
Chapter 1

Introduction

Linear programming is one of the great success stories of optimization. Since
its formulation in the 1930s and 1940s and the development of the simplex
algorithm by Dantzig in the mid 1940s, generations of workers in economics,
finance, and engineering have been trained to formulate and solve linear
programming problems. Even when the situations being modeled are actu-
ally nonlinear, linear formulations are favored because the software is highly
sophisticated, because the algorithms guarantee convergence to a global min-
imum, and because uncertainties in the model and data often make it im-
practical to construct a more elaborate nonlinear model.

The publication in 1984 of Karmarkar's paper [57] was probably the
most significant event in linear programming since the discovery of the sim-
plex method. The excitement that surrounded this paper was due partly to
a theoretical property of Karmarkar's algorithm—polynomial complexity—
and partly to the author's claims of excellent practical performance on large
linear programs. These claims were never fully borne out, but the paper
sparked a revolution in linear programming research that led to theoretical
and computational advances on many fronts. Karmarkar's paper, and ear-
lier work whose importance was recognized belatedly, gave rise to the field of
interior-point methods, and the years following 1984 saw rapid development
and expansion of this new field that continue even today. Theoreticians
focused much of their attention on primal-dual methods, the elegant and
powerful class of interior-point methods that is the subject of this book.
Computational experiments, which took place simultaneously with the the-
oretical development, showed that primal-dual algorithms also performed
better than other interior-point methods on practical problems, outperform-
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2	 Primal-Dual Interior-Point Methods

ing even simplex codes on many large problems. A puzzling gap remained
between theory and practice, however, since the best practical algorithms
differed in a number of respects from the algorithms with nice theoretical
properties. Research in the 1990s largely closed this gap, and by 1994, the
field had matured.

In this book, we describe the state of the art in primal-dual interior-
point methods in their application to linear programming. We start by
presenting some background on the duality theory of linear programming
and on interior-point methods in Chapter 2. Chapter 3 sketches the theory
of algorithmic complexity. The theory for the most successful algorithms in
the primal-dual class—potential-reduction, path-following, and infeasible-
interior-point algorithms—is presented in Chapters 4, 5, and 6, respectively.
In succeeding chapters, we discuss issues of rapid asymptotic convergence
(Chapter 7); extensions to more general classes of problems, such as con-
vex quadratic programming (Chapter. 8); and detection of infeasible linear
programs (Chapter 9). The last two chapters turn to more immediate practi-
cal concerns. Chapter 10 discusses Mehrotra's predictor-corrector approach,
which, since 1990, has been the basis for most interior-point software. Fi-
nally, in Chapter 11, we discuss the issues that arise in implementing primal-
dual algorithms. Appendix A contains background information on linear
algebra, optimization and complementarity theory, and numerical analysis.
Some current software is reviewed in Appendix B.

The remainder of this chapter is devoted to a thumbnail sketch of each
of these topics.

Linear Programming

The fundamental properties of a linear programming problem are

a. a vector of real variables, whose optimal values are found by solving
the problem;

b. a linear objective function;

c. linear constraints, both inequalities and equalities.

One particular formulation of the linear programming problem—the stan-
dard form—is frequently used to describe and analyze algorithms. This form
is

mincTx subject to Ax = b, x > 0, 	 (1.1)D
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Introduction 3

where c and x are vectors in JRn, b is a vector in JRm, and A is an m x n
matrix. If x satisfies the constraints Ax = b, x ~ 0, we call it a feasible
point; the set of all feasible points is the feasible set.

We can convert any linear program into standard form by introducing
additional variables-called slack variables and artificial variables-into its
formulation.

Associated with any linear program is another linear program called the
dual, which consists of the same data objects arranged in a different way.
The dual for (1.1) is

max bT>.. subject to AT>.. + s = c, s ~ 0, (1.2)

where >.. is a vector in JRm and s is a vector in JRn. We call components of
>.. the dual variables, while s is the vector of dual slacks. The dual problem
could be stated more compactly by eliminating s from (1.2) and rewriting
the constraints as AT>.. ::::; c. However, it turns out to be expedient for the
analysis and implementation of interior-point methods to include s explicitly.

The linear programming problem (1.1) often is called the primal, to dis
tinguish it from (1.2), and the two problems together are referred to as the
primal-dual pair.

A duality theory that explains the relationship between the two problems
(1.1) and (1.2) has been developed. The feasible set and the solution set for
the primal tell us a lot about the dual, and vice versa. For instance, given
any feasible vectors x for (1.1) and (>.., s) for (1.2), we have that

(1.3)

In other words, the dual objective gives a lower bound on the primal objec
tive, and the primal gives an upper bound on the dual. The two objective
functions coincide at solutions, so that bT>..* = cTx* whenever x* solves (1.1)
and (X",s") solves (1.2).

In Chapter 2, we discuss those aspects of the duality theory that have
a direct bearing on the design and analysis of interior-point methods. We
do not attempt a complete treatment of this fascinating topic, referring the
reader instead to the standard reference texts.

Optimality conditions-the algebraic conditions that must be satisfied
by solutions of linear programming problems-are derived from first prin
ciples and the duality theory in many treatments of linear programming.
They also can be stated as special cases of the optimality conditions for gen
eral constrained optimization, known as the Karush-Kuhn-Tucker (or KKT)D
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4	 Primal-Dual Interior-Point Methods

conditions. We state the KKT conditions in Appendix A, in a form that is
sufficiently general for the purposes of this book (see Theorem A.1). The op-
timality conditions for the primal problem (1.1) are obtained by specializing
Theorems A.1 and A.2:
The vector x* E RTh is a solution of (1.1) if and only if there exist vectors
s* E 1[F' and A* E ]fpm for which the following conditions hold for (x, A, s) _
(x* A* s*):

ATA+s = c, (1.4a)

Ax = b, (1.4b)

xis2 = 0, i = 1,2,...,n, (1.4c)

(x, s) > 0. (1.4d)

In the terminology of general constrained optimization, the vectors A and
s are Lagrange multipliers for the constraints Ax = b and x >_ 0, respec-
tively. Condition (1.4c) implies that for each index i = 1, 2, ... , n, one of the
components xi or si must be zero. This condition is known as the comple-
mentarity condition, since it implies that the nonzeros of x and s appear in
complementary locations.

Note that in (1.4) the Lagrange multipliers are denoted by the same
symbols—A and s—that we use for the unknowns in the dual problem (1.2).
This choice is not an accident, for if we apply Theorems A.1 and A.2 to the
dual problem, we find that the optimality conditions make use of exactly
the same conditions (1.4). This is the crucial observation that defines the
relationship between the primal and dual problems. Formally, we state the
dual optimality conditions as follows:
The vector (A*, s*) E Rm x R' is a solution of (1.2) if and only if there exists a
vector x* E 1R' such that the conditions (1.4) hold for (x, A, s) = (x*, A*, s*).

By examining the conditions (1.4) from both the primal and the dual
viewpoints, we conclude that a vector (x*, )*, s*) solves the system (1.4) if
and only if x* solves the primal problem (1.1) and (A*, s*) solves the dual
problem (1.2). The vector (x*, A*, s*) is called a primal-dual solution.

Primal-Dual Methods

This book is about primal-dual interior-point methods. These meth-
ods find primal-dual solutions (x*, A*, s*) by applying variants of Newton's
method to the three equality conditions in (1.4) and modifying the searchD
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Introduction

directions and step lengths so that the inequalities (x, s) >_ 0 are satisfied
strictly at every iteration. It is precisely the innocuous-looking bounds on
x and s that give rise to all the complications in the design, analysis, and
implementation of the methods described in this book.

Let us restate the optimality conditions (1.4) in a slightly different form
by means of a mapping F from I[F2n+m to Ren+m:

AT•\+s — c
F(x,.\, ․)=	 Ax—b	 =0,	 (1.5a)

XSe

(x, s) > 0,	 (1.5b)

where

X = diag(xl, x2 i ... , x),	 S = diag(sl, s2, ... , s om,),	 (1.6)

and e = (1, 1, ... ,1)T. Note that F is actually linear in its first two terms
Ax — b, ATA + s — c, and only mildly nonlinear in the remaining term XSe.

All primal-dual methods generate iterates (xk , Ak , sk) that satisfy the
bounds (1.5b) strictly, that is, xk > 0 and sk > 0. This property is the
origin of the term interior-point. By respecting these bounds, the methods
avoid spurious solutions, which are points that satisfy F(x, A, s) = 0 but not
(x, s) >_ 0. Spurious solutions abound, and none of them gives any useful
information about solutions of (1.1) or (1.2), so it is best to exclude them
altogether from the region of search. Most interior-point methods actually
require the iterates to be strictly feasible; that is, each (xk , )k , sk) must
satisfy the linear equality constraints for the primal and dual problems. If
we define the primal-dual feasible set .F and strictly feasible set .F° by

F = {(x,.A, ․) Ax=b, ATA +s= c, (x, s) > 0},	 (1.7a)

F° _ {(x,A, ․)jAx=b, ATA +s=c, (x, s)>0},	 (1.7b)

the strict feasibility condition can be written concisely as

(xk , A', sk) E .F°

Like most iterative algorithms in optimization, primal-dual interior-point
methods have two basic ingredients: a procedure for determining the step
and a measure of the desirability of each point in the search space. As
mentioned earlier, the search direction procedure has its origins in Newton'sD
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6	 Primal-Dual Interior-Point Methods

method for the nonlinear equations (1.5a). Newton's method forms a lin-
ear model for F around the current point and obtains the search direction
(Ax, AA, As) by solving the following system of linear equations:

Ax
J(x, A, s) Da = —F(x, X, s),

Os

where J is the Jacobian of F. If the current point is strictly feasible (that
is, (x, A, s) E .F°), the Newton step equations become

0 AT	 I 1.x 0
A	 0	 0 AA = 0 (1.8)
S	 0	 X As —X Se

A full step along this direction usually is not permissible, since it would
violate the bound (x, s) >_ 0. To avoid this difficulty, we perform a line
search along the Newton direction so that the new iterate is

(x, \, s) + a(Ox, 0,\, Os)

for some line search parameter a E (0, 1]. Unfortunately, we often can take
only a small step along the direction (a « 1) before violating the condition
(x, s) > 0; hence, the pure Newton direction (1.8) often does not allow us
to make much progress toward a solution.

Primal-dual methods modify the basic Newton procedure in two impor-
tant ways:

1. They bias the search direction toward the interior of the nonnegative
orthant (x, s) >_ 0 so that we can move further along the direction
before one of the components of (x, s) becomes negative.

2. They keep the components of (x, s) from moving "too close" to the
boundary of the nonnegative orthant. Search directions computed
from points that are close to the boundary tend to be distorted, and
little progress can be made along them.

We consider these modifications in turn.
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7

The Central Path

The central path C is an arc of strictly feasible points that plays a vital
role in the theory of primal-dual algorithms. It is parametrized by a scalar
T > 0, and each point (xi , AT , sT) E C solves the following system:

	A T A + s = c,	 (1.9a)

	Ax = b,	 (1.9b)

	x^si = T,	 i = 1,2,..., n,	 (1.9c)

	(x, s) > 0.	 (1.9d)

These conditions differ from the KKT conditions only in the term T on the
right-hand side of (1.9c). Instead of the complementarity condition (1.4c),
we require that the pairwise products xisi have the same value for all indices
i. From (1.9), we can define the central path as

C = {(x„,\„ S̀T) I T > 0}.

Another way of defining C is to use the notation introduced in (1.5) and
write

0

F(x,, A , sT)	 0	 ,	 (x77 sT ) > 0.	 (1.10)
Te

We show in Chapter 2 that (xT , AT , ST) is defined uniquely for each T> 0 if
and only if .F° is nonempty. Hence, the entire path C is well defined.

The equations (1.9) approximate (1.4) more and more closely as T goes
to zero. If C converges to anything as T 1 0, it must converge to a primal-
dual solution of the linear program. The central path thus guides us to a
solution along a route that steers clear of spurious solutions by keeping all
the pairwise products xzsi strictly positive and decreasing them to zero at
the same rate.

Most primal-dual algorithms take Newton steps toward points on C for
which T > 0, rather than pure Newton steps for F. Since these steps are
biased toward the interior of the nonnegative orthant defined by (x, s) >_ 0,

it usually is possible to take longer steps along them than along the pure
Newton steps for F before violating the positivity condition. To describe the
biased search direction, we introduce a centering parameter a E [0, 1] and a
duality measure µ defined by

n

µ= 
Th

: Exis,=xTs/n,	 (1.11)
Z=1D
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8	 Primal-Dual Interior-Point Methods

which measures the average value of the pairwise products xisi. The generic
step equations are then

0 AT 	I Ox 0
A	 0	 0 AA = 0 (1.12)
S	 0	 X As —XSe+ape

The step (Ax, AA, As) is a Newton step toward the point (x, A, saµ ) E C,
at which the pairwise products xisi are all equal to •p. In contrast, the step
(1.8) aims directly for the point at which the KKT conditions (1.4) are
satisfied.

If or = 1, the equations ( 1.12) define a centering direction, a Newton step
toward the point (x,L , ) , sµ) E C, at which all the pairwise products xisi
are identical to p. Centering directions are usually biased strongly toward
the interior of the nonnegative orthant and make little, if any, progress in
reducing p. However, by moving closer to C, they set the scene for substantial
progress on the next iteration. (Since the next iteration starts near C, it
will be able to take a relatively long step without leaving the nonnegative
orthant.) At the other extreme, the value v = 0 gives the standard Newton
step (1.8), sometimes known as the affine-scaling direction for reasons to
be discussed later. Many algorithms use intermediate values of a from the
open interval (0, 1) to trade off between the twin goals of reducing p and
improving centrality.

A Primal-Dual Framework

With these basic concepts in hand, we can define Framework PD, a
general framework for primal-dual algorithms. Most methods in this book
are special cases of Framework PD.

Framework PD
Given (xo , Ao , so) E F°
for k=0,1,2,...

solve

0 AT I	 Axk	 0
A	 0	 0	 O,\k =	 0	 ,	 (1.13)
Sk 0 Xk 	Ask	 —XkSke + akike

where vk E [0, 1] and µk = (xk )T Sk /n,
setD

ow
nl

oa
de

d 
04

/1
1/

16
 to

 1
28

.1
05

.3
4.

13
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Introduction
	

9

(xk+1 , Ak+i , Sk+1)	 (xk, \k , 8k) + ak(AXk , A,\k, Ask)
,
	(1.14)

choosing ak so that (xk+l, sk+1) > 0
.

end (for).

Path-Following Methods

A path-following algorithm explicitly restricts the iterates to a neighbor-
hood of the central path C and follows C to a solution of the linear program.
The neighborhood excludes points (x, s) that are too close to the bound-
ary of the nonnegative orthant. Therefore, search directions calculated from
any point in the neighborhood make at least minimal progress toward the
solution set.

Recall that a key ingredient of any optimization algorithm is a measure
of the desirability of each point in the search space. In path-following algo-
rithms, the duality measure p defined by (1.11) fills this role. The duality
measure µk is forced to zero as k -^ oo, so the iterates (xk , Ak , sk ) come
closer and closer to satisfying the KKT conditions (1.4).

The two most interesting neighborhoods of C are the so-called 2-norm
neighborhood N2(0) defined by

N2 (0) = {(x, A, s) E .F° II XSe - pe112 < Op}	 (1.15)

for some 0 E (0, 1), and the one-sided 00-norm neighborhood N_^ (ry) defined
by

N_„(y) = {(x, A, s) E .F° I xjsi > yp all i = 1, 2, ... , n} (1.16)

for some -y E (0, 1). (Typical values of the parameters are 0 = 0.5 and
y = 10-3 .) If a point lies in N_,,(y), each pairwise product xisi must be
at least some small multiple ry of their average value p. This requirement
is actually quite modest, and we can make N_,, (y) encompass most of the
feasible region F by choosing -y close to zero. The N2 (0) neighborhood is
more restrictive, since certain points in ,T° do not belong to N2(0) no matter
how close 0 is chosen to its upper bound of 1.

By keeping all iterates inside one or another of these neighborhoods,
path-following methods reduce all the pairwise products xisi to zero at more
or less the same rate.

Path-following methods are akin to homotopy methods for general non-
linear equations, which also define a path to be followed to the solution.D
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10	 Primal-Dual Interior-Point Methods

Traditional homotopy methods stay in a tight tubular neighborhood of their
path, making incremental changes to the parameter and chasing the  homo

-topy path all the way to a solution. For primal-dual methods, this neigh-
borhood is conical rather than tubular, and it tends to be broad and loose
for larger values of the duality measure µ. It narrows as -+ 0, however,
because of the positivity requirement (x, s) > 0.

Some path-following methods choose conservative values for the centering
parameter a (that is, a only slightly less than 1) so that unit steps can be
taken along the resulting direction from (1.12) without leaving the chosen
neighborhood. These methods, which are known as short-step path-following
methods, make only slow progress toward the solution because a restrictive
.N2 neighborhood is needed to make them work.

Better results are obtained with the predictor-corrector method, which
uses two N2 neighborhoods, nested one inside the other. Every second step of
this method is a "predictor" step, which starts in the inner neighborhood and
moves along the affine-scaling direction (computed by setting a = 0 in (1.12))
to the boundary of the outer neighborhood. The gap between neighborhood
boundaries is wide enough to allow this step to make significant progress in
reducing p. Between these predictor steps, the algorithm takes "corrector"
steps (computed with o = 1 and a = 1), which take it back inside the inner
neighborhood to prepare for the next predictor step. The predictor-corrector
algorithm converges superlinearly, as we show in Chapter 7.

Long-step path-following methods make less conservative choices of v
than their short-step cousins. As a consequence, they need to perform a line
search along (Ax, AA, As) to avoid leaving the chosen neighborhood. By
making judicious choices of a, however, long-step methods can make much
more rapid progress than short-step methods, particularly when the N-^
neighborhood is used.

All three methods are discussed and analyzed in Chapter 5.

Potential-Reduction Methods

Potential-reduction methods take steps of the same form as do path-
following methods, but they do not explicitly follow C and can be motivated
independently of it. They use a logarithmic potential function to measure
the worth of each point in .7° and aim to achieve a certain fixed reduction
in this function at each iteration. The primal-dual potential function, which
we denote generically by P, usually has two important properties:

-+ oo if xisi -+ 0 for some i, but µ = xTs/n 74 0,	 (1.17a)D
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Introduction
	 11

—> —oo if and only if (x, A, s) — Sl, (1.17b)

where S2 is the set of primal-dual solutions to (1.1) . The first property
(1.17a) stops any one of the pairwise products xzsi from approaching zero
independently of the others and therefore keeps the iterates away from the
boundary of the nonnegative orthant. The second property (1.17b) relates 4D
to the solution set Q. If our algorithm forces 4D to —oo, then (1.17b) ensures
that the sequence approaches the solution set.

The most interesting primal-dual potential function is the Tanabe—Todd-
Ye function 4)p , defined by

1DP (x, ․) = plogxTs —	 logxisi	 (1.18)
2=1

for some parameter p > n. Like all algorithms based on Framework PD,
potential-reduction algorithms obtain their search directions by solving (1.13)
for some ak E (0, 1). The step length ck is chosen to approximately mini-
mize ^P along the computed direction. In Chapter 4, we see that cookbook
choices of Qk and ak are sufficient to guarantee constant reduction in (PP at
every iteration. Hence, 'P will approach —oo, forcing convergence. Smarter
choices of vk and ak (adaptive and heuristic) are also covered by the theory,
provided that they yield at least as much reduction in ^ P as do the cookbook
values.

Infeasible Starting Points

So far, we have assumed that the starting point (x°, )°, s°) is strictly
feasible and, in particular, that it satisfies the linear equations Ax° = b,
AT A0 +s° = c. All subsequent iterates also respect these constraints, because
of the zero right-hand side terms in (1.13).

For most problems, however, a strictly feasible starting point is difficult
to find. This task can always be made trivial by reformulating the problem,
but the reformulation sometimes introduces distortions that can make the
problem harder to solve. An alternative approach is provided by infeasible-
interior-point methods, which require nothing more of the starting point
than positivity of x° and s° . The search direction needs to be modified so
that it moves closer to feasibility as well as to centrality, but only a slight
change is needed to the step equation (1.12). If we define the residuals for
the two linear equations as

rb=Ax—b,	 rc=AT.\+s—c,	 (1.19)D
ow

nl
oa

de
d 

04
/1

1/
16

 to
 1

28
.1

05
.3

4.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



12
	

Primal-Dual Interior-Point Methods

the step equation becomes

0 AT I
A0 0
BOX

Ox	 —rc
AA _	 —rb
As	 —X Se + o pe

(1.20)

The search direction is still a Newton step toward the point (xQµ , \, saN,) E

C. It tries to bite off all the infeasibility in the equality constraints in a single
step. If a full step is ever taken (that is, a = 1), the residuals rb and r,
become zero, and all subsequent iterates remain strictly feasible.

In Chapter 6, we give a complete description and analysis of a path-
following infeasible-interior-point method, which is a variant of the long-step
feasible method from Chapter 5. It confines all iterates to a central path
neighborhood like N_„(ry), extended to allow violation of the linear equality
conditions. In this extended neighborhood, the residual norms jjrbll and r,^^
are bounded by a constant multiple of the duality measure µ. By squeezing µ
to zero, we also force rb and r, to zero so that we approach complementarity
and feasibility simultaneously.

Superlinear Convergence

We now return to the place from which we started, where we moti-
vated primal-dual algorithms as modifications of Newton's method applied
to F(x, A, s) = 0. Because of the modifications, the search direction often
contains a centering term (when o > 0), and the step length a is often

smaller than its "natural” value of 1. The modifications lead to nice global
convergence properties and good practical performance, but they interfere
with the best-known characteristic of Newton's method: fast asymptotic
convergence. Fortunately, it is possible to design algorithms that recover
this important property without sacrificing the benefits of the modified al-
gorithm. When the iterates get close enough to the solution set, there is less
danger of the pure Newton step (1.8) being attracted to spurious solutions.
By relaxing some of the restrictions and modifications that are applied on
earlier iterations, we can allow the algorithm to take steps more like the pure
Newton step and therefore achieve a fast asymptotic rate of convergence. We
do not abandon the restrictions altogether, however, since we wish to retain
the excellent global convergence properties.

The superlinear convergence theory for interior-point methods has a
slightly different character from the theory for nonlinear equations. For a
general nonlinear system F(z) = 0, where the mapping F : IRN RN is con-
tinuously differentiable, the sequence {z k } generated by Newton's methodD
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Introduction	 13

converges superlinearly to a solution z* if the solution is nondegenerate; that
is, the Jacobian J(z*) is nonsingular. In the interior-point setting, we can
achieve superlinear convergence even when the Jacobian of F approaches a
singular limit and even when the solution is not unique! It turns out, as
we show in Chapter 7, that the constraints (x, s) > 0 and our insistence
on staying away from the boundary of the nonnegative orthant provide the
extra structure that we need for superlinearity.

Extensions

Primal-dual methods for linear programming can be extended to wider
classes of problems. Extensions to the monotone linear complementarity
problem (LCP) and convex quadratic programming (QP) are straightfor-
ward. The monotone LCP—the qualifier "monotone" is implicit throughout
this book—is the problem of finding vectors x and s in Rn that satisfy the
following conditions:

s=Mx+q, (x, ․)>0, xTs=0, (1.21)

where M is a positive semidefinite n x n matrix and q E R". The similar-
ity between (1.21) and the KKT conditions (1.4) is obvious: the last two
conditions in (1.21) correspond to (1.4d) and (1.4c), respectively, while the
condition s = Mx + q is similar to the equations (1.4a) and (1.4b).

In many situations, it is more convenient to use a formulation of the LCP
that differs slightly from (1.21). In Chapter 8, we discuss two formulations
that are more flexible than (1.21) but are equivalent to this basic formulation
in a strong sense. The LCP deserves the attention we pay to it in Chapter 8
because it is such a versatile tool for formulating and solving a wide range
of problems via primal-dual methods.

In convex QP, we minimize a convex quadratic objective subject to linear
constraints. A convex quadratic generalization of the standard form linear
program (1.1) is

min cT x + I xT Qx subject to Ax = b, x > 0, (1.22)

where Q is a symmetric n x n positive semidefinite matrix. The KKT
conditions for this problem are similar to (1.4) and (1.21). In fact, we can
show that any LCP can be formulated as a convex quadratic program, and
vice versa.

We also discuss extensions to a new class known as semidefinite program-
ming. The name comes from the fact that some of the variables in theseD
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14	 Primal-Dual Interior-Point Methods

problems are square matrices that are constrained to be positive semidef-
inite. This class, which has been the topic of concentrated research since
1993, has applications in many areas, including control theory and combi-
natorial optimization.

The monotone nonlinear complementarity problem is obtained by replac-
ing the first (linear) condition in (1.21) by a nonlinear monotone function.
That is, we look for vectors x and s in Rn such that

s = 1(x), (x, s) ? 0, xT s = 0 ,

where f is a smooth function with the property that (xl — xo) T (f (xl) —
f (xo)) >_ 0 for all xo and xl in some domain of interest. Conceptually,
the approach is not much different from the one in Framework PD. The
central path is defined analogously to (1.9), and the search directions are
still Newton steps toward points on this path. Handling of infeasibility
becomes a more prominent issue, however, since it is no longer obvious how
we can retain feasibility of the iterates (xc , sk) with respect to the nonlinear
constraint sk = f (xk).

In Chapter 8, we show how primal-dual methods can be extended to
these more general problems. In the case of convex QP and LCP, the al-
gorithms and their analysis are fairly straightforward generalizations of the
linear programming techniques of Chapters 4, 5, and 6. On the other hand,
extensions to nonconvex problems (especially nonlinear programming prob-
lems) raise many new and challenging issues that are beyond the scope of
this book.

Mehrotra's Predictor-Corrector Algorithm

Most existing interior-point codes for general-purpose linear program-
ming problems are based on Mehrotra's predictor-corrector algorithm [88].
The two key features of this algorithm are

a. addition of a corrector step to the search direction of Framework PD
so that the algorithm more closely follows a trajectory to the solution
set 11;

b. adaptive choice of the centering parameter v.

Mehrotra's method can be motivated by considering path-following algo-
rithms for trajectories in 11 x IRm x IR". The central path C (1.9) is one such
trajectory. As we show in Chapter 2, C is a well-defined curve that termi-
nates at the solution set Q. A modified trajectory that leads from the currentD
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u

Figure 1.1. Central path C and a trajectory f from the current (noncentral)
point (x, A, s) to the solution set Q.

point (x, A, s) to Il is of more immediate interest in designing algorithms,
however, since the current iterate rarely lies on the central path and usually
is not even feasible. These modified trajectories can be defined in a number
of different ways, as we show in Chapter 10. Their common features are that
they consist of points (xT , AT , AT) for r E [0, 1), with (îo, Ao, so) _ (x, A, s),
and if the limit limTT1 (î-T, AT, sT ) exists, it belongs to the solution set Q. A
trajectory fl with thesé properties is depicted in Figure 1.1.

Algorithms from Framework PD can be thought of as first-order methods
in that they find the tangent to a trajectory like 7i and perform a line search
along it. Mehrotra's algorithm takes the next logical step of calculating
the curvature of 7-1 at the current point as well as the tangent, thereby
obtaining a second-order approximation to the trajectory. The curvature,
which is equivalent to the corrector step mentioned above, can be obtained
at relatively low cost. Computational experience shows that the extra cost is
easily justified because it usually leads to a significant reduction in iteration
count over methods based strictly on Framework PD.

The second important feature of Mehrotra's algorithm is that it chooses
the centering parameter Qk adaptively, in contrast to algorithms from Frame-
work PD, which assign a value to Uk prior to calculating the search direc-
tion. At each iteration, Mehrotra's algorithm first calculates the affine-
scaling direction and assesses its usefulness as a search direction. If this
direction yields a large reduction in y without violating the positivity con-
dition (x, s) > 0, the algorithm concludes that little centering is needed, soD

ow
nl

oa
de

d 
04

/1
1/

16
 to

 1
28

.1
05

.3
4.

13
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



16	 Primal-Dual Interior-Point Methods

it chooses 0k close to zero and calculates a centered search direction with
this small value. If the affine-scaling direction is not so useful, the algorithm
enforces a larger amount of centering by choosing a value of ak closer to
1. Computation of the centered direction and the corrector step can be
combined, so adaptive centering does not add further to the cost of each
iteration.

Mehrotra's method also incorporates a number of other algorithmic de-
vices that contribute to its practical success, including the use of different
step lengths for the primal and dual variables and a heuristic choice of the
step lengths that is designed to speed the asymptotic convergence. We dis-
cuss Mehrotra's algorithm in Chapter 10.

Linear Algebra Issues

Most of the computational effort in implementations of primal-dual meth-
ods is taken up in solving linear systems of the forms (1.12) and (1.20). The
coefficient matrix in these systems is usually large and sparse, since the con-
straint matrix A is itself large and sparse in most applications. The special
structure in the step equations (1.12) and (1.20) allows us to reformulate
them as systems with more compact symmetric coefficient matrices, which
are easier and cheaper to factor than the original form.

The reformulation procedures are simple, as we show by applying them
to the system (1.20). Since the current point (x, A, s) has x and s strictly
positive, the diagonal matrices X and S are nonsingular. Hence, by elimi-
nating As from (1.20), we obtain the following equivalent system:

0 A A, = -re, (1.23a)
LAT  -D-2,

li
 Ax ] [-r, + s- — aiX'e]'

As = -s + apX-le - X -1SAx, (1.23b)

where we have introduced the notation

D = S- 1'2X 1'2. (1.24)

This form of the step equations usually is known as the augmented system.

Since the matrix X'S is also diagonal and nonsingular, we can go a step
further, eliminating Ax from (1.23a) to obtain another equivalent form:

AD2 ATAA = -Tb + A(-S- 'Xr, + x - vµS-le), (1.25a)

As = -r, - ATOA, (1.25b)

Ax = -x + upS-le - S-1 XOs.	 (1.25c)
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Introduction	 17

This form often is called the normal equations form because, in the case of
Tb = 0, the system (1.25a) reduces to the normal equations for a linear least
squares problem with coefficient matrix  DAT.

Most implementations are based on the normal equations form; they ap-
ply a direct sparse Cholesky algorithm to factor the matrix AD2 AT . General-
purpose sparse Cholesky software can be used to perform this operation;
for example, two of the codes that we discuss in Appendix B make use of
the sparse Cholesky code of Ng and Peyton [103]. A few modifications are
needed to standard Cholesky codes, however, because AD2 AT may be ill
conditioned or singular. Ill conditioning is often observed during the final
stages of a primal-dual algorithm, when the elements of the diagonal weight-
ing matrix D2 take on both huge and tiny values.

It becomes inefficient to formulate and solve the system (1.25a) when
AS-1 XAT is much denser than A. This situation arises when A has one or
more dense columns, and it is not uncommon in practice. We can modify the
normal equations strategy by excluding the dense columns from the matrix-
matrix product AS -1XAT and correcting for this omission in a subsequent
calculation. Details are given in Chapter 11.

The formulation (1.23) has received less attention than (1.25), mainly
because algorithms and software for factoring sparse symmetric indefinite
matrices are more complicated, slower, and less readily available than sparse
Cholesky algorithms. This situation is changing, however, as the result of
an increasing recognition that symmetric indefinite matrices are important
in many contexts besides (1.23a) (see, for instance, Vavasis [140]). The
formulation (1.23) is cleaner and more flexible than (1.25) in a number of
respects: The difficulty caused by dense columns in A does not arise, and free
variables (that is, components of x with no explicit lower or upper bounds)
can be handled without resorting to the various artificial devices needed in
the normal equations form.

More details about solving both formulations (1.23) and (1.25) and about
other issues associated with primal-dual implementations can be found in
Chapter 11.

Karmarkar's Algorithm

For many nonspecialists, the name Karmarkar is more or less synonymous
with the whole field of interior-point methods. Hence, a few words about
Karmarkar's method [57] and its place in history are in order.

Although the practical efficiency of the simplex method was appreciated
from the time it was discovered, theoreticians remained uneasy because theD
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18	 Primal-Dual Interior-Point Methods

method is not guaranteed to perform well on every linear program. A famous
example due to Klee and Minty [61] requires 2 simplex iterations to solve
a linear program in ][fin. By contrast, other computational problems such as
sorting and searching were known to be solvable by polynomial algorithms—
algorithms whose run time is, at worst, a polynomial function of the amount
of storage needed for the problem data.

The first polynomial algorithm for linear programming, Khachiyan's el-
lipsoid algorithm [60], was a computational disappointment. Its convergence
is much too slow, it is not robust in the presence of rounding errors, and
it requires a large, dense n x n matrix to be stored and updated at every
iteration. It is not competitive with the simplex method on any but the
smallest problems.

Karmarkar's algorithm was announced in 1984, five years after the el-
lipsoid method. It too is polynomial, requiring O(nlog1/E) iterations to
identify a primal feasible point x such that cT x is within E of its optimal
value for (1.1). Karmarkar's is a primal algorithm; that is, it is described,
motivated, and implemented purely in terms of the primal problem (1.1)
without reference to the dual. At each iteration, Karmarkar's algorithm
performs a projective transformation on the primal feasible set that maps
the current iterate xk to the center of the set and takes a step in the fea-
sible steepest descent direction for the transformed space. Progress toward
optimality is measured by a logarithmic potential function, as discussed in
Chapter 2. Nice descriptions of the algorithm can be found in Karmarkar's
original paper [57] and in Fletcher [30].

Karmarkar's method falls outside the scope of this book, and, in any
case, its practical performance does not appear to match the most efficient
primal-dual methods. The algorithms we discuss in Chapters 4, 5, and 6 are
all polynomial, like Karmarkar's method. Further historical information on
the development of interior-point methods is given in Chapter 2.

Exercises

1. Explain why we cannot have Ak = 0 for an iterate (x', A k , sk) E J°
from Framework PD.

2. (i) Show that Al2(01 ) C N2 (02) when 0 < 01 < 02 < 1 and that
N_oo ('yi) C N_^ (y2) for 0 < 'y2 < 'yi < 1.

(ii) Show that .N (e) C N_^ (ry) if y < 1 — 0.D
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3. Why is the neighborhood .AL called the "one-sided oo-norm neigh-
borhood"?

4. Given an arbitrary point (x, A, s) E .F°, find the range of y values for
which (x, A, s) E f_^(y). (The range depends on x and s.)

5. For n = 2, find a point (x, s) > 0 for which the condition

^IXSe — µeII2 <9/L

is not satisfied for any 0 E (0, 1).

6. Show that -DP defined by (1.18) has the property (1.17a).

7. Write down the KKT conditions for the convex quadratic program
(1.22).

8. By eliminating the vector s from (1.21), express the LCP as a convex
quadratic program.

9. Use the fact that (x, s) is strictly positive to show that the coefficient
matrix in (1.25a) is symmetric positive semidefinite. Show that this
matrix is positive definite if A has full row rank.
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