
Higher-Order Methods

Stephen J. Wright1

2Computer Sciences Department,
University of Wisconsin-Madison.

PCMI, July 2016

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25

Smooth Functions

Consider min
x∈Rn

f (x), with f smooth.

Usually assume f twice continuously differentiable.

(Sometimes assume convexity too.)

Newton’s method

Enhancing Newton’s method for “global convergence”

Line Search
Trust Regions

Third-order regularization, and complexity estimates.

Quasi-Newton Methods.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 2 / 25

Newton’s Method

Assume that ∇2f is Lipschitz continuous:

‖∇2f (x ′)−∇2f (x ′′)‖ ≤ M‖x ′ − x ′′‖. (1)

Second-order Taylor-series approximation is

f (xk + p) = f (xk) +∇f (xk)Tp +
1

2
pT∇2f (xk)p + O(‖p‖3). (2)

When ∇2f (xk) is positive definite, can choose p to minimize the quadratic

pk = arg min
p

f (xk) +∇f (xk)Tp +
1

2
pT∇2f (xk)p,

which is
pk = −∇2f (xk)−1∇f (xk) Newton step!

Thus, basic form of Newton’s method is

xk+1 = xk −∇2f (xk)−1∇f (xk). (3)

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 3 / 25

Local Convergence of Newton’s Method

Assume solution x∗ satisfying second-order sufficient conditions:

∇f (x∗) = 0, ∇2f (x∗) positive definite.

For f strongly convex at solution x∗, can prove local quadratic
convergence.

Theorem

If ‖x0 − x∗‖ ≤ m
2M , we have

xk → x∗ and ‖xk+1 − x∗‖ ≤ M

m
‖xk − x∗‖2, k = 0, 1, 2,

Get ε reduction in log log ε iterations!

(log log ε is bounded by 5 for all interesting ε!).

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 4 / 25

Proof

xk+1 − x∗ = xk − x∗ −∇2f (xk)−1∇f (xk)

= ∇2f (xk)−1[∇2f (xk)(xk − x∗)− (∇f (xk)−∇f (x∗))].

so that

‖xk+1 − x∗‖ ≤ ‖∇f (xk)−1‖‖∇2f (xk)(xk − x∗)− (∇f (xk)−∇f (x∗))‖.

From Taylor’s theorem:

∇f (xk)−∇f (x∗) =

∫ 1

0
∇2f (xk + t(x∗ − xk))(xk − x∗) dt.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 5 / 25

From Lipschitz continuity of ∇2f , we have

‖∇2f (xk)(xk − x∗)− (∇f (xk)−∇f (x∗))‖

=

∥∥∥∥∫ 1

0
[∇2f (xk)−∇2f (xk + t(x∗ − xk)](xk − x∗) dt

∥∥∥∥
≤
∫ 1

0
‖∇2f (xk)−∇2f (xk + t(x∗ − xk))‖‖xk − x∗‖ dt

≤
(∫ 1

0
Mt dt

)
‖xk − x∗‖2 = 1

2M‖x
k − x∗‖2. (4)

From Weilandt-Hoffman inequality: that

|λmin(∇2f (xk))−λmin(∇2f (x∗))| ≤ ‖∇2f (xk)−∇2f (x∗)‖ ≤ M‖xk − x∗‖,

Thus for
‖xk − x∗‖ ≤ m

2M
, (5)

we have

λmin(∇2f (xk)) ≥ λmin(∇2f (x∗))−M‖xk − x∗‖ ≥ m −M
m

2M
≥ m

2
,

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 6 / 25

so that ‖∇2f (xk)−1‖ ≤ 2/m. Thus

‖xk+1 − x∗‖ ≤ 2

m

M

2
‖xk − x∗‖2 =

M

m
‖xk − x∗‖2,

verifying the locally quadratic convergence rate. By applying (5) again, we
have

‖xx+1 − x∗‖ ≤
(
M

m
‖xk − x∗‖

)
‖xk − x∗‖ ≤ 1

2
‖xk − x∗‖,

so, by arguing inductively, we see that the sequence converges to x∗

provided that x0 satisfies (5), as claimed.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 7 / 25

Enhancing Newton’s Method

Newton’s method converges rapidly once the iterates enter the
neighborhood of a point x∗ satisfying second-order optimality conditions.
But what happens when we start far from such a point?

For nonconvex f , ∇2f (xk) may be indefinite, so the Newton direction
pk = −∇2f (xk)−1∇f (xk) may not even be a descent direction

Some modifications ensure that Newton directions are descent directions,
so when embedded in a line-search framework (with e.g. Wolfe conditions)
we can get the same guarantees as for general line-search methods.

convex f : Modified search direction + line search yields 1/k rate.

strongly convex f : No modification needed to direction. Addition of
line search yields global linear rate.

nonconvex f : Modified search direction + line search yields
‖∇f (xk)‖ → 0.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 8 / 25

Newton on strongly convex f

Eigenvalues of ∇2f (xk) uniformly in the interval [m, L], with m > 0.

Newton direction is a descent direction. Proof: Note first that

‖pk‖ ≤ ‖∇2f (xk)−1‖‖∇f (xk)‖ ≤ 1

m
‖∇f (xk)‖.

Then

−(pk)T∇f (xk) = ∇f (xk)T∇2f (xk)−1∇f (xk)

≥ 1

L
‖∇f (xk)‖2

≥ m

L
‖∇f (xk)‖‖pk‖.

Apply line-search techniques described earlier (e.g. with weak Wolfe
conditions) to get 1/T convergence.

Want to ensure that the convergence rate becomes quadratic near the
solution x∗. Can do this by always trying αk = 1 first, as a candidate step
length, and accepting if it satisfies the sufficient decrease condition.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 9 / 25

Newton on weakly convex f

When m = 0, the Newton direction may not exist. But can modify by

Adding elements to the diagonal of ∇2f (xk) while factorizing it
during the calculation of pk ;

Defining search direction to be

dk = −[∇2f (xk) + λk I]
−1∇f (xk),

for some λk > 0.

These strategies ensure that dk is a descent direction, so line search
strategy can be applied to get ‖∇f (xk)‖ → 0.

If ∇2f (x∗) is nonsingular, can recover local quadratic convergence if the
algorithm ensures λk → 0 and αk → 1.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 10 / 25

Newton on nonconvex f

Use similar strategies as for weakly convex to obtain a modified Newton
descent direction dk .

Use line searches to ensure that ‖∇f (xk)‖ → 0. This implies that all
accumulation points are stationary, that is, have ∇f (x∗) = 0.

The modification scheme should recognize when ∇2f (xk) is positive
definite, and try to take pure Newton steps (with αk = 1) at such points,
to try for quadratic convergence to a local minimizer.

But in general can only guarantee stationarity of accumulation points,
which may be saddle points.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 11 / 25

Newton + Trust-Regions

Trust regions gained much currency in early 1980s. Interest revived
recently becase of their ability to escape from saddle points.

Basic idea: See minimum over the quadratic model for f around xk in a
ball of radius ∆k around xk .

The trust-region subproblem is

min
d

f (xk) +∇f (xk)Td +
1

2
dT∇2f (xk)d subject to ‖d‖2 ≤ ∆k .

Shocking fact: This problem is easy to solve, even when ∇2f (xk) is
indefinite! Its solution satisfies these equations for some λ > 0:

[∇2f (xk) + λI]dk = −∇f (xk), for some λ > 0.

Same as for one of the modified Newton directions described above. Solve
the subproblem by doing a search for λ.

Line search approach: choose direction dk then length αk ;
Trust-region approach: choose length ∆k then direction dk .

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 12 / 25

Trust-Region

∆k plays a similar role to line-search parameter αk .

Accept step if a sufficient decrease condition is satisfied.

Reject step otherwise, and recalculate with a smaller value of ∆k .

After a successful step, increase ∆k for the next iteration.

Trust-region can escape from saddle points. If ∇f (xk) ≈ 0, dk will tend to
be in the direction of “most negative curvature” for ∇2f (xk).

Normal trust-region heuristics ensure that the bound is inactive in the
neighborhood of a point x∗ satisfying second-order sufficient conditions.
Then dk becomes the pure Newton step, and quadratic convergence
ensues.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 13 / 25

Cubic Regularization

Suppose that the Hessian is Lipschitz continuous with constant M:

‖∇2f (x ′)−∇2f (x ′′)‖ ≤ M‖x ′ − x ′′‖.

Then the following cubic expansion yields an upper bound for f :

TM(z ; x) := f (x)+∇f (x)T (z−x)+
1

2
(z−x)T∇2f (x)(z−x)+

M

6
‖z−x‖3.

We have f (z) ≤ TM(z ; x) for all z , x .

The basic cubic regularization algorithm sets

xk+1 = arg min
z

TM(z ; xk).

Nesterov and Polyak (2006); see also Griewank (1981), Cartis et al.
(2011a,b). This can also escape from saddle points, and comes with some
complexity guarantees.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 14 / 25

Complexity

Assume that f is bounded below by f̄ . Then cubic regularization has the
following guarantees: Finds xk for which

‖∇f (xk)‖ ≤ ε within k = O(ε−3/2) iterations;

∇2f (xk) ≥ −εI within k = O(ε−3) iterations,

where the constants in O(·) depend on [f (x0)− f̄] and M.

Thus we can guarantee an “approximate second-order necessary point,”
which is “likely” to be a local minimizer.

We can design a very simple algorithm — a modification of steepest
descent — with only slightly inferior complexity.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 15 / 25

Steve’s Brain-Dead Second-Order Necessary Solver

Given ε > 0, and f with the following properties:

bounded below;

∇f has Lipschitz constant L;

∇2f has Lipschitz constant M.

Algorithm SBDSONS:

When ‖∇f (xk)‖ ≥ ε, take a steepest descent step, say with
steplength αk = 1/L. This yields a reduction in f of at least

1

2L
‖∇f (xk)‖2 ≥ ε2

2L
.

When ‖∇f (xk)‖ < ε, evaluate ∇2f (xk) and its eigenvalues.

If the smallest eigenvalue is ≥ −ε, stop. Success!
If not, calculate the unit direction of most negative curvature pk ,
and flip its sign if necessary to ensure that (pk)T∇f (xk) ≤ 0.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 16 / 25

Steplength for the negative-curvature direction

From the cubic upper bound, we find the steplength αk to move along pk .

f (xk + αpk) ≤ f (xk) + α∇f (xk)Tpk +
1

2
α2(pk)T∇2f (xk)pk +

M

6
α3‖pk‖3

≤ f (xk)− 1

2
α2ε+

M

6
α3.

By minimizing the right hand side, we obtain αk = 2ε/M, for which

f (xk + αkp
k) ≤ f (xk)− 2

3

ε3

M2
.

Complexity analysis: The algorithm can encounter at most

2L

ε2
(f (x0)− f̄) = O(ε−2)

iterates with ‖∇f (xk)‖ ≥ ε, and at most

3M2

2ε3
(f (x0)− f̄) = O(ε−3)

iterates with ∇2f (xk) having eigenvalues less than −ε.
Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 17 / 25

Quasi-Newton Methods

Idea: Build up approximation Bk to the Hessian ∇2f (xk), using
information gathered during the iterations.

Key Observation: If we define

sk = xk+1 − xk , yk = ∇f (xk+1)−∇f (xk),

then Taylor’s theorem implies that

∇2f (xk+1)sk ≈ yk .

We require Bk+1 to satisfy this secant equation:

Bk+1s
k = yk , where sk = xk+1 − xk , yk = ∇f (xk+1)−∇f (xk).

Derive formulae for updating Bk , k = 0, 1, 2, ..., to satisfy this property,
and several other desirable properties.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 18 / 25

Desirable Properties

Use Bk as a proxy for ∇2f (xk) in computation of the step:

pk = −B−1
k ∇f (xk).

Other desirable properties of Bk :

Simple, low-cost update formulas Bk → Bk+1;
Symmetric (like the true Hessian);
Positive definiteness (so that pk is guaranteed to be a descent
direction).

A necessary condition for positive definiteness is that (yk)T sk > 0.
(Proof: If (yk)T sk ≤ 0 we have from secant equation that

0 ≥ (yk)T sk = (sk)TBT
k sk ,

so that Bk is not positive definite.) However we can guarantee positive
definiteness if the Wolfe conditions hold for αk :

∇f (xk + αkp
k)Tpk ≥ c2∇f (xk)Tpk , for some c2 ∈ (0, 1).

It follows that (yk)T sk ≥ (c2 − 1)αk∇f (xk)Tpk > 0.
Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 19 / 25

DFP and BFGS

DFP (1960s) and BFGS (1970) methods use rank-2 updates that satisfy
the secant equation and maintain positive definiteness and symmetry.

Defining ρk = (yk)T sk) > 0, we have:

DFP : Bk+1 = (I − ρkyk(sk)T)Bk(I − ρksk(yk)T) + ρk(yk)(yk)T

BFGS : Bk+1 = Bk −
Bks

k(sk)TBk

(sk)TBksk
+

yk(yk)T

(yk)T sk
.

These two formulae are closely related. Suppose that instead of
maintaining Bk ≈ ∇2f (xk) we maintain instead an inverse approximation
Hk ≈ ∇2f (xk)−1. (This has the advantage that step compuation is a
simple matrix-vector multiplication: pk = −Hk∇f (xk).)

If we make the replacements:

Hk ↔ Bk , sk ↔ yk ,

then the DFP updated applied to Hk corresponds to the BFGS update
applied to Bk , and vice versa.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 20 / 25

Other Motivations and Properties

These updates are least-change updates in certain norms:

Bk+1 := arg min
B
‖B − Bk‖ s.t. B = BT , Bsk = yk .

They generalize to the Broyden class, which is the convex combination of
DFP and BFGS.

BFGS performs significantly better in practice. WHY??? Some
explanations were given by Powell in the mid-1980s.

Remarkably, these methods converge superlinearly to solutions satisfying
second-order sufficient conditions:

‖xk+1 − x∗‖ = o(‖xk − x∗‖).

(Analysis is quite technical.)

See (Nocedal and Wright, 2006, Chapter 6).

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 21 / 25

Limited-Memory BFGS

An important issue with DFP and BFGS for large-scale problems is that
the matrices Bk and Hk are n × n dense, even if the true Hessian ∇2f (xk)
is sparse. Hence require O(n2) storage and cost per iteration — could be
prohibitive.

But note that we can store Bk (or Hk) implicitly, by storing B0, and
s0, s1, . . . , sk and y0, y1, . . . , yk . If B0 is a multiple of the identity, have

total storage is about 2kn (ccan be reduced to kn if careful);

Work to compute pk is also O(kn). Can design a simple recursive
scheme based on the update formula.

This is all fine provided that k � n, but we typically need more iterations
than this.

Solution: Don’t store all k updates so far, just the last m updates, for
small m. (m = 3, 5, 10, 20 are values that I have seen in applications)

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 22 / 25

L-BFGS

L-BFGS has become standard method in large-scale smooth nonlinear
optimization.

Rotate storage — at each iterations, latest sk , yk replaces oldest
stored values sk−m, yk−m,

No convergence rate guarantee beyond the linear rate associated with
descent methods.

Can be viewed as an extension of nonlinear conjugate gradient, with
more memory.

Can rescale the choice of B0 at each iteration. Often use a
Barzilai-Borwein type scaling, e.g. B0 = (sk)T yk/(sk)T sk .

Liu and Nocedal (1989), (Nocedal and Wright, 2006, Chapter 7).

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 23 / 25

L-BFGS Details

Use the inverse form: Hk ≈ ∇2f (xk)−1.

xk+1 = xk − αkHk∇f (xk).

Update formula:
Hk+1 = V T

k HkVk + ρks
k(sk)T ,

where
ρk = 1/(yk)T sk , Vk = I − ρkyk(sk)T .

Uses
H0 = γk I , γk = (sk−1)T yk−1/(yk−1)T yk−1.

See (Nocedal and Wright, 2006, p. 178) for a two-loop recursion to
compute Hk∇f (xk).

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 24 / 25

References I

Cartis, C., Gould, N. I. M., and Toint, P. L. (2011a). Adaptive cubic regularisation methods for
unconstrained optimization. Part I: motivation, convergence and numerical results.
Mathematical Programming, Series A, 127:245–295.

Cartis, C., Gould, N. I. M., and Toint, P. L. (2011b). Adaptive cubic regularisation methods for
unconstrained optimization. part ii: worst-case function-and derivative-evaluation complexity.
Mathematical Programming, Series A, 130(2):295–319.

Griewank, A. (1981). The modification of Newton’s method for unconstrained optimization by
bounding cubic terms. Technical Report NA/12, DAMTP, Cambridge University.

Liu, D. C. and Nocedal, J. (1989). On the limited-memory BFGS method for large scale
optimization. Mathematical Programming, Series A, 45:503–528.

Nesterov, Y. and Polyak, B. T. (2006). Cubic regularization of Newton method and its global
performance. Mathematical Programming, Series A, 108:177–205.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York.

Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 25 / 25

	Appendix

