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Course Materials

The site www.cs.wisc.edu/∼swright/nd2016/ contains

slides

notes and background material

exercises.
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What is Optimization?

Make the optimal choice from among a number of alternative possibilities.

The “number” is large, often infinite.

Need a mathematical definition of “best”: objective function.

Need a mathematical way to define the “choices”: variables.

Need a way to describe restrictions on choices: constraints.

Variables, Objective, Constraints are the key ingredients of all optimization
problems.

Formulation of an application as an mathematical optimization problem is
often nontrivial. Required interaction with applications experts, “domain
scientists.”

Sometimes the formulation process alone leads to new research areas (e.g.
compressed sensing).
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Optimization

The field of Optimization conventionally encompasses

analyzing fundamental properties of the mathematical formulation;

devising algorithms to solve optimization formulations, and analyzing
the mathematical properties of these algorithms (convergence,
complexity, efficiency);

Also implementation and testing of the algorithms.

We’ll discuss mostly the second topic in this course, referring to the first
for the necessary foundations (e.g. recognizing solutions).

Standard mathematical formulations are the interface between applications
and optimization. Paradigms such as linear programming, quadratic
programming, semidefinite programming are rich areas of mathematical
research and also extremely useful in applications.

But....
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New Developments

But increasingly, optimization is about direct engagement with the
applications community. It’s very important to understand the context in
which the problems arise, and what the user needs from their use of
optimization technology.

Formulations and algorithms must be customized to new and important
applications and their contexts. To be useful to the user, the optimization
technology must be cognizant of these features — shoehorning it into one
of the traditional paradigms is often not enough. We see this in data
analysis and machine learning, for instance.

New, important applications are driving new, fundamental research in
optimization.

Solvers must be assembled from various formulation and algorithmic tools
from the “optimization toolbox.”

A thorough knowledge of the toolbox is a great skill to have in the current
environment!
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Variables and Constraints

Usually consider variables to be (column) vectors of real numbers:
x = (x1, x2, . . . , xn)T .

Matrices (as data or variables) usually denoted by Roman caps: A, B, X ,
etc.

(In some problems, the variables are functions, but if these are
parametrized, the problem reduces to optimization over a real vector.)

Constraints on variables can be expressed geometrically, e.g.

x ∈ Ω, where Ω is a closed convex set.

Also algebraically. There are linear constraints:

Ax ≥ b, Cx = d ,

where A and C are matrices and b and d are vectors.

A ≥ b is an intersection of half-spaces and Cx = d is an affine space
(which is parallel to a subspace in Rn).
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Constraints

The feasible set is the set in Rn consisting of points that satisfy all the
constraints.

Note that the feasible set is an intersection of the sets defined by all the
constraints — not a union.

(Unions of different constraint sets are disjunctions. It is possible to
handle these but the optimization problem becomes much harder, so we
punt that topic to next week!)

Nonlinear constraints can be expressed as

ci (x) ≤ 0, where ci : Rn → R, i ∈ I.

Each function typically defines a manifold in Rm. But in generally it could
be much more complicated e.g. cos x ≤ 1/2 defines a set with many
pieces.

Can assemble these into a vector: cI (x) ≤ 0, where cI = (ci )i∈I .
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Constraints

Note that the inequalities are non-strict. In general, a strict inequality
implies an open set, and optimization problems often do not attain their
minimizers over open sets. e.g.

min x s.t. x > 0 has no solution.

We can have nonlinear equality constraints too: cE (x) = 0, where
cE = (ci )i∈E .

A special type of linear constraint is a bound constraint which has the
form xi ≥ li and/or xi ≤ ui , where xi is the i-th element of x and li and ui

are scalars too. These are linear constraints that depend on just a single
component of x , and algorithms can usually exploit their simplicity.

Can assemble bounds into vectors, and write as

l ≤ x ≤ u.

Nonnegativity bounds often appear: x ≥ 0.
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Semidefiniteness

If the variable is a symmetric n × n matrix X , we typically have the
constraint in semidefinite programming that X is positive semidefinite,
denoted by X � 0.

This constraint can be expressed by n nonlinear inequality constraints (i.e.
the determinants of the leading minors are all nonnegative) but this is a
messy way to do it, involving too many nonlinear constraints. There is a
much more graceful theory that handles such constraints directly.
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Elementary Topology

Subsets of Rn. Look to Wikipedia for definitions! Also see some notes
posted on the site www.cs.wisc.edu/∼swright/nd2016/

(Open) neighborhood of a point x .

Open set

Closed set

Compact set

Every cover has a finite subcover
Every sequence {xk} in this set has an accumulation point in the
set.

Heine-Borel Theorem: “Closed and Bounded = Compact”

Bolzano-Weierstrass Theorem: “Every bounded sequence in Rn has a
convergent subsequence.”
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Linear Algebra

Numerical linear algebra plays a central role in numerical optimization.

Subproblems in optimization algorithms are frequently numerical linear
algebra problems. Need to solve efficiently – exploit structure.

Also, the linear algebra problems at adjacent iterations of the optimization
algorithm may be closely related, especially in the simplex method for
linear programming. Thus need to do specialized linear operations,
particularly factorization updates efficiently and stably.

Rank of a matrix A is the dimension of the subspace spanned by the rows
of A (which is the same as dimension of the subspace spanned by the
columns of A).
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Key Factorizations

Factorizations of matrices are needed to solve linear equations stably.
Factorization obviates need for explicitly calculating inverses and are more
efficient and more stable (if appropriate precautions are taken).

A square and symmetric positive definite: Cholesky factorization:

A = LLT , where L is lower triangular

A general rectangular, m × n:

A = QR, where Q is orthogonal and R is upper triangular.

A = LU, where L is lower triangular and U is upper triangular.

Also the singular value decomposition (SVD):

A = USV T ,

where U and V have orthonormal columns and S is a diagonal matrix with
nonnegative diagonals (σ1, σ2, . . . , σr ), where r = rank of A.
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Permutations are Important!

Cholesky and SVD don’t require the order of rows or columns of A to be
permuted. (In SVD the permutations are incorporated into U and V .) But
the LU and QR factorizations may require this. Thus may need to find
permutation matrices P, P̄ on the fly, to maintain stability of
factorizations:

PAP̄T = LU, AP̄T = QR,

where P and P̄ are permutation matrices.

Given factorizations, it’s easy to solve linear equations and linear least sq.

A square and nonsingular: Can write Ax = b equivalently as

PAP̄T (P̄x) = Pb ⇔ LU(P̄x) = Pb.

Then solve by doing triangular substitutions with L and U:

solve Lz = Pb; solve Uy = z ; set x = P̄T y .

Exercise: Solve minx ‖Ax − b‖2
2 using QR factorization or SVD.
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Sequences, Limits, Accumulation Points

Consider sequences {xk}k=1,2,... with xk ∈ Rn, {αk}k=1,2,... with αk ∈ R+.

limit: lim xk = x̄ if for all ε > 0, have ‖xk − x̄‖ ≤ ε for all k suff large.

x̄ is accumulation point: if for all ε > 0 and all K , there is k > K
with ‖xk − x̄‖ ≤ ε.

For scalar sequences:

infimum: largest value of ᾱ such that αk ≥ ᾱ for all k .

supremum: smallest value of ᾱ such that αk ≤ ᾱ for all k .

lim inf: is limK→∞(infk≥K αk). Example: lim inf −2−k = 0.

lim sup: is limK→∞(supk≥K αk). Example: lim sup(−1)k + 2−k = 1.
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Rates of Convergence for scalar sequence {αk}

Q-linear (geometric): There is ρ ∈ (0, 1) such that

αk+1

αk
≤ ρ, k = 1, 2, . . . .

Sublinear: A variety of arithmetic rates. For some C , have

αk ≤
C√

k
or αk ≤

C

k
or αk ≤

C

k2
.

Q-superlinear:
αk+1

αk
→ 0 as k →∞.

Q-quadratic: There is C such that

αk+1

α2
k

≤ C .

R-linear, R-superlinear, R-quadratic are when there is another sequence
{γk} with 0 ≤ αk ≤ γk for all k, and {γk} is Q-linear, Q-superlinear,
Q-quadratic. Examples! See pp. 619-620 in Nocedal and Wright (2006).
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Convergence Rates: Standard Plots
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Convergence Rates: Log Plots
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Review of Basics: Convex Sets
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Review of Basics: Convex Functions
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Taylor’s Theorem

Taylor’s theorem is a central tool in smooth nonlinear optimization. It
shows how a function value f (y) can be approximated in terms of the
values of f and its derivatives at a nearby point x .

Instead of minimizing f , we can replace f with a simplified approximation
based on the Taylor-series approximation.

Doing this repeatedly leads to an iterative algorithm

See (Nocedal and Wright, 2006, p. 15), and also Chapter 1 in the notes
distributed.
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Taylor’s Theorem

Theorem

Given a continuously differentiable function f : Rn → R, and given
x , p ∈ Rn, we have that

f (x + p) = f (x) +

∫ 1

0
∇f (x + γp)Tp dγ,

f (x + p) = f (x) +∇f (x + γp)Tp, some γ ∈ (0, 1).

If f is twice continuously differentiable, we have

∇f (x + p) = ∇f (x) +

∫ 1

0
∇2f (x + γp)p dγ,

f (x + p) = f (x) +∇f (x)Tp +
1

2
pT∇2f (x + γp)p, some γ ∈ (0, 1).
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Fun with Taylor’s Theorem

Many useful results can be derived from Taylor’s theorem that are useful in
the design and analysis of algorithms.

If L is the Lipschitz constant for ∇f , that is,

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, for all x , y ,

then if f is convex, we have

µ

2
‖y − x‖2 ≤ f (y)− f (x)−∇f (x)T (y − x) ≤ L

2
‖y − x‖2,

for some µ ≥ 0. µ is called the modulus of convexity for f .

We also have

f (x) +∇f (x)T (y − x) +
1

2L
‖∇f (x)−∇f (y)‖2 ≤ f (y), (1)

1

L
‖∇f (x)−∇f (y)‖2 ≤ (∇f (x)−∇f (y))T (x − y) ≤ L‖x − y‖2. (2)
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If, in addition, f is strongly convex with modulus µ and unique minimizer
x∗, we have for all x , y ∈ dom(f ) that

f (y)− f (x) ≥ − 1

2µ
‖∇f (x)‖2. (3)
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Local and Global Solutions

Consider the general problem

min f (x) s.t. x ∈ Ω,

where Ω is a closed set.

x∗ is a global solution if

x∗ ∈ Ω, f (x∗) ≤ f (x) for all x ∈ Ω.

Global solutions are hard to find in general, unless f and Ω are convex.

x∗ is a local solution if x∗ ∈ Ω and there is a neighborhood N of x∗ such
that

f (x∗) ≤ f (x) for all x ∈ N ∩ Ω.

x∗ is a strict local solution if x∗ ∈ Ω and there is a neighborhood N of x∗

such that
f (x∗) < f (x) for all x ∈ N ∩ Ω with x 6= x∗.

x∗ is an isolated local solution if there is a neighborhood of x∗ containing
no other local solutions.
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Convex Sets: Normal Cones

If Ω is a closed convex set, the normal cone NΩ(x) is:

NΩ(x) = {d ∈ Rn : dT (y − x) ≤ 0 for all y ∈ Ω}.

Ω

Ω

N  (x)

x

Figure: Normal Cone

(Some other examples....)
Stephen Wright (UW-Madison) Optimization Intro IMA, August 2016 25 / 39



Projection onto Convex Sets

If Ω is convex, projection operator is:

PΩ(x) = arg min
z∈Ω
‖z − x‖.

Lemma

(i) (P(y)− z)T (y − z) ≥ 0 for all z ∈ Ω, with equality if and only if
z = P(y).

(ii) (y − P(y))T (z − P(y)) ≤ 0 for all z ∈ Ω.
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Proof of (i).

For any z ∈ Ω, have

‖P(y)− y‖2
2 = ‖P(y)− z + z − y‖2

2

= ‖P(y)− z‖2
2 + 2(P(y)− z)T (z − y) + ‖z − y‖2

2

so by rearrangement

2(P(y)− z)T (y − z) = ‖P(y)− z‖2
2 +

[
‖z − y‖2

2 − ‖P(y)− y‖2
2

]
. (4)

The term in [] is nonnegative, from the definition of P. Thus have ≥ 0.

If z = P(y), obviously (P(y)− z)T (y − z) = 0. If the latter condition
holds, then first term in (4) is zero, so have z = P(y).

Stephen Wright (UW-Madison) Optimization Intro IMA, August 2016 27 / 39



Lower Semi-Continuity: Why Is It Important?

A function f : Rn → R̄ is lower semi-continuous (l.s.c.) if

lim inf
x→x0

f (x) ≥ f (x0), for any x0 ∈ dom(f )

or, equivalently, {x : f (x) ≤ α} is a closed set, for any α ∈ R

f (x) =

{
e−x , if x < 0
+∞, if x ≥ 0

dom(f ) =]−∞, 0[, arg minx f (x) = ∅

f (x) =

{
e−x , if x ≤ 0
+∞, if x > 0

dom(f ) =]−∞, 0], arg minx f (x) = {0}

Unless stated otherwise, we only consider l.s.c. functions.
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Coercivity, Convexity, and Minima
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Another Important Concept: Strong Convexity

Recall the definition of convex function: ∀λ ∈ [0, 1],

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

A β−strongly convex function satisfies a stronger condition: ∀λ ∈ [0, 1]

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− β

2
λ(1− λ)‖x − x ′‖2

2

convexity strong convexity

Strong convexity
⇒
6⇐ strict convexity.
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A Little More on Convex Functions

Let f1, ..., fN : Rn → R̄ be convex functions. Then

f : Rn → R̄, defined as f (x) = max{f1(x), ..., fN(x)}, is convex.

g : Rn → R̄, defined as g(x) = f1(L(x)), where L is affine, is convex.

Note: L is affine ⇔ L(x)− L(0) is linear; e.g. L(x) = Ax + b.

h : Rn → R̄, defined as h(x) =
∑N

j=1
αj fj(x), for αj > 0, is convex.

An important function: the indicator of a set C ⊂ Rn,

ιC : Rn → R̄, ιC (x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

If C is a closed convex set, ιC is a l.s.c. convex function.
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Smooth Convex Functions

Let f : Rn → R be twice differentiable and consider its Hessian matrix at
x , denoted ∇2f (x) (or Hf (x)):

(
∇2f (x)

)
ij

=
∂f

∂xi∂xj
, for i , j = 1, ..., n.

f is convex ⇔ its Hessian ∇2f (x) is positive semidefinite ∀x

f is strictly convex ⇐ its Hessian ∇2f (x) is positive definite ∀x

f is β-strongly convex ⇔ its Hessian ∇2f (x) � βI , with β > 0, ∀x .
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Subgradients

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f (x ′) ≥ f (x) + vT (x ′ − x)

Subdifferential: ∂f (x) = {all subgradients of f at x}

If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound nondifferentiable case

Subgradients satisfy a monotonicity property: If a ∈ ∂f (x) and b ∈ ∂f (y),
then (a− b)T (x − y) ≥ 0.
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More on Subgradients and Subdifferentials

The subdifferential is a set-valued function:

f : Rd → R ⇒ ∂f : Rd → subsets of Rd

f (x) =


−2x − 1, x ≤ −1
−x , −1 < x ≤ 0

x2/2, x > 0

(5)

∂f (x) =


{−2}, x < −1

[−2, −1], x = −1
{−1}, −1 < x < 0

[−1, 0], x = 0
{x}, x > 0

Fermat’s Rule: x ∈ arg minx f (x) ⇔ 0 ∈ ∂f (x)
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Relating Normal Cones and Subgradients

For convex Ω ⊂ Rn we define the indicator function:

IΩ(x) =

{
0 if x ∈ Ω

+∞ otherwise.

Thus the constrained optimization problem

min f (x) s.t. x ∈ Ω

can be written as
min f (x) + IΩ(x).

Theorem

For a convex set Ω ⊂ Rn, we have that NΩ(x) = ∂IΩ(x) for all x ∈ Ω.
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Proof.

Given v ∈ NΩ(x), we have

IΩ(y)− IΩ(x) = 0− 0 = 0 ≥ vT (y − x), for all y ∈ Ω,

and

IΩ(y)− IΩ(x) =∞− 0 =∞ ≥ vT (y − x), for all y /∈ Ω.

Thus v ∈ ∂IΩ(x). Supposing now that v ∈ ∂IΩ(x), we have

0 = IΩ(y) ≥ IΩ(x) + vT (y − x) = vT (y − x), for all y ∈ Ω,

which implies that v ∈ NΩ(x).
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Optimality

If f is smooth convex function and Ω is a closed convex set, then x
minimizes f (x) + IΩ(x) if

0 ∈ ∂(f (x) + IΩ(x)) = ∇f (x) + NΩ(x).

Thus, the following is a sufficient optimality condition for the problem
minx∈Ω f (x):

−∇f (x) ∈ NΩ(x).

Special case of Ω = Rn: a sufficient condition for optimality when f is a
smooth convex function is

∇f (x) = 0.

If f is not convex, ∇f (x) = 0 is still a necessary condition.
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Optimization Taxonomy

Linear (and Quadratic) vs Nonlinear

Smooth vs Nonsmooth

Continuous vs Discrete

Convex vs Nonconvex

Combinatorial

Networks

Conic

Matrix (including semidefinite programming)

Stochastic
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