
Linear Programming: Simplex

Stephen J. Wright1

2Computer Sciences Department,
University of Wisconsin-Madison.

IMA, August 2016

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 1 / 23

Linear Programming

Vector of continuous variables x ∈ Rn, linear objective, linear constraints.

Standard form:
min cT x s.t. Ax = b, x ≥ 0.

We assume that A ∈ Rm×n (with m < n) has full row rank.

Any problem with linear objective and linear constraints can be converted
to this form by adding / subtracting slacks, splitting variables.

Note: All variables are continuous — readl numbers! Problems in which
some components xi are required to be binary or integer are not covered.
These binary linear programs or integer linear programs are much harder
and require much different methodology (though simplex is a part of this
methodology).

Main ref: (Nocedal and Wright, 2006, Chapter 13).

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 2 / 23

Basic Points

The feasible set is a polyhedron in Rn: a set with flat faces, edges, and
vertices. A vertex is a point that doesn’t lie on a line between two other
feasible points.

Vertices are important in linear programming because if the LP has a
solution, then at least one of its solutions is a vertex. Thus, in seeking a
solution, we can restrict our attention to vertices. But we can’t look at all
vertices — there are too many in general (up to

(n
m

)
).

Each vertex can be represented as a basic point (traditionally known as a
basic feasible solution) defined by a square nonsingular column submatrix
of A that contains m columns. This matrix is called a basis, denoted by
B ∈ Rm×m.

After a permutation, partition A into basic and nonbasic columns:[
B N

]
.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 3 / 23

Basic Points

We can partition x accordingly as [
xB
xN

]
.

The key is to set xN = 0 and let xB be defined by the linear equalities:

b = Ax = BxB + NxN , xN = 0 ⇔ xB = B−1b.

In order for this to be a feasible point, we require xB ≥ 0. Can’t take just
any set of m columns of A.

A single vertex can be defined by number of different choices of B. These
happen when xB has some zero components. Such vertices are called
denegerate.

(Some pictures here....)

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 4 / 23

Simplex: One Step

Simplex moves from one basic point to an adjacent basic point, by sliding
along one edge of the feasible polyhedron.

The new basic point differs from the current point in that one column is
swapped between B and N. We choose the new point to have a lower
function value than the current point.

How to choose the new point? Substitute for x according to the current
(B,N) decomposition:

xB = B−1(b − NxN) = B−1b − B−1NxN .

Then transform the LP to

min
xN

cTB B−1(b−B−1NxN)+cTN xN s.t. xN ≥ 0, xB = B−1(b−NxN) ≥ 0,

which is equivalent to

min
xN

cTB B−1b+(cTN−cTB B−1N)xN s.t. xN ≥ 0 xB = B−1b−B−1NxN ≥ 0.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 5 / 23

Simplex: One Step

Strategy: Choose an index j ∈ N such that the j component of
cTN − cTB B−1N is negative. Let this component xj increase away from 0.
This has the effect of decreasing the objective.

BUT it also causes xB to change. We need to stop increasing xj when one
of the components of xB hits zero. Precisely, if N(j) denotes the column of
N corresponding to xj , we have

xB = B−1b − B−1N(j)xj ≥ 0.

We set the new value of xj to be the maximum value for which this
inequality still holds.

Column N(j) enters the basis matrix B. We move the column of B that
corresponds to the component of xB that just became zero into N.

At the end of this iteration we still have B square and nonsingular, the
new xB is nonnegative, and the new xN is all zero. That’s one step!

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 6 / 23

A Few Complications

What if (cTN − cTB B−1N)? Solution, baby!

What if B−1N(j) ≤ 0, so that we can increase xj without limit while
maintaining xB ≥ 0. Then the LP is unbounded. Trivial example:
min −x s.t. x ≥ 0.

What if more than one component of xB reaches zero at the same
time? Then just pick one of them to swap with N(j).

What if one of the xB components is already zero (degenerate), and
we can’t increase xj away from zero at all without making it go
negative? This is a degenerate pivot. There’s no decrease in
objective, but swap N(j) with the offending column of B anyway. The
next pivot (or the one after...) may yield a decrease in objective.

What if we do a string of degenerate pivots, and end up with some
basis matrix B that we’ve encountered earlier. This is cycling. It can
be overcome by applying some rules for choosing N(j) judiciously.
(There is usually more than one candidate for N(j).)

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 7 / 23

Details: Maintaining a Factorization of B

For LP of practical size, we never want to compute B−1 directly — it’s
too large. Instead we can maintain LU factors of some permuted version
of B, say PBP̄T .

Can exploit the fact that B changes in just one column during each step of
simplex. Thus the same L factor almost works, but U now has a “spike” in
the location of the replaced column.

By applying some permutations and making some small modifications to
L, we can restore U to upper triangular form. See (Nocedal and Wright,
2006, Section 13.4).

Thus the L factor is stored in factored form. Occasionally, a fresh
factorization of B is computed, to avoid possible buildup of error and
blowup of storage.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 8 / 23

Choosing N(j): Pricing

Almost any negative component of (cTN − cTB B−1N) will lead to a decrease
in objective. Usually there is more than one. How do we choose?

This operation is called pricing and it’s a critical operation in practical LP
implementation. Possible strategies:

Choose the most negative element of (cTN − cTB B−1N), as this leads
to the biggest decrease in objective per unit increase in xj . Problem:
We may not be able to increase xj very much before some component
of xB hits zero.

Choose the j that yields the steepest decrease per unit distance
moved along the edge of the feasible polyhedron (that is, considering
the changes in xB components as well as xj). This “steepest-edge”
strategy was proposed in the 1990s and is quite effective.

Choose the component j with the smallest index among the possible
options. This is guaranteed to prevent cycling, but is not otherwise
the most practical.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 9 / 23

Partial Pricing

In any case, it is impractical to maintain and update the full vector
(cTN − cTB B−1N) — in fact this would be the most expensive operation in
simplex calculation.

In practice, just a subvector is maintained — a subset of the full N. We
ignore the rest of the matrix until we have exhausted this subset, i.e. this
subvector of cTN − cTB B−1N becomes nonnegative. Then we move to a
fresh subset of N.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 10 / 23

Phase I

We need to find a starting point: An intial choice of B and N such that B
is square and nonsingular and B−1b ≥ 0. How?

Answer: Construct a modified (but related) problem for which the initial
basis B is easy to identify. Do simplex on this problem until we find a
suitable basis for the original problem.

Specifically, add m extra variables (say z ∈ Rm) and solve:

min
(x ,z)

eT z s.t.
[
A E

] [x
z

]
= b,

[
x
z

]
≥ 0,

where e = (1, 1, . . . , 1)T and E is a diagonal matrix with ±1 on the
diagonal. Note that we’ve discarded the original objective cT x .

Now set x = 0 and Eii = sign(bi), zi = |bi | for i = 1, 2, . . . ,m. Initial basis
is B = E , with N = A. This is a Phase I LP.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 11 / 23

Phase I

Now apply simplex from this starting basis to Phase I. Two outcomes:

Have objective strictly positive. Then the original problem is
infeasible: it’s not possible to find an x with Ax = b, x ≥ 0.

Have objective eT z = 0, so that z = 0. Then proceed to the solution
of the real problem by

replacing the Phase I objective with the original objective cT x ;
set upper bounds on z of zero. (We need to modify simplex
slightly to handle upper bounds.) This ensures that from here on
we solve the original problem, i.e. z stays at zero.

Why not simply remove z from the problem at the end of Phase I?
Because some of the z components may still be degenerate components of
the basis B.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 12 / 23

Duality!

We’ve come a long way without discussing one of the most intriguing
properties in linear programming: DUALITY.

Duality is a powerful mathematical theory that’s also of great practical
importance. It plays a vital role too in other areas of convex optimization.

Given the data objects A, b, c that define an LP, we can construct another
LP called the dual LP from the same objects:

(DUAL) max
λ,s

bTλ s.t. ATλ+ s = c , s ≥ 0.

Note that λ ∈ Rm and s ∈ Rn. The original LP is called the “Primal” to
distinguish it from the dual.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 13 / 23

Weak Duality

(P) min cT x s.t. Ax = b, x ≥ 0.

(D) max
λ,s

bTλ s.t. ATλ+ s = c , s ≥ 0.

The two problems say a great deal about each other. One simple but
useful relationship is weak duality, which says:

If x is feasible for (P) and (λ, s) is feasible for (D), then
cT x ≥ bTλ.

Proof.

cT x = (ATλ+ s)T x = λT (Ax) + sT x ≥ λTb.

Practical application: A feasible point for (D) is sometimes easy to find,
and it gives a lower bound on the optimal value for (P).

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 14 / 23

Strong Duality

The other key duality result is strong duality and its proof requires a lot
more than one line.

Theorem

Exactly one of these three statements is true:

(i) (P) and (D) both have solutions, and their objectives are the same.

(ii) One of (P) and (D) is infeasible and the other is unbounded.

(iii) Both (P) and (D) are infeasible.

It excludes some plausible possibilities. e.g. if we find that (D) is infeasible,
it’s impossible for (P) to have a solution. If we find that (P) is unbounded,
then (D) must be infeasible — it can’t be unbounded or have a solution.

Parts (ii) and (iii) are easy to prove (do it!) but part (i) is hard. The
conventional proof argues that “the simplex method works, and it
identifies solutions to both (P) and (D), with equal objectives.”

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 15 / 23

KKT Conditions

We can use strong duality to derive a set of primal-dual optimality
conditions. (These can be generalized to nonlinear programming, as we
see later.)

These are sometimes called the Karush-Kuhn-Tucker (KKT) conditions,
after their inventors in 1948 and 1951.

Ax = b, ATλ+ s = c , 0 ≤ x ⊥ s ≥ 0.

where x ⊥ s indicates that xT s = 0.

KKT conditions are just feasibility conditions for (P) and (D), together
with xT s = 0. This condition ensures that the duality gap is zero, i.e. no
gap between primal and dual objectives. (See weak duality proof.)

The KKT conditions are the key to deriving primal-dual interior-point
methods, which we’ll discuss later.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 16 / 23

Farkas Lemma

Strong Duality can be used to prove some powerful results. An important
one is the Farkas Lemma, which is critical to optimality theory for
constrained optimization.

Lemma

Given a collection of vectors ai ∈ Rn, i = 1, 2, . . . ,m and a vector b ∈ Rn,
exactly one of the following claims is true:

(1) b is a convex combination of the ai , that is, there exist xi ∈ R+,
i = 1, 2, . . . ,m such that b =

∑m
i=1 xiai .

(2) there is a vector λ ∈ Rm such that bTλ > 0 and aTi λ ≤ 0 for all
i = 1, 2, . . . ,m.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 17 / 23

Farkas Proof

Proof.

We set up a primal-dual pair of LP given the data. Define
A = [a1 : a2 : . . . : am], x = (x1, x2, . . . , xm)T and

(P) min
x

0T x s.t. Ax = b, x ≥ 0.

Note: zero objective vector (c = 0). The corresponding dual is:

(D) max
λ,s

bTλ s.t. ATλ+ s = 0, s ≥ 0.

If statement (1) is true, then (P) is feasible and has optimal objective
zero. Thus (D) is also feasible with optimal objective zero. Thus (2)
cannot be true, since if it were, λ would be a feasible point for (D) with
positive objective.
If statement (1) is not true, then (P) is infeasible. But (D) is clearly not
infeasible, since λ = 0, s = 0 is a feasible point. Thus by strong duality
(case (ii)), (D) is feasible and unbounded. Thus (2) is true.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 18 / 23

Dual Simplex

An important variant of the simplex method works with the primal
formulation (P), but is based on duality. The idea is to start with an initial
basis that is dual feasible i.e. satisfies cTN − cTB B−1N ≥ 0, but does not
satisfy the constraints of (P), that is, B−1b 6≥ 0.

Simplex pivots maintain the dual feasiblity property cTN − cTB B−1N ≥ 0
and gradually iterate toward satisfying B−1b ≥ 0.

Why the term “dual feasible”? Because this choice of B can be used to
construct a feasible point for the dual, defined by:

λ = B−T cB , sB = 0, sN = cN − NTλ = cN − NTB−T cB ≥ 0.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 19 / 23

Dual Simplex Iterations

Each step proceeds by:

Choose an index i for which the component of xB is negative.
Consider the corresponding element of sB .

Allow si to increase away from zero. This changes all components of
λ, since

λ = B−T (cB − siei),

where ei = (0, . . . , 0, 1, 0, . . . , 0)T , with the 1 in the location
corresponding to si . This in turn changes the values of
sN = cN − NTλ. We increase si as much as possible away from 0
while maintaining sN ≥ 0.

We switch the column corresponding to si out of B and replace it with
the column of N that corresponds to the new zero component in sN .

We can show that each iteration increases the value of bTλ, thus moves
(D) toward better and better points.

Keep track of values of x throughout the process.
Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 20 / 23

Presolving

Practical LP codes have presolvers, which use “common sense” to
eliminate some variables and constraints before actually applying simplex
or interior-point methods to solve the problem.

There are many “tricks.” Some very simple ones:

Row singleton: 3x10 = 13. Then (obviously), we can set x10 = 13/3
and substitute it out of the problem, thus eliminating one variable
and one constraint.

Forcing Constraints: A combination of a constraint and bounds can
force variables to the bounds. Example: x1 + x3 + x7 = 3,
x1, x3, x7 ∈ [0, 1]. Then we must have x1 = 1, x3 = 1, x7 = 1. These
variables can be fixed and removed from the problem.

Dominated constraints. Given constraints

3x1 + 2x5 ≥ 4, 4x1 + 3x5 ≥ 2, x1 ≥ 0, x5 ≥ 0,

we can remove the constraint 4x1 + 3x5 ≥ 2.

Presolving can be applied in rounds.
Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 21 / 23

Topics

Complexity: exponential in worst case. There are examples. Is there a
pricing rule that makes it polynomial?
Average-case analysis.
Rounded analysis.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 22 / 23

References I

Ferris, M. C., Mangasarian, O. L., and Wright, S. J. (2007). Linear Programming with Matlab.
MOS-SIAM Series in Optimization. SIAM.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York.

Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016 23 / 23

	Appendix

