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Statistical Inference via Optimization

Many problems in statistical inference can be formulated as
optimization problems:

image reconstruction

image restoration / denoising

supervised learning (regression / classification)

unsupervised learning

...

Standard formulation:

observed data: y

unknown mathematical object (signal, image, vector, matrix,...): x

inference criterion:
x̂ ∈ arg min

x
g(x , y)
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Inference via Optimization

Inference criterion:

x̂ ∈ arg min
x

g(x , y) = {x : g(x , y) ≤ g(z , y), ∀z}

Question 1: how to build g? Where does it come from?

Answer: from the application domain (machine learning, signal
processing, inverse problems, system identification, statistics, computer
vision, bioinformatics,...) together with statistical principles.

... examples ahead.

Question 2: how to solve the optimization problem?

Answer: We’ll discuss in these sessions (and see also earlier sessions:
Mahoney, Duchi, ...)
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Inference and Regularized Optimization

Inference criterion: x̂ ∈ arg min
x

g(x , y)

Typical structure of g : g(x , y) = h(x , y) + τψ(x)

h(x , y) → how well x “fits”/“explains” the data y ;
(data term, log-likelihood, loss function, observation model,...)

ψ(x) → knowledge/constraints/structure: the regularizer

τ ≥ 0: the regularization parameter (or constant).

Since y is fixed, often drop it for convenience and write
f (x) = h(x , y),

min
x

f (x) + τψ(x).
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Probabilistic / Bayesian Interpretations

Inference criterion: x̂ ∈ arg min
x

g(x , y)

Typical structure of g : g(x , y) = h(x , y) + τψ(x)

Likelihood (observation model): p(y |x) =
1

Zl
exp
(
−h(x , y)

)
Prior: p(x) =

1

Zp
exp
(
−τψ(x)

)
Gaussian: ψ(x) = ‖x‖2

Laplacian: ψ(x) = ‖x‖1.

Posterior: p(x |y) =
p(y |x) p(x)

p(y)

Log-posterior: log p(x |y) = K (y)− h(x , y)− τψ(x) = K (y)− g(x , y)

x̂ is a maximum a posteriori (MAP) estimate.
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Regularizers

Inference criterion: min
x

f (x) + τψ(x)

Typically, the unknown is a vector x ∈ Rn

or a matrix x ∈ Rn×m

Common regularizers impose/encourage one (or a combination of) the
following characteristics:

small norm (vector or matrix)

sparsity (few nonzeros)

specific nonzero patterns (e.g., group/tree structure)

low-rank (matrix)

smoothness or piece-wise smoothness
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Unconstrained vs Constrained Formulations

Tikhonov regularization: min
x

f (x) + τψ(x)

Morozov regularization:
min

x
ψ(x)

subject to f (x) ≤ ε

Ivanov regularization:
min

x
f (x)

subject to ψ(x) ≤ δ

Under mild conditions, these are all “equivalent”.

Morozov and Ivanov can be written as Tikhonov using indicator functions.

Which one is most convenient depends on the application and context.
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Relationship Between `1 and `0

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

s.t. ‖Aw − y‖2
2 ≤ δ.

The related best subset selection problem is also NP-hard (Amaldi and
Kann, 1998; Davis et al., 1997).

ŵ = arg min
w
‖Aw − y‖2

2

s.t. ‖w‖0 ≤ τ.

Under conditions, replacing `0 with `1 yields “similar” results:
central issue in compressive sensing (CS) (Candès et al., 2006; Donoho, 2006)
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Under-Constrained Systems: Relating `0 and `1

Let x̄ be the sparsest solution of Ax = y , where A ∈ Rm×n and m < n.

x̄ = arg min ‖x‖0 s.t. Ax = y .

Suppose that x̄ has k nonzero elements, with k � n.

Consider the `1 norm version: min
x
‖x‖1 s.t. Ax = y

Advantage: this is a convex problem! Fact: all norms are convex.

x̄ will solve this problem too, provided that
‖x̄ + v‖1 ≥ ‖x̄‖1, ∀v ∈ ker(A).

Recall: ker(A) = {x ∈ Rn : Ax = 0} is the kernel (a.k.a. null space) of A.

Next: elementary analysis by Yin and Zhang (2008), based on work by
Kashin (1977) and Garnaev and Gluskin (1984).
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Equivalence Between `1 and `0

Minimum `0 (sparsest) solution: x̄ ∈ arg min ‖x‖0 s.t. Ax = y .

Minimum `1 solution(s): G = arg min ‖x‖1 s.t. Ax = y .

x̄ ∈ G , if ‖x̄ + v‖1 ≥ ‖x̄‖1, ∀v ∈ ker(A)

Let S = {i : x̄i 6= 0} (support of x̄ with cardinality k � n); and
Sc = {1, ..., n} \ S

‖x̄ + v‖1 = ‖x̄S + vS‖1 + ‖vSc‖1

≥ ‖x̄S‖1 + ‖vSc‖1 − ‖vS‖1 (‖a + b‖ ≥ ‖a‖ − ‖b‖)
= ‖x̄‖1 + ‖v‖1 − 2‖vS‖1 (‖vSc‖1 = ‖v‖1 − ‖vS‖1)

≥ ‖x̄‖1 + ‖v‖1 − 2
√
k‖v‖2. (‖a‖1 ≤

√
n ‖a‖2)

Hence, x̄ ∈ G , if 1
2
‖v‖1

‖v‖2
≥
√
k, ∀v ∈ ker(A)

...but, in general, we have only: 1 ≤ ‖v‖1

‖v‖2
≤
√
n

However, we may have ‖v‖1

‖v‖2
� 1, if v is restricted to a random subspace.
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Bounding the `1/`2 Ratio in Random Kernels

If the elements of A ∈ Rm×n are sampled i.i.d. from N (0, 1) (zero mean,
unit variance Gaussian), then, with high probability,

‖v‖1

‖v‖2
≥ C

√
m√

log(n/m)
, for all v ∈ ker(A),

for some constant C (based on concentration of measure phenomena).

Thus, with high probability, x̄ ∈ G , if

m ≥ 4

C 2
k log n

Conclusion: Can solve under-determined system, where A has i.i.d.
N (0, 1) elements, by solving

min
x
‖x‖1 s.t. Ax = b,

(a convex problem), if the solution is sparse enough.
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Ratio ‖v‖1/‖v‖2 on Random Null Spaces

Random A ∈ R4×7, showing ratio ‖v‖1 for v ∈ ker(A) with ‖v‖2 = 1

Blue: ‖v‖1 ≈ 1. Red: ratio ≈
√

7. Note that ‖v‖1 is well away from the
lower bound of 1 over the whole nullspace.
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Ratio ‖v‖1/‖v‖2 on Random Null Spaces

The effect grows more pronounced as m/n grows.
Random A ∈ R17×20, showing ratio ‖v‖1 for v ∈ N(A) with ‖v‖2 = 1.

Blue: ‖v‖1 ≈ 1. Red: ‖v‖1 ≈
√

20. Note that ‖v‖1 is closer to upper
bound throughout.
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Regularized Optimization

How to change these methods to handle regularized optimization?

min
x

f (x) + λψ(x),

where f is convex and smooth, while ψ is convex but usually nonsmooth.

Often, all that is needed is to change the update step to

xk+1 = arg min
x

1

2
‖x − Φ(xk )‖2

2 + αkλψ(x). (1)

where Φ(xk ) could be a steepest descent step

Φ(xk ) = xk − αk∇f (xk ),

or something more complicated (such as heavy ball, or some other
accelerated method). When λ = 0, we have simply xk+1 = Φ(xk ), so this
reverts to the standard first-order methods described above.

(1) is the shrinkage/tresholding step; how to solve it with a nonsmooth ψ?
That’s the topic of the following slides.
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Another Motivation

We can view shrinking / thresholding alternatively as a first-order
subproblem with a quadratic prox term.

xk+1 = arg min
x

1

2
‖x − (xk − αk∇f (xk ))‖2

2 + αkλψ(x)

= arg min
x
−∇f (xk )T (x − xk ) +

1

2αk
‖x − xk‖2

2 + λψ(x),

where we divided by αk in the second expression and dropped the term
that’s independent of x .

This subproblem:

makes a linear approximation to f at xk ;
incorporates a quadratic prox term with weight 1/αk ;
incorporates the regularization term λψ(x) explicitly, without
modification.

This approach makes sense when the subproblem is easy to solve. This is
true in a number of interesting cases.
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Reminder: Subgradients

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f (x ′) ≥ f (x) + vT (x ′ − x)

Subdifferential: ∂f (x) = {all subgradients of f at x}

If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound nondifferentiable case

Subgradients satisfy a monotonicity property: If a ∈ ∂f (x) and b ∈ ∂f (y),
then (a− b)T (x − y) ≥ 0.
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A Key Tool: Moreau’s Proximity Operators

Moreau (1962) proximity operator

x̂ ∈ arg min
x

1

2
‖x − y‖2

2 + ψ(x) =: proxψ(y)

...well defined for convex ψ, since ‖ · −y‖2
2 is coercive and strictly convex.

Example: proxτ |·|(y) = soft(y , τ) = sign(y) max{|y | − τ, 0}
Block separability: x = (x1, ..., xN) (a partition of the components of x)

ψ(x) =
∑

i

ψi (xi ) ⇒ (proxψ(y))i = proxψi
(yi )

Relationship with subdifferential: z = proxψ(y) ⇔ z − y ∈ ∂ψ(z)

Resolvent: z = proxψ(y) ⇔ 0 ∈ ∂ψ(z) + (z − y) ⇔ y ∈ (∂ψ + I )z

proxψ(y) = (∂ψ + I )−1y
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Prox operators and the Moreau envelope

Moreau envelope:

Mλ,ψ(y) :=
1

λ
inf
x

{
1

2
‖x − y‖2

2 + λψ(x)

}
The minimizer in Mλ,ψ(y) is achieved at proxλψ(y).

By optimality properties, we have

y − proxλψ(y) ∈ λ∂ψ(proxλψ(y)).

Mλ,ψ(y) can be viewed as a smoothing of ψ, differentiable everywhere:

∇Mλ,ψ(y) =
1

λ
(y − proxλψ(y)).

By monotonicity of ∂, together with optimality condition above, can show
that prox is a contraction, that is,

‖proxλψ(y)− proxλψ(z)‖ ≤ ‖y − z‖.
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Important Proximity Operators

Soft-thresholding is the proximity operator of the `1 norm.

Consider the indicator ιS of a convex set S;

proxιS (u) = arg min
x

1

2
‖x − u‖2

2 + ιS(x) = arg min
x∈S

1

2
‖x − y‖2

2 = PS(u)

...the Euclidean projection on S.

Squared Euclidean norm (separable, smooth): Exercise!

Euclidean norm (not separable, nonsmooth):

proxτ‖·‖2
(y) =

{ y
‖y‖2

(‖y‖2 − τ), if ‖y‖2 > τ

0 if ‖y‖2 ≤ τ
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More Proximity Operators

(Combettes and Pesquet, 2011)
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From Conjugates to Proximity Operators

Notice that |u| = supx∈[−1,1] x
Tu = σ[−1,1](u), thus | · |∗ = ι[−1,1].

Using Moreau’s decomposition, we easily derive the soft-threshold:

proxτ |·| = 1− proxι[−τ,τ ]
= 1− P[−τ,τ ] = soft(·, τ)

Conjugate of a norm: if f (x) = τ‖x‖p then f ∗ = ι{x :‖x‖q≤τ},

where 1
q + 1

p = 1 (a Hölder pair, or Hölder conjugates).

That is, ‖ · ‖p and ‖ · ‖q are dual norms:

‖z‖q = sup{xT z : ‖x‖p ≤ 1} = sup
x∈Bp(1)

xT z = σBp(1)(z)
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From Conjugates to Proximity Operators

Proximity of norm:

proxτ‖·‖p
= I − PBq(τ)

where Bq(τ) = {x : ‖x‖q ≤ τ} and 1
q + 1

p = 1.

Example: computing prox‖·‖∞ (notice `∞ is not separable):

Since 1
∞ + 1

1 = 1,
proxτ‖·‖∞ = I − PB1(τ)

... the proximity operator of `∞ norm is the residual of the projection
on an `1 ball.

Projection on `1 ball has no closed form, but there are efficient (linear
cost) algorithms (Brucker, 1984), (Maculan and de Paula, 1989).
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Geometry and Effect of prox`∞

Whereas `1 promotes sparsity, `∞ promotes equality (in absolute value).
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From Conjugates to Proximity Operators

The dual of the `2 norm is the `2 norm.
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Matrix Nuclear Norm and its Prox Operator

Recall the trace/nuclear norm: ‖X‖∗ =

min{m,n}∑
i=1

σi .

The dual of a Schatten p-norm is a Schatten q-norm, with
1
q + 1

p = 1. Thus, the dual of the nuclear norm is the spectral norm:

‖X‖∞ = max
{
σ1, ..., σmin{m,n}

}
.

If Y = UΛV T is the SVD of Y , we have

proxτ‖·‖∗(Y ) = UΛV T − P{X :max{σ1,...,σmin{m,n}}≤τ}(UΛV T )

= U soft
(
Λ, τ

)
V T .
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Another Use of Fenchel-Legendre Conjugates

The original problem: min
x

f (x) + ψ(x)

Often this has the form: min
x

g(Ax) + ψ(x)

Using the definition of conjugate g(Ax) = supu uTAx − g∗(u)

min
x

g(Ax) + ψ(x) = inf
x

sup
u

uTAx − g∗(u) + ψ(x)

= sup
u

(−g∗(u)) + inf
x

uTAx + ψ(x)

= sup
u

(−g∗(u))− sup
x
−xTATu − ψ(x)︸ ︷︷ ︸
ψ∗(−AT u)

= − inf
u
g∗(u) + ψ∗(−ATu)

The dual infu g
∗(u) + ψ∗(−ATu) is sometimes easier to handle.
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Basic Proximal-Gradient Algorithm

Use basic structure:

xk = arg min
x
‖x − Φ(xk )‖2

2 + ψ(x).

with Φ(xk ) a simple gradient descent step, thus

xk+1 = proxαkψ

(
xk − αk∇f (xk )

)
This approach goes by many names, such as

“proximal gradient algorithm” (PGA),

“iterative shrinkage/thresholding” (IST),

“forward-backward splitting” (FBS)

It it has been reinvented several times in different communities:
optimization, partial differential equations, convex analysis, signal
processing, machine learning.
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Convergence of Prox-Gradient

xk+1 = proxαkψ
(xk − αk∇f (xk )).

Proof makes use of “gradient map” defined by

Gα(x) :=
1

α

(
x − proxαψ(x − α∇f (x))

)
. (2)

Can rewrite the step taken at iteration k :

xk+1 = xk − αkGαk
(xk ) ⇔ Gαk

=
1

αk
(xk − xk+1). (3)

Lemma

Suppose that ψ is closed convex function, ∇f has Lipschitz constant L.

(a) Gα(x) ∈ ∇f (x) + ∂ψ(x − αGα(x)).

(b) For any z, and any α ∈ (0, 1/L], we have that

φ(x − αGα(x)) ≤ φ(z) + Gα(x)T (x − z)− α

2
‖Gα(x)‖2.
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Proof of (a)

From optimality property of the prox-operator, which is

y − proxλψ(y) ∈ λ∂ψ(proxλψ(y)),

we have

(x − α∇f (x))− proxαψ(x − α∇f (x)) ∈ α∂ψ(proxαψ(x − α∇f (x))).

Now substitute from proxαψ(x − α∇f (x)) = x − αGα(x), to obtain

0 ∈ α∂ψ(x − αGα(x))− α(Gα(x)−∇f (x)),

from which (a) follows when we divide by α.

Stephen Wright (UW-Madison) First-Order: Regularized Functions IMA, August 2016 30 / 59



Proof of (b)

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖2.

Set y = x − αGα(x), for any α ∈ (0, 1/L], to get

f (x − αGα(x)) ≤ f (x)− αGα(x)T∇f (x) +
Lα2

2
‖Gα(x)‖2

≤ f (x)− αGα(x)T∇f (x) +
α

2
‖Gα(x)‖2. (4)

(Second inequality uses α ∈ (0, 1/L].) By convexity of f and ψ, for any z
and any v ∈ ∂ψ(x − αGα(x)) we have

f (z) ≥ f (x) +∇f (x)T (z − x) (5a)

ψ(z) ≥ ψ(x − αGα(x)) + vT (z − (x − αGα(x))). (5b)

From (a) we have v = (Gα(x)−∇f (x)) ∈ ∂ψ(x − αGα(x)), so by
substituting in (5) and also using (4) we have the following...
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Proof of (b), continued

φ(x − αGα(x))

= f (x − αGα(x)) + ψ(x − αGα(x))

≤ f (x)− αGα(x)T∇f (x) +
α

2
‖Gα(x)‖2 + ψ(x − αGα(x)) (from (4))

≤ f (z) +∇f (x)T (x − z)− αGα(x)T∇f (x) +
α

2
‖Gα(x)‖2

+ ψ(z) + (Gα(x)−∇f (x))T (x − αGα(x)− z) (from (5))

= f (z) + ψ(z) + Gα(x)T (x − z)− α

2
‖Gα(x)‖2,

for any α ∈ (0, 1/L], where the last equality follows from cancellation of
several terms in the previous line.

Stephen Wright (UW-Madison) First-Order: Regularized Functions IMA, August 2016 32 / 59



Sublinear Convergence

Denote φ(x) = f (x) + ψ(x) with minimizer x∗ (not necessarily unique).
Main convergence result:

Theorem

If αk ≡ 1/L, have

φ(xT )− φ∗ ≤ L‖x0 − x∗‖2

2T
, T = 1, 2, . . . .

Use Lemma 1 (b) to show decrease of {φ(xk )} and ‖xk − x∗‖. Set
x = z = xk and α = αk and use (3) to obtain

φ(xk+1) = φ(xk − αkGαk
(xk )) ≤ φ(xk )− αk

2
‖Gαk

(xk )‖2,

showing decrease in φ.
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Proof, continued

For decrease in ‖x − x∗‖, set x = xk , α = αk , and z = x∗ in Lemma 1:

0 ≤ φ(xk+1)− φ∗

= φ(xk − αkGαk
(xk ))− φ∗

≤ GT
αk

(xk − x∗)− αk

2
‖Gαk

(xk )‖2

=
1

2αk

(
‖xk − x∗‖2 − ‖xk − x∗ − αkGαk

(xk )‖2
)

=
1

2αk

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
, (6)

from which ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ follows.
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Proof, continued

Set αk = 1/L in (6), and sum over k = 0, 1, 2, . . . ,T − 1, obtain

T−1∑
k=0

(φ(xk+1)− φ∗) ≤ L

2

(
‖x0 − x∗‖2 − ‖xK − x∗‖2

)
≤ L

2
‖x0 − x∗‖2.

By monotonicity of {φ(xk )}, we have

T (φ(xT )− φ∗) ≤
T−1∑
k=0

(φ(xk+1)− φ∗).

Result follows by combining these last two expressions.
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Proximal-Gradient Algorithm: Quadratic Case

Consider the quadratic case (of great interest): f (x) = 1
2‖B x − b‖2

2.

Here, ∇f (x) = BT (B x − b) and the IST/PGA/FBS algorithm is

xk+1 = proxαkψ

(
xk − αkB

T (B x − b)
)

can be implemented with only matrix-vector multiplications with B
and BT .

This is a very important feature in large-scale applications, such as
image processing, where fast algorithms exist for computing these
products (e.g. fast Fourier transforms or wavelet transforms), but
these matrices cannot be formed and stored explicitly.

In this case, some more refined convergence results are available.

Even more refined results are available if ψ(x) = ‖x‖1
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More on IST/FBS/PGA for the `2-`1 Case

Problem: x̂ ∈ G = arg min
x∈Rn

1
2‖B x − b‖2

2 + τ‖x‖1 (recall BTB � LI )

IST/FBS/PGA becomes xk+1 = soft
(
xk − αBT (B x − b), ατ

)
with α < 2/L.

The zero set: Z ⊆ {1, ..., n} : x̂ ∈ G ⇒ x̂Z = 0

Zeros are found in a finite number of iterations (Hale et al., 2008):
after a finite number of iterations, we have (xk )Z = 0.

After that, if BT
ZBZ � mI , with m > 0 (thus κ(BT

ZBZ) = L/m):

‖xk+1 − x̂‖2 ≤
1− κ
1 + κ

‖xk − x̂‖2 (linear convergence)

for the optimal choice α = 2/(L + m). (Weaker condition suffices for
lienar convergence of {f (xk )}; see above.)
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FISTA with prox operations

Recall that FISTA — fast iterative shrinkage-thresholding algorithm
— ((Beck and Teboulle, 2009), based on (Nesterov, 1983)) is a
heavy-ball-type acceleration of IST:

Initialize: Choose α ≤ 1/L, x0; set y1 = x0, t1 = 1;

Iterate: xk ← proxταψ
(
yk − α∇f (yk )

)
;

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk +
tk − 1

tk+1
(xk − xk−1).

Acceleration:

FISTA: f (xk )− f (x̂) ∼ O

(
1

k2

)
IST: f (xk )− f (x̂) ∼ O

(
1

k

)
.

When L is not known, increase an estimate of L until it’s big enough.
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Heavy Ball Acceleration: TwIST

TwIST (two-step iterative shrinkage-thresholding (Bioucas-Dias and
Figueiredo, 2007)) is a heavy-ball-type acceleration of IST, for

min
x

1
2‖B x − b‖2

2 + τψ(x)

Iterations (with α < 2/L)

xk+1 = (γ − β) xk + (1− γ)xk−1 + β proxατψ
(
xk − αBT (B x − b)

)
Analysis in the strongly convex case: mI � BTB � LI , with m > 0.
Conditioning (as above) κ = L/m <∞.

Optimal parameters: γ = ρ2 + 1, β = 2α
m+L , where ρ = 1−

√
κ

1+
√
κ

, yield

linear convergence

‖xk+1 − x̂‖2 ≤
1−
√
κ

1 +
√
κ
‖xk − x̂‖2

(
versus 1−κ

1+κ for IST
)
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Acceleration via Larger Steps: SpaRSA

The standard step-size αk ≤ 2/L in IST is too timid

The SpARSA (sparse reconstruction by separable approximation)
framework proposes bolder choices of αk (Wright et al., 2009):

X Barzilai-Borwein (see above), to mimic Newton steps — or at
least get the scaling right.

X keep increasing αk until monotonicity is violated: backtrack.

Convergence to critical points (minima in the convex case) is
guaranteed for a safeguarded version: ensure sufficient decrease w.r.t.
the worst value in previous M iterations.
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Acceleration by Continuation

IST/FBS/PGA can be very slow if τ is very small and/or f is poorly
conditioned.

A very simple acceleration strategy: continuation/homotopy

Initialization: Set τ0 � τ , starting point x̄ , factor σ ∈ (0, 1), and k = 0.

Iterations: Find approx solution x(τk ) of minx f (x) + τkψ(x), starting
from x̄ ;

if τk = τf STOP;

Set τk+1 ← max(τf , στk ) and x̄ ← x(τk );

Often the solution path x(τ), for a range of values of τ is desired,
anyway (e.g., within an outer method to choose an optimal τ)

Shown to be very effective in practice (Hale et al., 2008; Wright
et al., 2009). Recently analyzed by Xiao and Zhang (2012).
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Acceleration by Continuation: An Example

Classical sparse reconstruction problem (Wright et al., 2009)

x̂ ∈ arg min
x

1
2‖B x − b‖2

2 + τ‖x‖1

with B ∈ R1024×4096 (thus x ∈ R4096 and b ∈ R1024).
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A Final Touch: Debiasing

Consider problems of the form x̂ ∈ arg min
x∈Rn

1
2‖B x − b‖2

2 + τ‖x‖1

Often, the original goal was to minimize the quadratic term, after the
support of x had been found. But the `1 term can cause the nonzero
values of xi to be “suppressed.”

Debiasing:

X find the zero set (complement of the support of x̂):
Z(x̂) = {1, ..., n} \ supp(x̂).

X solve minx ‖B x − b‖2
2 s.t. xZ(x̂) = 0. (Fix the zeros and solve an

unconstrained problem over the support.)

Often, this problem has to be solved using an algorithm that only
involves products by B and BT , since this matrix cannot be
partitioned.
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Effect of Debiasing
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Example: Matrix Recovery (Toh and Yun, 2010)
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Identifying Optimal Manifolds

Identification of the manifold of the regularizer ψ on which x∗ lies can
improve algorithm performance, by focusing attention on a reduced space.
We can thus evaluate partial gradients and Hessians, restricted to just this
space.

For nonsmooth regularizer ψ, the optimal manifold is a smooth surface
passing through x∗ along which the restriction of ψ is smooth.

Example: for ψ(x) = ‖x‖1, have manifold consisting of z with

zi


≥ 0 if x∗i > 0

≤ 0 if x∗i < 0

= 0 if x∗i = 0.

If we know the optimal nonzero components, we know the manifold. We
could restrict the search to just this set of nonzeros.
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Identification Properties of Shrink Algorithms

When the optimal manifold is partly smooth (that is, parametrizable by
smooth functions and otherwise well behaved) and prox-regular, and the
minimizer is nondegenerate, then the shrink approach can identify it from
any sufficiently close x . That is,

Sτ (x − α∇f (x), α)

lies on the optimal manifold, for α bounded away from 0 and x in a
neighborhood of x∗. (Consequence of Lewis and Wright (2008).)

For ψ(x) = ‖x‖1, shrink algorithms identify the correct nonzero set,
provided there are no “borderline” components (that is, the optimal
nonzero set would not change with an arbitrarily small perturbation to the
data).

Can use a heuristic to identify when the nonzero set settles down, then
switch to second phase to conduct a search on the reduced space of
“possible nonzeros.”
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Atomic-Norm Regularization

Key concept in sparse modeling: synthesize “object” using a few atoms:

x =

|A|∑
i=1

ci ai

A is the set of atoms (the atomic set), or building blocks.

ci ≥ 0 are weights; x is simple/sparse object ⇒ ‖c‖0 � |A|
Formally, A is a compact subset of Rn

The (Minkowski) gauge of A is:

‖x‖A = inf
{
t > 0 : x ∈ t conv(A)

}
Assuming that A centrally symmetry about the origin
(a ∈ A ⇒ −a ∈ A), ‖ · ‖A is a norm, called the atomic norm
Chandrasekaran et al. (2012).
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Atomic-Norm Regularization

The atomic norm

‖x‖A = inf
{
t > 0 : x ∈ t conv(A)

}
= inf

{ |A|∑
i=1

ci : x =

|A|∑
i=1

ci ai , ci ≥ 0
}

...assuming that the centroid of A is at the origin.

Example: the `1 norm as an atomic norm

A =

{[
0
1

]
,

[
1
0

]
,

[
0
−1

]
,

[
−1
0

]}
conv(A) = B1(1) (`1 unit ball).

‖x‖A = inf
{
t > 0 : x ∈ t B1(1)

}
= ‖x‖1
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Atomic Norms: More Examples
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Atomic Norms: A Unified View
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Atomic-Norm Regularization

Given an atomic set A, we can adopt an Ivanov formulation

min f (x) s.t. ‖x‖A ≤ δ

(for some δ > 0) tends to recover x with sparse atomic representation.

Can formulate algorithms for the various special cases — but is a general
approach available for this formulation?

Yes! Conditional Gradient (a.k.a. Frank-Wolfe).
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Conditional Gradient for Atomic-Norm Constraints

Conditional Gradient is particularly useful for optimization over
atomic-norm constraints.

min f (x) s.t. ‖x‖A ≤ τ.

Reminder: Given the set of atoms A (possibly infinite) we have

‖x‖A := inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0

}
.

The search direction vk is τ āk , where

āk := arg min
a∈A
〈a,∇f (xk )〉.

That is, we seek the atom that lines up best with the negative gradient
direction −∇f (xk ).
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Generating Atoms

We can think of each step as the “addition of a new atom to the basis.”
Note that xk is expressed in terms of {ā0, ā1, . . . , āk}.

If few iterations are needed to find a solution of acceptable accuracy, then
we have an approximate solution that’s represented in terms of few atoms,
that is, sparse or compactly represented.

For many atomic sets A of interest, the new atom can be found cheaply.

Example: For the constraint ‖x‖1 ≤ τ , the atoms are
{±ei : i = 1, 2, . . . , n}. if ik is the index at which |[∇f (xk )]i | attains its
maximum, we have

āk = −sign([∇f (xk )]ik ) eik

Example: For the constraint ‖x‖∞ ≤ τ , the atoms are the 2n vectors with
entries ±1. We have

[āk ]i = −sign[∇f (xk )]i , i = 1, 2, . . . , n.
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More Examples

Example: Nuclear Norm. For the constraint ‖X‖∗ ≤ τ , for which the
atoms are the rank-one matrices, we have Āk = ukv

T
k , where uk and vk

are the first columns of the matrices Uk and Vk obtained from the SVD
∇f (Xk ) = Uk ΣkV

T
k .

Example: sum-of-`2. For the constraint

m∑
i=1

‖x[i ]‖2 ≤ τ,

the atoms are the vectors a that contain all zeros except for a vector u[i ]

with unit 2-norm in the [i ] block position. (Infinitely many.) The atom āk

contains nonzero components in the block ik for which ‖[∇f (xk )][i ]‖ is
maximized, and the nonzero part is

u[i ] = −[∇f (xk )][ik ]/‖[∇f (xk )][ik ]‖.
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Other Enhancements

Reoptimizing. Instead of fixing the contribution αk from each atom at
the time it joins the basis, we can periodically and approximately
reoptimize over the current basis.

This is a finite dimension optimization problem over the
(nonnegative) coefficients of the basis atoms.

It need only be solved approximately.

If any coefficient is reduced to zero, it can be dropped from the basis.

Dropping Atoms. Sparsity of the solution can be improved by dropping
atoms from the basis, if doing so does not degrade the value of f too
much (see (Rao et al., 2013)).

In the important least-squares case, the effect of dropping can be
evaluated efficiently.
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