satisfied when

β = min(|1−
√
αm|, |1−

√
αL|)2

Choose α to make the two quantities on the right-hand side identical:

α =
4

(
√
L +
√
m)2

⇒ 1−
√
αm = −(1−

√
αL) =

√
L−
√
m√

L +
√
m
.

It follows that

β =

√
L−
√
m√

L +
√
m

= 1− 2√
L/m + 1.
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Caution!

The heavy ball analysis is elementary and powerful.

The asymptotic rate is better than for Nesterov.

The rate is as good as the classical conjugate gradient method for
Ax = b. (In fact, the analysis techniques are very similar.)

But we need to note a few things!

It depends on knowledge of m and L in order to make the right
choices of α and β.

It doesn’t extend neatly from quadratic to nonlinear f .

We can’t prove contraction for the weakly convex case m = 0.

Exercise: Repeat this analysis for Nesterov’s optimal method (again for
convex quadratic f ).
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Summary: Linear Convergence, Strictly Convex f

Defining κ = L/m, rates are approximately:

Steepest descent: Linear rate approx
(

1− 2

κ

)
;

Heavy-ball: Linear rate approx
(

1− 2√
κ

)
.

Big difference! To reduce ‖xk − x∗‖ by a factor ε, need k large enough that(
1− 2

κ

)k

≤ ε ⇐ k ≥ κ

2
| log ε| (steepest descent)(

1− 2√
κ

)k

≤ ε ⇐ k ≥
√
κ

2
| log ε| (heavy-ball)

A factor of
√
κ difference; e.g. if κ = 1000, need ∼ 30 times fewer steps.

Stephen Wright (UW-Madison) First-Order Methods IMA, August 2016 34 / 48



Conjugate Gradient

Basic conjugate gradient (CG) step is

xk+1 = xk + αkpk , pk = −∇f (xk) + γkpk−1.

Can be identified with heavy-ball, with βk =
αkγk
αk−1

.

However, CG can be implemented in a way that doesn’t require knowledge
(or estimation) of L and m.

Choose αk to (approximately) miminize f along pk ;

Choose γk by a variety of formulae (Fletcher-Reeves, Polak-Ribiere,
etc), all of which are equivalent if f is convex quadratic. e.g.

γk =
‖∇f (xk)‖2

‖∇f (xk−1)‖2
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Conjugate Gradient

Nonlinear CG: Variants include Fletcher-Reeves, Polak-Ribiere, Hestenes.

Restarting periodically with pk = −∇f (xk) is useful (e.g. every n
iterations, or when pk is not a descent direction).

For quadratic f , convergence analysis is based on eigenvalues of A and
Chebyshev polynomials, min-max arguments. Get

Finite termination in as many iterations as there are distinct
eigenvalues;

Asymptotic linear convergence with rate approx 1− 2√
κ

.

(like heavy-ball.)

(Nocedal and Wright, 2006, Chapter 5)
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Nesterov Methods

Nesterov (1983) describes a method that requires L and m and makes
adaptive choices of αk , βk .

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← yk − 1
L∇f (yk); (*short-step*)

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk =
αk(1− αk)

α2
k + αk+1

;

set yk+1 ← xk+1 + βk(xk+1 − xk).

Still works for weakly convex (m = 0). Just set κ =∞ in the scheme
above.
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Convergence Results: Nesterov

If α0 ≥ 1/
√
κ, have

f (xk)− f (x∗) ≤ c1 min

((
1− 1√

κ

)k

,
4L

(
√
L + c2k)2

)
,

where constants c1 and c2 depend on x0, α0, L.

Linear convergence “heavy-ball” rate for strongly convex f ;

1/k2 sublinear rate otherwise.

In the special case of α0 = 1/
√
κ, this scheme yields

αk ≡
1√
κ
, βk ≡ 1− 2√

κ+ 1
.
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FISTA

Beck and Teboulle (2009a) propose a similar algorithm, with a fairly short
and elementary analysis (though still not intuitive).

Initialize: Choose x0; set y1 = x0, t1 = 1;

Iterate: xk ← yk − 1
L∇f (yk);

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk +
tk − 1

tk+1
(xk − xk−1).

For (weakly) convex f , converges with f (xk)− f (x∗) ∼ 1/k2.

When L is not known, increase an estimate of L until it’s big enough.

Beck and Teboulle (2009a) do the convergence analysis in 2-3 pages;
elementary, but “technical.”
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A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of αk .
Allows f to increase (sometimes a lot) on some steps: non-monotone.

xk+1 = xk − αk∇f (xk), αk := arg min
α
‖sk − αzk‖2,

where
sk := xk − xk−1, zk := ∇f (xk)−∇f (xk−1).

Explicitly, we have

αk =
sTk zk

zTk zk
.

Note that for f (x) = 1
2x

TAx , we have

αk =
sTk Ask

sTk A2sk
∈
[

1

L
,

1

m

]
.

BB can be viewed as a quasi-Newton method, with the Hessian
approximated by α−1

k I .
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Comparison: BB vs Greedy Steepest Descent
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There Are Many BB Variants

use αk = sTk sk/s
T
k zk in place of αk = sTk zk/z

T
k zk ;

alternate between these two formulae;

hold αk constant for a number (2, 3, 5) of successive steps;

take αk to be the steepest descent step from the previous iteration.

Nonmonotonicity appears essential to performance. Some variants get
global convergence by requiring a sufficient decrease in f over the worst of
the last M (say 10) iterates.

The original 1988 analysis in BB’s paper is nonstandard and illuminating
(just for a 2-variable quadratic).

In fact, most analyses of BB and related methods are nonstandard, and
consider only special cases. The precursor of such analyses is Akaike
(1959). More recently, see Ascher, Dai, Fletcher, Hager and others.

Stephen Wright (UW-Madison) First-Order Methods IMA, August 2016 42 / 48



Extending to the Constrained Case: x ∈ Ω

How to change these methods to handle the constraint x ∈ Ω ?

(assuming that Ω is a closed convex set)

Some algorithms and theory stay much the same,

...if we can involve the constraint x ∈ Ω explicity in the subproblems.

Example: Nesterov’s constant step scheme requires just one calculation to
be changed from the unconstrained version.

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← arg miny∈Ω
1
2‖y − [yk − 1

L∇f (yk)]‖2
2;

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk = αk (1−αk )
α2
k+αk+1

;

set yk+1 ← xk+1 + βk(xk+1 − xk).

Convergence theory is unchanged.
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Conditional Gradient

Also known as “Frank-Wolfe” after the authors who devised it in the
1950s. Later analysis by Dunn (around 1990). Suddenly a topic of
enormous renewed interest; see for example (Jaggi, 2012).

min
x∈Ω

f (x),

where f is a convex function and Ω is a closed, bounded, convex set.

Start at x0 ∈ Ω. At iteration k :

vk := arg min
v∈Ω

vT∇f (xk);

xk+1 := xk + αk(vk − xk), αk =
2

k + 2
.

Potentially useful when it is easy to minimize a linear function over
the original constraint set Ω;

Admits an elementary convergence theory: 1/k sublinear rate.

Same convergence theory holds if we use a line search for αk .
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Conditional Gradient Convergence

Diameter of Ω is D := maxx ,y∈Ω ‖x − y‖.

Theorem

Suppose that f is convex, ∇f has Lipschitz L, Ω is closed, bounded,
convex with diameter D. Then conditional gradient with αk = 2/(k + 2)
yields

f (xk)− f (x∗) ≤ 2LD2

k + 2
, k = 1, 2, . . . .

Proof. Setting x = xk and y = xk+1 = xk + αk(vk − xk) in the usual
bound, we have

f (xk+1) ≤ f (xk) + αk∇f (xk)T (vk − xk) +
1

2
α2
kL‖vk − xk‖2

≤ f (xk) + αk∇f (xk)T (vk − xk) +
1

2
α2
kLD

2, (6)

where the second inequality comes from the definition of D.
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Conditional Gradient Convergence, continued

For the first-order term, we have

∇f (xk)T (vk − xk) ≤ ∇f (xk)T (x∗ − xk) ≤ f (x∗)− f (xk).

Substitute in (6) and subtract f (x∗) from both sides:

f (xk+1)− f (x∗) ≤ (1− αk)[f (xk)− f (x∗)] +
1

2
α2
kLD

2.

Now Induction. For k = 0, with α0 = 1, have

f (x1)− f (x∗) ≤ 1

2
LD2 <

2

3
LD2,

as required. Suppose the claim holds for k , and prove for k + 1. We have
...
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f (xk+1)− f (x∗) ≤
(

1− 2

k + 2

)
[f (xk)− f (x∗)] +

1

2

4

(k + 2)2
LD2

= LD2

[
2k

(k + 2)2
+

2

(k + 2)2

]
= 2LD2 (k + 1)

(k + 2)2

= 2LD2 k + 1

k + 2

1

k + 2

≤ 2LD2 k + 2

k + 3

1

k + 2
=

2LD2

k + 3
,

as required.
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