	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion

First order methods for manifolds with orthogonality constraints for constrained SVD problems

Laura Balzano

University of Michigan

IMA Optimization New Directions Workshop 2016

University of Michigan

L. Balzano

Low-rank Models and Manifold Optimization

Low-rank matrix models have several applications:

- communications and radar
- computer vision
- recommender systems
- environmental science.

We therefore often face optimization problems that require non-convex low-rank constraints.

minimize f(M)subject to $h(M) \le \tau$

M low-rank, or has orthogonal columns, etc

Image: A math a math

University of Michigan

L. Balzano

Low-rank Models and Manifold Optimization

$$\begin{array}{ll} \underset{M}{\text{minimize}} & f(M) \\ \text{subject to} & h(M) \leq \tau \\ & M \text{ low-rank, or has orthogonal} \end{array}$$

Low-rank constraints often form smooth manifolds in \mathbb{R}^n .

- Low-rank manifold: *n* × *m* matrices of rank-*d*
- Stiefel Manifold: tall $n \times d$ matrices with orthonormal columns denoted S(n, d).
- Grassmannian: *d*-dimensional subspaces of ℝⁿ (quotient of Stiefel) denoted G(n, d).
- Flag Manifold: nested sequences of subspaces with given dimensions, *F*(*n*, *d*₁,..., *d*_s)

columns, etc

Manifold Optimization

Classical optimization techniques use the geometry of Euclidean space.

Manifold optimization techniques use the geometry of the manifold to take gradients and gradient steps along the manifold.

We focus algorithms that use the Stiefel and Grassmann manifolds to solve "SVD-like" problems.

Introduction	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Outline					

- The SVD as an optimization problem and variants where we may use manifold optimization
- Matrix Completion
- Robust PCA
- Sparse PCA
- Calibration Matrix Completion
- Conclusion

University of Michigan

< 17 >

Manifold Optimization for Constrained SVD

I Balzano

The Singular Value Decomposition (SVD) factors a low-rank matrix into three matrices:

 $M = U \Sigma V^T$

where U, V have orthonormal columns and Σ is diagonal.

< □ > < 同 >

-∢ ≣ ▶

L. Balzano

If your data matrix is not exactly low-rank but you wish to find the best low-dimensional linear structure that models the data, you can use the SVD; that makes it a useful exploratory data analysis tool.

University of Michigan

L. Balzano

Introduction	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion

The linear subspace is a good model in many applications.

< □ > < 同 >

University of Michigan

L. Balzano

The SVD gives the solution to the following problem¹: minimize $\|U\Sigma W^T - M\|_F^2$ (1) subject to $U, W \in \mathcal{G}(n, d)$ $\Sigma \ge 0; d \times d$ diagonal (2)

where $\mathcal{G}(n, d)$ is the Grassmannian, the space of all *d*-dimensional subspaces of \mathbb{R}^n .

¹This result was discovered independently by both Schmidt in 1907 [Stewart, 1993, Stewart, 2011, Schmidt, 1907] and Eckart and Young in 1936 [Eckart and Young, 1936].

University of Michigan

L. Balzano

Linear Low Rank Subspaces via SVD

Goal: Given matrix A, form the SVD $U\Sigma V^T = X$.

The left singular vectors and singular values of A can be computed from the eigenvectors and the eigenvalues of AA^{T} . The right singular vectors from eigenvectors of $A^{T}A$. But the evals and evecs are hard to compute!

What we actually do is householder reflections to get a bidiagonal matrix, and versions of QR to get the SVD. $O(kn^3)$ operations for a square $n \times n$ matrix and k singular values/vectors.

L. Balzano

University of Michigan

The Incremental SVD for Euclidean Subspace Estimation

Goal: Given matrix $X = U\Sigma V^T$, form the SVD of $\begin{bmatrix} X & v_t \end{bmatrix}$.

Estimate the weights: $w = \arg \min_{a} ||Ua - v_t||_2^2$

Compute the residual: $r_t = v_t - Uw$.

Update the SVD:

$$\begin{bmatrix} X & v_t \end{bmatrix} = \begin{bmatrix} U & \frac{r_t}{\|r_t\|} \end{bmatrix} \begin{bmatrix} \Sigma & w \\ 0 & \|r_t\| \end{bmatrix} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}^T$$

and diagonalize the center matrix. What if we compute the same thing but with the partial-data weights and residual?

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Michigan

Introduction Missing Data Robust PCA Sparse PCA Calibration Conclusion
Adjustments to the SVD problem

If we add anything to the objective function, or add constraints, how do we adjust the SVD?

- An observation function (e.g., missing data) of the form $g(\cdot)$
- Any regularizer (e.g., ℓ_1 norm penalty) of the form $h(\cdot)$

$$\begin{array}{ll} \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{N \times d}}{\text{subject to}} & \|g(UW^{T} - M)\|_{F}^{2} \end{array} \quad (3)$$
$$\underset{U \in \mathcal{G}(n, d)}{\text{subject to}} & h(g, U, W) \leq \tau$$

University of Michigan

With the lack of obvious extension to SVD computations, we turn to optimization!

L. Balzano

Additionally we may observe our data streaming, again perhaps incomplete or under some other observation function.

For these problems we focus on first order methods and relate them to ISVD.

University of Michigan

Missing Data SVD (Low-Rank Matrix Completion):
 P_Ψ projects onto the coordinates Ψ ⊂ {1,..., n}.

$$\min_{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{N \times d}} \quad \|P_{\Psi}(UW^T - M)\|_F^2 \quad \text{s.t. } U \in \mathcal{G}(n, d)$$
 (4)

L. Balzano Manifold Optimization for Constrained SVD

Introduction	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Example	Application	ns II			

2 Robust SVD:

$$\begin{array}{l} \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{N \times d}}{\text{minimize}} & \| P_{\Psi} (UW^{T} - M) \|_{F}^{2} \\ \text{s.t.} & \| UW^{T} - M \|_{1} \leq \tau \text{ and } U \in \mathcal{G}(n, d) \end{array}$$
(5)

L. Balzano Manifold Optimization for Constrained SVD

University of Michigan

3 Sparse SVD:

$$\underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{N \times d}}{\text{minimize}} \quad \|P_{\Psi}(UW^T - M)\|_F^2 \text{ s.t. } \|U\|_1 \leq \tau. \ U \in \mathcal{G}$$

$$(6)$$

University of Michigan

Manifold Optimization for Constrained SVD

L. Balzano

Introduction	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
	A 14	15.7			
Example		ns IV			

Galibration SVD:

$$\begin{array}{ll} \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{N \times d}, g}{\text{minimize}} & \| P_{\Psi} \left(g(UW^{T} + M) \right) \|_{F}^{2} & (7) \\ \text{subject to} & g \text{ is } L - \text{Lipschitz and monotonic} \\ & U \in \mathcal{G}(n, d) \end{array}$$

L. Balzano

University of Michigan

< ロ > < 回 > < 回 >

Introduction	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
<u> </u>					

Collaborators

L. Balzano

Missing Data SVD (Low-Rank Matrix Completion)

$$\begin{array}{ll} \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{N \times d}}{\text{subject to}} & \| P_{\Psi}(UW^{T} - M) \|_{F}^{2} \\ \text{subject to} & U \in \mathcal{G}(n, d) \end{array}$$

 P_{Ψ} projects onto the coordinates $\Psi \subset \{1, \ldots, n\}$.

We could also replace P_{Ψ} with any compressed measurement matrix A.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Michigan

Introduction Missing Data Robust PCA Sparse PCA Calibration Conclusion

Example 1: Structure from Motion

Observe an object from different camera angles, matching reference points on the object from image to image.

- Matrix of reference point locations for an orthographic camera in 2-d images has rank three, and the range subspace reveals 3-d location of reference points.
- Object is solid, so some reference points are occluded in each photo. **Missing data!**

(Figure from Fitzgibbon, Cross, and Zisserman, 1998.)

For example suppose one camera is aligned on the z-axis:

Then we could factorize:

$$\begin{bmatrix} x_{11} & y_{11} & \cdots & x_{1t} & y_{1t} \\ x_{21} & y_{21} & & x_{2t} & y_{2t} \\ \vdots & & \vdots & & \vdots \\ x_{n1} & y_{n1} & \cdots & x_{nt} & y_{nt} \end{bmatrix} = \begin{bmatrix} X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \\ & \vdots \\ X_n & Y_n & Z_n \end{bmatrix} \begin{bmatrix} 1 & 0 & c_{xx} & c_{yx} \\ 0 & 1 & c_{yx} & c_{yy} & \cdots \\ 0 & 0 & c_{zx} & c_{zy} \end{bmatrix}$$

L. Balzano

University of Michigan

Structure from Motion: Figures and Reconstructions

University of Michigan

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])

L. Balzano

Byte counts are limited by the total number of source-destination flows in a computer network, and so they have a low-rank structure [Ding and Kolaczyk, 2013]. But the byte counts can not be streamed to a central location for every router, else they would congest the network.

Manifold Optimization for Constrained SVD

I Balzano

Example 3: Recommender Systems

University of Michigan

L. Balzano

We have an $n \times N$, rank r matrix X. However, we only observe a subset of the entries, $\Psi \subset \{1, \ldots, n\} \times \{1, \ldots, N\}$.

University of Michigan

L. Balzano

We have an $n \times N$, rank r matrix X. However, we only observe a subset of the entries, $\Psi \subset \{1, \ldots, n\} \times \{1, \ldots, N\}$.

We may find a solution by solving the following NP-hard optimization:

 $\begin{array}{l} \underset{M}{\text{minimize rank}(M)}\\ \text{subject to } M_{\Psi} = X_{\Psi} \end{array}$

University of Michigan

< < >> < </p>

L. Balzano

We have an $n \times m$, rank r matrix X. However, we only observe a subset of the entries, $\Psi \subset \{1, \ldots, n\} \times \{1, \ldots, m\}$.

Or we may solve this convex problem:

minimize
$$||M||_* = \sum_{i=1}^n \sigma_i(M)$$

subject to $M_{\Psi} = X_{\Psi}$

Exact recovery guarantees: X is exactly low-rank and incoherent. MSE guarantees: X is nearly low-rank with bounded $(r + 1)^{th}$ singular value.

Image: A math a math

University of Michigan

We could solve the convex problem:

$$\min_{X \in \mathbb{R}^{n \times T}} \quad \|X\|_* + \lambda \|P_{\Psi}(M - X)\|_F^2$$

Or we could solve this non-convex problem incrementally:

$$\min_{\substack{\text{span}(U) \in \mathcal{G}(d,n) \\ U^{T}U=I}} \|P_{\Psi}(UW^{T} - M)\|_{F}^{2} = \sum_{t=1}^{I} \|P_{\Psi_{t}}(Uw - v_{t})\|_{2}^{2}$$

University of Michigan

< 冊

Manifold Optimization for Constrained SVD

L. Balzano

$$\underset{U \in \mathbb{R}^{n \times d}}{\text{minimize}} \ F(U) = \sum_{t=1}^{T} f_t(U)$$

Algorithm 1 Euclidean Incremental Gradient Descent

Given U_0 and step size regimen η_t

for t = 1, 2, ..., T do

Compute the negative gradient at U_{t-1}

$$-\nabla f_t(U_{t-1}) = -\frac{df_t}{dU}\Big|_{U=U_{t-1}}$$

University of Michigan

Update:
$$U_t = U_{t-1} - \eta_t \nabla f_t(U_{t-1})$$

end for

L. Balzano

$$\underset{\text{span}(U)\in\mathcal{G}(d,n)}{\text{minimize}} F(U) = \sum_{t=1}^{T} f_t(U)$$

Algorithm 2 Grassmannian Incremental Gradient Descent

Given U_0 and step size regimen η_t for t = 1, 2, ..., T do Compute SVD of negative gradient [Edelman et al., 1998]

$$-\nabla f_t(U_{t-1}) = -(I - UU^T) \frac{df_t}{dU}\Big|_{U=U_{t-1}} =: YSZ^T$$

Update:
$$U_t = U_{t-1}Z\cos(S\eta_t)Z^T + Y\sin(S\eta_t)Z^T$$

end for

L. Balzano

Grassmannian Rank-One Update Subspace Estimation

$$\underset{\text{span}(U)\in\mathcal{G}(d,n)}{\text{minimize}} F(U) = \sum_{t=1}^{T} \|P_{\Psi_t}(Uw - v_t)\|_2^2$$

Given current estimate U_t and partial data vector $P_{\Psi_t}(v_t)$, and a step size $\eta_t > 0$:

$$w_{t} := \arg\min_{a} \|P_{\Psi_{t}}(U_{t}a - v_{t})\|_{2}^{2}; \quad p_{t} := U_{t}w_{t};$$

$$P_{\Psi_{t}}(r_{t}) := P_{\Psi_{t}}(v_{t} - U_{t}w_{t}); \quad P_{\Psi_{t}^{C}}(r_{t}) := 0;$$

$$\sigma_{t} := \|r_{t}\|\|p_{t}\|$$

$$-\nabla f_{t}(U) = \frac{r_{t}}{\|r_{t}\|}\sigma_{t}\frac{w_{t}^{T}}{\|w_{t}\|}$$

Image: A mathematical states and a mathem

University of Michigan

L. Balzano

Grassmannian Rank-One Update Subspace Estimation

$$\underset{\text{span}(U)\in\mathcal{G}(d,n)}{\text{minimize}} F(U) = \sum_{t=1}^{T} \|P_{\Psi_t}(Uw - v_t)\|_2^2$$

Current estimate U_t , projection weights w_t , projection residual r_t , $p_t = U_t w_t$, $\sigma_t = ||r_t|| ||p_t||$, and a step size $\eta_t > 0$:

$$-\nabla f_t(U) = \frac{r_t}{\|r_t\|} \sigma_t \frac{w_t^T}{\|w_t\|}$$

Then update:

$$U_{t+1} = U_t + \left[(\cos \sigma_t \eta_t - 1) \frac{p_t}{\|p_t\|} + \sin \sigma_t \eta_t \frac{r_t}{\|r_t\|} \right] \frac{w_t^T}{\|w_t\|}.$$

[Balzano et al., 2010]

L. Balzano

Manifold Optimization for Constrained SVD

University of Michigan

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
GROUS					

- Process the v_t as a sequential stream.
- Cost function $f_t(U) = \min_a ||P_{\Psi_t}(U_t a - v_t)||_2^2$
- Perform incremental gradient descent constrained to the Grassmannian G(d, n).
- Maintain an n × d estimate U_t, with orthonormal columns, of the basis Ū for target subspace S.
- Simple update formula U_t → U_{t+1} when the next [v_t]_{Ψt} is received.

< □ > < 同 >

I Balzano

Let $\phi_{t,i}$ represent the *i*th principal angle between the true subspace \overline{U} and our estimate U_t . Then let:

$$\sum_{i=1}^{d} \sin^2(\phi_{t,i}) =: \epsilon_t$$
$$\prod_{i=1}^{d} \cos^2(\phi_{t,i}) =: \zeta_t$$

Suppose $v_t = \overline{U}s_t$ where s_t are identically distributed, zero-mean, and uncorrelated, and we have $|\Psi| = q$ measurements of each vector.

< < >> < </p>

University of Michigan

Calculating the Decrease Factor ('X') from simulations

Theorem ([Balzano and Wright, 2015])

In a local region around the global minimizer, we have a linear expected convergence rate:

$$\mathbb{E}[\epsilon_{t+1}|\epsilon_t] \leq \left(1 - X\frac{q}{nd}\right)\epsilon_t \; .$$

L. Balzano

University of Michigan

Convergence rate in noise

Theorem (GROUSE convergence in noise [Zhang and Balzano, 2016])

Let the measurement be $v_t + n_t$ where $n_t \sim \mathcal{N}(0, \sigma^2)$.

$$\mathbb{E}\left[\zeta_{t+1}|\zeta_t\right] \ge \left(1 + \left(\frac{1}{1 + \frac{d}{n}\sigma^2}\right) \left(\frac{1 - \zeta_t}{d}\right) \left(1 - \frac{\sigma^2}{\frac{1 - \zeta_t}{d} + \sigma^2}\right)\right) \zeta_t$$

Corollary (No noise)

$$\mathbb{E}\left[\zeta_{t+1}|\zeta_t
ight] \geq \left(1 + rac{1-\zeta_t}{d}
ight)\zeta_t$$

University of Michigan

・ロト ・日子・ ・ ヨト

L. Balzano
	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Convora	onco				
Converg	ence				

Theorem (GROUSE convergence from compressed data [Zhang and Balzano, 2016])

Let the measurement be $A(v_t + n_t)$ where $n_t \sim \mathcal{N}(0, \sigma^2)$ and A is a $q \times n$ Gaussian random matrix.

$$\mathbb{E}\left[\zeta_{t+1}|\zeta_t\right] \geq \left(1 + \beta_1 \frac{q}{n} \left(\frac{1-\zeta_t}{d}\right) \left(1 - \frac{\sigma^2}{\frac{1-\zeta_t}{d} + \sigma^2}\right)\right) \zeta_t$$

University of Michigan

L. Balzano

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Converge	ence				

Theorem (Global Convergence of GROUSE with full data [Zhang and Balzano, 2016])

Let $\epsilon^* > 0$ be the desired accuracy of our estimated subspace. Then for any $\rho, \rho' > 0$ and with a random initialization, after

$$\mathcal{K} \geq \mathcal{K}_1 + \mathcal{K}_2 = \left(\left(rac{d^3}{
ho'} + 1
ight) \log rac{(d-
ho')}{d} + rac{d^2}{d-1} \log \left(rac{1}{\epsilon^*
ho}
ight)
ight)$$

iterations of GROUSE Algorithm,

$$\mathbb{P}\left(\epsilon_{\mathcal{K}} \leq \epsilon^*\right) \geq 1 - \rho' - \rho . \tag{8}$$

Image: Image:

University of Michigan

L. Balzano

The Incremental SVD for Euclidean Subspace Estimation

Given matrix $X = U \Sigma V^T$, form the SVD of $\begin{bmatrix} X & v_t \end{bmatrix}$.

Estimate the weights: $w = \arg \min_{a} ||Ua - v_t||_2^2$

Compute the residual: $r_t = v_t - Uw$.

Update the SVD:

$$\begin{bmatrix} X & v_t \end{bmatrix} = \begin{bmatrix} U & \frac{r_t}{\|r_t\|} \end{bmatrix} \begin{bmatrix} \Sigma & w \\ 0 & \|r_t\| \end{bmatrix} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}^T$$

and diagonalize the center matrix. What if we compute the same thing but with the partial-data weights and residual?

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Incremental SVD with Missing Data

Given matrix $X = U\Sigma V^T$, form the SVD of $\begin{bmatrix} X & v_t \end{bmatrix}$.

Estimate the weights: $w = \arg \min_a \|P_{\Psi_t}(U_t a - v_t)\|_2^2$.

Compute the residual: $r_t = v_t - Uw$ on Ψ_t ; zero otherwise.

Update the SVD:

$$\begin{bmatrix} U & \frac{r_t}{\|r_t\|} \end{bmatrix} \begin{bmatrix} \Sigma & w \\ 0 & \|r_t\| \end{bmatrix} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}^T$$

・ロン ・日子・ ・ ヨン

University of Michigan

and diagonalize the center matrix.

Introduction	Wilsong Data	Robust F C/R	Sparse i ert		
Incremer	ntal SVD w	ith Missing	Data: SAG	GE GROUS	SE
Given	matrix $X = U$	ΣV^T , form th	e SVD of $[X]$	v_t].	
Estima	te the weights	$w = \arg \min$	$ _a P_{\Psi_t} (U_t a -$	$ v_t) _2^2$.	
6					

Compute the residual: $r_t = v_t - Uw$ on Ψ_t ; zero otherwise.

Update the SVD:

$$\begin{bmatrix} U & \frac{r_t}{\|r_t\|} \end{bmatrix} \begin{bmatrix} \mathcal{I}_d & w \\ 0 & \|r_t\| \end{bmatrix} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}^T$$

and take the SVD of the center matrix. This is equivalent to the natural incremental gradient method on the Grassmannian (GROUSE) for a particular step size [Balzano and Wright, 2013].

Structure from Motion: Figures and Reconstructions

University of Michigan

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])

L. Balzano

Structure from Motion: Figures and Reconstructions

University of Michigan

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])

L. Balzano

Structure from Motion: Figures and Reconstructions

University of Michigan

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])

L. Balzano

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Robust	PCA				

$$\begin{array}{ll} \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{N \times d}}{\text{minimize}} & \| P_{\Psi} (UW^T - M) \|_F^2 \\ \text{subject to} & \| UW^T - M \|_1 \leq \tau \\ & U \in \mathcal{G}(n, d) \end{array}$$

া ব≣ টা হি তি ৭০ University of Michigan

イロン イヨン イヨン イヨン

L. Balzano

Grassmannian Robust Adaptive Subspace Tracking Alg

$$\min_{\text{span}(U) \in \mathcal{G}(d,n)} F(U) = \sum_{t=1}^{I} \|s_t\|_1 + \|P_{\Psi_t}(Uw + s_t - v_t)\|_2^2$$

Current estimate U_t , projection weights w_t , proxy for projection residual considering sparse estimate Γ_t , $p_t = U_t w_t$, $\sigma_t = \|\Gamma_t\| \|p_t\|$, and a step size $\eta_t > 0$:

$$-\nabla f_t(U) = \frac{\Gamma_t}{\|\Gamma_t\|} \sigma_t \frac{w_t^T}{\|w_t\|}$$

Then update:

$$U_{t+1} = U_t + \left[(\cos \sigma_t \eta_t - 1) \frac{p_t}{\|p_t\|} + \sin \sigma_t \eta_t \frac{\Gamma_t}{\|\Gamma_t\|} \right] \frac{w_t^T}{\|w_t\|}$$

[He et al., 2012]

L. Balzano

Sparse PC.

PCA

alibration

Conclusion

Foreground/background subtraction

Dataset	Resolution	Total Frames	Training Time	Tracking and	FPS
			_	Separating Time	
Airport Hall	144×176	3584	11.3 sec	20.9 sec	171.5
Shopping Mall	320×256	1286	33.9 sec	27.5 sec	46.8
Lobby	144×176	1546	3.9 sec	71.3 sec	21.7
Hall with Virtual Pan (1)	144×88	3584	3.8 sec	191.3 sec	18.7
Hall with Virtual Pan (2)	144×88	3584	3.7 sec	144.8 sec	24.8

- * ロ * * 個 * * 目 * * 日 * - 日 * うくぐ

University of Michigan

L. Balzano

< 17 >

Foreground/background subtraction

Demo: Open CV code written by Arthur Szlam!

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Sparse F	PCA				

$$\begin{array}{ll} \underset{U \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{N \times d}}{\text{subject to}} & \|P_{\Psi}(UW^{T} - M)\|_{F}^{2} \\ & U \|U\|_{1} \leq \tau \\ & U \in \mathcal{G}(n, d) \end{array}$$

া ব≣ টা হি তি ৭০ University of Michigan

イロン イヨン イヨン イヨン

L. Balzano

Sparse PCA on Face data identifies salient parts of the image.

University of Michigan

L. Balzano

Sparse PCA on ozone data identifies spatial regions that get influenced together.

L. Balzano

SPCAur	

$$\underset{\substack{\text{span}(U) \in \mathcal{G}(d,n) \\ R \in \mathcal{SO}(n)}}{\text{minimize}} F(U,R) = \lambda \|UR\|_1 + \sum_{t=1}^T \|P_{\Psi_t}(Uw - v_t)\|_2^2$$

Current estimate U_t , and rotation R_t .

$$\frac{df_t}{dU} = \begin{cases} (U_{\Psi_t}w - v_{\Psi_t})w^T + \lambda \cdot \operatorname{sign}(U_t R_{t+1}) \cdot R_{t+1}^T & \text{on } \Psi_t \\ \lambda \cdot \operatorname{sign}(U_t R_{t+1}) \cdot R_{t+1}^T & \text{on } \Psi_t^C \end{cases}$$

$$-\nabla f_t(U_{t-1}) = \left(I - U_t U_t^{\mathsf{T}}\right) \frac{df_t}{dU}\Big|_{U = U_{t-1}} =: \mathsf{YSZ}^{\mathsf{T}}$$

University of Michigan

・ロト ・日ト ・ヨト

L. Balzano

$$-\nabla f_t(U_{t-1}) = \left(I - U_t U_t^T\right) \frac{df_t}{dU}\Big|_{U = U_{t-1}} =: YSZ^T$$

Then update [Edelman et al., 1998]:

$$U_{t+1} = \begin{bmatrix} U_t Z & Y \end{bmatrix} \begin{bmatrix} \cos(\eta_t S) \\ \sin(\eta_t S) \end{bmatrix} Z^T$$
(9)

• • • • • • • •

-

University of Michigan

Fix U_{t+1} and update R_{t+1} on the Stiefel manifold.

L. Balzano

Sparse PCA Results

< □ > < 同 >

University of Michigan

Figure : Sparsity of the subspace estimate from complete observations given by six algorithms.

L. Balzano

Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion

Sparse PCA

Metrics	SPCAr	SPCAur	SPCA	SPCArt	Thres	GPower
Subspace Residual	6.0480e-5	0.0020	0.0818	0.0034	0.4680	0.0300
Runtime	0.0813	0.2442	0.0625	0.0859	0.0005	0.0797
Minimum Angle	90.0000	90.0000	87.3738	89.9093	83.7886	86.9081
Sparsity (10 ⁻⁴)	0.7697	0.8337	0.3298	0.8210	0.5498	0.1876
Convergence Proportion	0.2764	0.9975	1.0000	1.0000	1.0000	1.0000

Table : Subspace residuals, runtimes, minimum angles, sparsities when $\alpha = 10^{-4}$ and convergence proportions of these six algorithms including SPCA [Zou et al., 2006], SPCArt [Hu et al., 2014], and GPower [Journée et al., 2010].

A (1) > A (1) > A

Sparse PCA

10-2

Sparse PCA Results

On our ozone data, SPCAur gives the best sparsity result while still maintaining orthogonality, while SPCA and Thresholding do not.

University of Michigan

L. Balzano

$$\begin{array}{l} \underset{X \in \mathbb{R}^{n \times m}, g}{\text{minimize}} & \| P_{\Psi} \left(g(X - M) \right) \|_{F}^{2} \end{array}$$
(10)
subject to $g \text{ is } L - \text{Lipschitz and monotonic} \\ X \text{ low-rank} \end{array}$

< ロ > < 回 > < 回 > <</p>

University of Michigan

L. Balzano

Example 1: Recommender Systems

University of Michigan

L. Balzano

Sparse PC

Calibration

Conclusion

Example 2: Blind Sensor Calibration

University of Michigan

Manifold Optimization for Constrained SVD

L. Balzano

Example 2: Blind Sensor Calibration

Ion Selective Electrodes have a nonlinear response to their ions (pH, ammonium, calcium, etc)

L. Balzano

University of Michigan

Suppose we have predictor variables x and response variables y, and we seek a transformation g and vector w relating the two such that

$$\mathbb{E}[y|x] = g\left(x^{\mathsf{T}}w\right) \; .$$

- Generalized Linear Model: g is known, y|x are RVs from an exponential family distribution parameterized by w.
 - Includes linear regression, log-linear regression, and logistic regression

< ⊡ > < ∃ >

University of Michigan

• Single Index Model: Both g and w are unknown.

We seek a transformation g and vector w such that

$$\mathbb{E}[y|x] = g\left(x^{\mathsf{T}}w\right) \,.$$

Theorem (Kalai et al 2009, Kakade et al 2011)

Suppose $(x_i, y_i) \in \mathcal{B}_n \times [0, 1]$, i = 1, ..., p are draws from a distribution where $\mathbb{E}[y|x] = g(x^T w)$ for monotonic G-Lipschitz g and $||w|| \leq 1$. There is a poly $(1/\epsilon, \log(1/\delta), n)$ time algorithm that, given any $\delta, \epsilon > 0$, with probability $\geq 1 - \delta$ outputs $h(x) = \hat{g}(\hat{w}^T x)$ with

$$err(h) = \mathbb{E}_{y|x}[(g(x^Tw) - h(x))^2] < \epsilon$$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Algorithm 3 Lipshitz-Isotron Algorithm, Kakade et al 2011

Given T > 0, $(x_i, y_i)_{i=1}^p$; Set $w^{(1)} := 1$; for t = 1, 2, ..., T do Update g using Lipschitz-PAV: $g^{(t)} = LPAV((x_i^T w^{(t)}, y_i)_{i=1}^p)$. Update w using gradient descent:

$$w^{(t+1)} = w^{(t)} + \frac{1}{p} \sum_{i=1}^{p} \left(y_i - g^{(t)}(x_i^T w^{(t)}) \right) x_i$$

Image: A math a math

University of Michigan

end for

L. Balzano

Lipschitz Pool Adjacent Violator

- The Pool Adjacent Violator (PAV) algorithm pools points and averages to minimize mean squared error $g(x_i) - y_i$. (PAV)
- L-PAV adds the additional constraint of a given Lipschitz constant.

L. Balzano

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
High-rar	nk Matrices				

・ロ・・ (日・・・ 日・・・

া ব≣ টা হি তি ৭০ University of Michigan

For Z low-rank,

$$Y_{ij} = g(Z_{ij}) = \frac{1}{1 + \exp^{-\gamma Z_{ij}}}$$
, Y has full rank.
 $Y_{ij} = g(Z_{ij}) = \text{quantize_to_grid}(Z_{ij})$, Y has full rank.

L. Balzano

These matrices even have high effective rank.

Definition

The **effective rank** of an $n \times m$ matrix Y, m < n, with singular values σ_j is

$$r_{\epsilon}(Y) = \min\left\{k \in \mathbb{N} : \sqrt{\frac{\sum_{j=k+1}^{m} \sigma_{j}^{2}}{\sum_{j=1}^{m} \sigma_{j}^{2}}} \le \epsilon\right\}$$

University of Michigan

< □ > < 同 >

L. Balzano

These matrices even have high effective rank. For a rank-50, 1000x1000 matrix:

L. Balzano

Our model is as follows:

- Low-rank matrix $Z^* \in \mathbb{R}^{n \times m}$ with $m \le n$ and (for now, known) rank $r \ll m$.
- Lipschitz link function $g^*: \mathbb{R} \to \mathbb{R}$, monotonic, Lipschitz
- Noise matrix $N \in \mathbb{R}^{n \times m}$ with iid entries $\mathbb{E}[N] = 0$.
- Samples of matrix entries $\Psi \in \{1, ..., n\} \times \{1, ..., m\}$ is a multiset, sampled independently with replacement.

We observe $Y_{ij} = g^*(Z^*_{ij}) + N_{ij}$ for $(i,j) \in \Psi$

and we wish to recover g^* , Z^* .

University of Michigan

$$\begin{array}{ll} \min_{g,Z} & \sum_{\Psi} \left(g(Z_{i,j}) - Y_{i,j}\right)^2\\ \text{subj. to} & g: \mathbb{R} \to \mathbb{R} \text{ is Lipschitz and monotone}\\ & \operatorname{rank}(Z) \leq r \end{array}$$

Non-convex in each variable, but we can alternate the standard approaches:

• Use gradient descent and projection onto the low-rank cone for Z.

Image: A math a math

University of Michigan

• Use LPAV for g.

We call this algorithm MMC-LS.

Algorithm 4 MMC-LS

Given max iterations T > 0, step size $\eta > 0$, rank r, data Y_{Ψ} Init $\hat{g}^{(0)}(z) = \frac{|\Psi|}{mn}z$, $\hat{Z}^{(0)} = \frac{mn}{|\Psi|}Y_0$, where Y_0 zero-filled Y_{Ψ} . for t = 1, 2, ..., T do Update \hat{Z} using gradient descent:

$$\hat{Z}_{i,j}^{(t)} = \hat{Z}_{i,j}^{(t-1)} - \eta \left(\hat{g}^{t-1} \left(\hat{Z}_{i,j}^{(t-1)} \right) - Y_{i,j} \right) (\hat{g}^{t-1})' (\hat{Z}_{i,j}^{(t-1)}) \mathbb{I}_{(i,j) \in \Psi}$$

< □ > < 同 >

Project:
$$\hat{Z}^{(t)} = \mathcal{P}_r(\hat{Z}^{(t)})$$

Update \hat{g} : $\hat{g}^{(t)} = LPAV \left(\{ (\hat{Z}_{i,j}^{(t)}, Y_{i,j}) \text{ for } (i,j) \in \Psi \} \right)$.
nd for

University of Michigan

L. Balzano

e

Let $\Phi : \mathbb{R} \to \mathbb{R}$ be a differentiable function that satisfies $\Phi' = g^*$. Since g^* is monotonic, Φ is convex. Consider:

$$L(\Phi, Z) = \sum_{(i,j)\in\Psi} \Phi(Z_{i,j}) - Y_{i,j}Z_{i,j}$$

Differentiating with respect to Z we get that a minimizer satisfies $\sum_{(i,j)\in\Psi} g^*(Z_{i,j}) - Y_{i,j} = 0$; in other words, Z^* is a minimizer in expectation. So $L(\Phi, Z)$ is a calibrated loss for our problem.

University of Michigan

Algorithm 5 MMC-calibrated

Given max iterations T > 0, step size $\eta > 0$, rank r, data Y_{Ψ} lnit $\hat{g}^{(0)}(z) = \frac{|\Psi|}{mn} z$, $\hat{Z}^{(0)} = \frac{mn}{|\Psi|} Y_0$, where Y_0 zero-filled Y_{Ψ} . for t = 1, 2, ..., T do Update \hat{Z} using gradient descent:

$$\hat{Z}_{i,j}^{(t)} = \hat{Z}_{i,j}^{(t-1)} - \eta \left(\hat{g}^{t-1} \left(\hat{Z}_{i,j}^{(t-1)}
ight) - Y_{i,j}
ight) \mathbb{I}_{(i,j) \in \Psi}$$

Project: $\hat{Z}^{(t)} = \mathcal{P}_{r}(\hat{Z}^{(t)})$ Update g: $g^{(t)} = LPAV \left(\{ (\hat{Z}^{(t)}_{i,j}, Y_{i,j}) \text{ for } (i,j) \in \Psi \} \right).$ end for

University of Michigan

Image: A math a math
	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Remarks					

MMC consists of three steps: gradient descent, projection, and LPAV.

- The gradient descent step requires a step size parameter η; we chose a small constant stepsize by cross validation.
- The projection requires rank *r*. For our implementation, we started with a small *r* and increased it, in the same vein as Wen, Yin, and Zhang 2012.
- LPAV is the solution of a QP. Ravi developed an ADMM implementation as well.

-∢ ∃ ▶

MSE Analysis of MMC-c

Let
$$\hat{M} = \hat{g}(\hat{Z})$$
 and $M^* = g^*(Z^*)$.
Define the MSE as

$$MSE(\hat{M}) = \mathbb{E}\left[rac{1}{mn}\sum_{i=1}^{n}\sum_{j=1}^{m}\left(\hat{M}_{i,j}-M_{i,j}^{*}
ight)^{2}
ight]$$

University of Michigan

< ロ > < 回 > < 回 >

L. Balzano

MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration, Ganti, Balzano, Willett 2015)

Let $||Z^*|| = O(\sqrt{n})$ and $\sigma_{r+1}(Y) = \tilde{O}(\sqrt{n})$ with high probability. Let $\alpha = ||M^* - Z^*||$. Furthermore, assume that elements of Z^* and Y are bounded in absolute value by 1. Then the MSE of one step of MMC (T = 1) is bounded by

$$MSE(\hat{M}) \le O\left(\sqrt{\frac{r}{m}} + \frac{mn}{|\Psi|^{3/2}} + \sqrt{\frac{r\alpha}{m\sqrt{n}}\left(1 + \frac{\alpha}{\sqrt{n}}\right)}\right)$$

University of Michigan

Image: A math a math

L. Balzano

MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration, Ganti, Balzano, Willett 2015)

In addition to the previous assumptions, let

$$\alpha = \|M^* - Z^*\| = O(\sqrt{n}) .$$

Then the MSE of one step of MMC is bounded by

$$MSE(\hat{M}) \leq O\left(\sqrt{\frac{r}{m}} + \frac{mn}{|\Psi|^{3/2}}\right)$$

University of Michigan

Image: Image:

- (E

L. Balzano

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Syntheti	c Data				

 Z^* is 30 \times 20 and rank 5.

N = 0

Toy ISE calibration function: $g^*(z) = 1/(1 + \exp^{-\gamma z})$ Vary $\gamma = 1, 10, 40$.

Vary probability of observation p = .2, .35, .5, .7.

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
- ·	_				

Synthetic Data

University of Michigan

Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion

Synthetic Data

University of Michigan

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Syntheti	ic Data				

L. Balzano

University of Michigan

	Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion
Real Data	à				

- Paper recommendation: 3426 features from 50 scholars' research profiles.
- Jester: 4.1 Million continuous ratings (-10.00 to +10.00) of 100 jokes from 73,421 users.
- Movie lens: 100,000 ratings from 1000 users on 1700 movies.
- Cameraman: Dictionary learning on patches of the image.

Dataset	Dimension	$ \Psi $	$r_{0.01}(Y)$
PaperReco	3426×50	34294 (20%)	47
Jester-3	24938×100	124690 (5%)	66
ML-100k	1682 imes 943	64000 (4%)	391
Cameraman	1536 imes 512	157016 (20%)	393

Real Data Performance

RMSE on a held-out test set:

Dataset	$ \Psi /mn$	LMaFit-A	MMC-c $T = 1$	MMC-c
PaperReco	20%	0.4026	0.4247	0.2965
Jester-3	5%	6.8728	5.327	5.2348
ML-100k	4%	3.3101	1.388	1.1533
Cameraman	20%	0.0754	0.1656	0.06885

University of Michigan

・ロト ・回ト ・ヨト ・

L. Balzano

- Low-rank matrix constraints may be defined by a smooth manifold.
- Standard manifold optimization methods when applied to these non-convex problems work well.
- The GROUSE algorithm is just the natural incremental gradient on the Grassmannian for subspace learning.
- GROUSE is equivalent to a missing-data ISVD and it exhibits global convergence behavior.
- Adding sparsity regularizers works empirically but there is much to understand theoretically!

Image: A math a math

Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion

Thank you! Questions?

Image: A math a math

University of Michigan

University of Michigan

He, J., Balzano, L., and Szlam, A. (2012).

Incremental gradient on the grassmannian for online foreground and background separation in subsampled video.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Hu, Z., Pan, G., Wang, Y., and Wu, Z. (2014).

Sparse principal component analysis via rotation and truncation.

Journée, M., Nesterov, Y., Richtárik, P., and Sepulchre, R. (2010). Generalized power method for sparse principal component analysis.

The Journal of Machine Learning Research, 11:517-553.

Kennedy, R., Balzano, L., Wright, S. J., and Taylor, C. J. (2016).

Online algorithms for factorization-based structure from motion. Computer Vision and Image Understanding.

Schmidt, E. (1907).

Zur theorie der linearen und nicht linearen integralgleichungen. i teil. entwicklung willkürlichen funkionen nach system vorgeschriebener.

Mathematische Annalen, 63:433-476.

Stewart, G. (2011).

Fredholm, hilbert, schmidt: Three fundamental papers on integral equations. Available at www.cs.umd.edu/~stewart/FHS.pdf.

Stewart, G. W. (1993).

On the early history of the singular value decomposition. *SIAM review*, 35(4):551–566.

Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion

Zhang, D. and Balzano, L. (2016).

Global convergence of a grassmannian gradient descent algorithm for subspace estimation.

Zou, H., Hastie, T., and Tibshirani, R. (2006).

Sparse principal component analysis. Journal of computational and graphical statistics, 15(2):265–286.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = = のへの

University of Michigan

L. Balzano

The GROUSE update is essentially a projection of a step along the search direction $r_t w_t^T$. Defining the inconsistency measure

$$\mathcal{E}(U_t) := \min_{w_t} \| [U_t]_{\Psi_t} w_t - [v_t]_{\Psi_t} \|_2^2,$$

we have

$$\frac{d\mathcal{E}}{dU_t} = -2r_t w_t^T,$$

so we see that the GROUSE search direction is the negative gradient of $\ensuremath{\mathcal{E}}.$

The GROUSE update has much in common with quasi-Newton updates in optimization, in that it makes the **minimal adjustment required to match the latest observations**, while retaining a certain desired structure.

University of Michigan

This ISVD and GROUSE seem similar:

- We defined them both to compute and use w_t to extract the missing information from U_t and [v_t]_{Ψt}.
- Both generate a sequence $\{U_t\}$ of estimates of S.
- Both use only U_t and $[v_t]_{\Psi_t}$ to generate U_{t+1} .
- Neither has different confidence for different subspaces of the target subspace S; both maintain a "flat" approximation.

A (1) > A (1) > A

University of Michigan

Indeed, we can show that ISVD and GROUSE are identical for a certain choice of the step-size parameter η_t .

The choice of η_t is *not* the same as the "optimal" choice in GROUSE, but it works fairly well in practice.

・ロト ・日本・ ・ ヨト

University of Michigan

Relating partial-data ISVD and GROUSE

Theorem

Suppose we have the same U_t and $[v_t]_{\Psi_t}$ at the t^{th} iterations of ISVD and GROUSE. Then we can construct an $\eta_t > 0$ in GROUSE such that the next iterates U_{t+1} of both algorithms are identical, to within an orthogonal transformation by the $d \times d$ matrix

$$W_t := \begin{bmatrix} rac{w_t}{\|w_t\|} & Z_t \end{bmatrix},$$

where Z_t is a $d \times (d-1)$ matrix whose orthonormal columns span the nullspace of w_t^T .

The precise values for which GROUSE and ISVD are identical are:

$$\begin{split} \lambda &= \frac{1}{2} \left[(\|w_t\|^2 + \|r_t\|^2 + 1) + \sqrt{(\|w_t\|^2 + \|r_t\|^2 + 1)^2 - 4\|r_t\|^2} \right] \\ \text{This is the first eigenvalue of the matrix } \left[\begin{array}{cc} \mathcal{I}_d & w_t \\ 0 & \|r_t\| \end{array} \right]; \end{split}$$

the next d-1 eigenvalues are 1 by the interleaving theorem.

$$\beta = \frac{\|r_t\|^2 \|w_t\|^2}{\|r_t\|^2 \|w_t\|^2 + (\lambda - \|r_t\|^2)^2} \quad ; \quad \eta_t = \frac{1}{\sigma_t} \arcsin\beta.$$

University of Michigan

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

L. Balzano

Introduction Missing Data Robust PCA Sparse PCA Calibration Conclusion
Incremental SVD with Missing Data Options

projection weights $w = \arg \min_a ||P_{\Psi_t}(U_t a - v_t)||_2^2$; residual: $r_t = v_t - Uw$ on Ψ_t ; zero otherwise.

$$\begin{array}{c|c} \text{ISVD with interpolation:} \begin{bmatrix} U & \frac{r_t}{\|r_t\|} \end{bmatrix} \begin{bmatrix} \Sigma & w \\ 0 & \|r_t\| \end{bmatrix} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}^{T} \\ \text{SAGE GROUSE:} \begin{bmatrix} U & \frac{r_t}{\|r_t\|} \end{bmatrix} \begin{bmatrix} \mathcal{I}_d & w \\ 0 & \|r_t\| \end{bmatrix} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}^{T} \\ \text{Brand Algorithm } (\beta \leq 1) : \begin{bmatrix} U & \frac{r_t}{\|r_t\|} \end{bmatrix} \begin{bmatrix} \beta \Sigma & w \\ 0 & \|r_t\| \end{bmatrix} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}^{T} \end{array}$$

Manifold Optimization for Constrained SVD

Missing Data	Robust PCA	Sparse PCA	Calibration	Conclusion

Incremental SVD with Missing Data Performance

Image: A math a math

University of Michigan

L. Balzano