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Introduction

Low-rank Models and Manifold Optimization

Low-rank matrix models have several applications:

@ communications and radar
@ computer vision

@ recommender systems

@ environmental science.

We therefore often face optimization problems that require
non-convex low-rank constraints.

minimize f(M)
M

subject to  h(M) <7
M low-rank, or has orthogonal columns, etc
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Introduction

Low-rank Models and Manifold Optimization

minimize f(M)

subject to h(M) <t
M low-rank, or has orthogonal columns, etc

Low-rank constraints often form smooth manifolds in R".

@ Low-rank manifold: n x m matrices of rank-d

o Stiefel Manifold: tall n x d matrices with orthonormal
columns denoted S(n, d).

e Grassmannian: d-dimensional subspaces of R" (quotient of
Stiefel) denoted G(n, d).

o Flag Manifold: nested sequences of subspaces with given
dimensions, F(n,di,...,ds)
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Introduction

Manifold Optimization

Classical optimization techniques use
the geometry of Euclidean space.

Manifold optimization techniques use
the geometry of the manifold to take pm—
gradients and gradient steps along the
manifold.

We focus algorithms that use the Stiefel and Grassmann manifolds
to solve “SVD-like" problems.
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Introduction

Outline

The SVD as an optimization problem and variants where we
may use manifold optimization

Matrix Completion
Robust PCA
Sparse PCA

Calibration Matrix Completion
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Introduction

Subspace Model for Data

The Singular Value Decomposition (SVD) factors a low-rank
matrix into three matrices:

M=uUzVvT’

where U, V' have orthonormal columns and X is diagonal.

=IB-
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Introduction

Linear Low Rank Subspaces via SVD

If your data matrix is not exactly low-rank but you wish to find the
best low-dimensional linear structure that models the data, you can
use the SVD; that makes it a useful exploratory data analysis tool.
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Introduction

The linear subspace is a good model in many applications.
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Introduction

Linear Low Rank Subspaces via SVD

The SVD gives the solution to the following problem?:

minimize |[UZWT — M|% (1)
subject to U, W € G(n,d)
3> > 0;d x d diagonal (2)

where G(n, d) is the Grassmannian, the space of all d-dimensional
subspaces of R".

1This result was discovered independently by both Schmidt in 1907
[Stewart, 1993, Stewart, 2011, Schmidt, 1907] and Eckart and Young in 1936
[Eckart and Young, 1936].

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Introduction

Linear Low Rank Subspaces via SVD

Goal: Given matrix A, form the SVD UZ VT = X.

The left singular vectors and singular values of A can be computed
from the eigenvectors and the eigenvalues of AAT. The right
singular vectors from eigenvectors of AT A. But the evals and evecs
are hard to compute!

What we actually do is householder reflections to get a bidiagonal

matrix, and versions of QR to get the SVD. O(kn3) operations for
a square n x n matrix and k singular values/vectors.
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Introduction

The Incremental SVD for Euclidean Subspace Estimation

Goal: Given matrix X = UZVT, form the SVD of [X v¢].
Estimate the weights: w = argmin||Ua — v¢||3

a
Compute the residual: r; = v — Uw.

Update the SVD:

X w]=|U ||2||H§ HZHH\({ (1)]T

and diagonalize the center matrix. What if we compute the same
thing but with the partial-data weights and residual?
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Introduction

Adjustments to the SVD problem

If we add anything to the objective function, or add constraints,
how do we adjust the SVD?

@ An observation function (e.g., missing data) of the form g(-)

@ Any regularizer (e.g., ¢1 norm penalty) of the form h(-)

inimi uwT — M)|2 3
paminimize, & ( )IE (3)

subject to  h(g, U, W) <t
U e G(n,d)

With the lack of obvious extension to SVD computations, we turn
to optimization!
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Streaming SVD

Additionally we may observe our data streaming, again perhaps
incomplete or under some other observation function.

For these problems we focus on first order methods and relate
them to ISVD.
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Introduction

Example Applications |

@ Missing Data SVD (Low-Rank Matrix Completion):
Py projects onto the coordinates W C {1,...,n}.

Py(UWT — M)||Z2 st. UeG(nd) (4
ek migns 1PV i st U€Gnd) (4

20 40 60
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Introduction

Example Applications Il
@ Robust SVD:

e T 2
yaminimize, [Py(UWT — M)||E

st. ||[UWT = M|y <7and UeG(nd) (5
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Introduction

Example Applications Il

© Sparse SVD:

minimize Py(UWT — M)||Zst. |[U|l1<T. Ue
peminimize, - IIPu JEst UL <7 Ueg
(6)
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Introduction

Example Applications IV
@ Calibration SVD:

pesinimizs,, 1P (8 ) IF "

subject to g is L — Lipschitz and monotonic
Ue€g(n,d)

A -

users

Mot interested
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Collaborators
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Missing Data

Missing Data SVD (Low-Rank Matrix Completion)

L T 2
peminimize [1Pu(UW" = M)|E

subject to U € G(n, d)

Py projects onto the coordinates W C {1,..., n}.

We could also replace Py with any compressed measurement
matrix A.
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Missing Data

Example 1: Structure from Motion

Observe an object from different
camera angles, matching
reference points on the object
from image to image.

@ Matrix of reference point
locations for an orthographic
camera in 2-d images has
rank three, and the range
subspace reveals 3-d
location of reference points.

(Figure from Fitzgibbon, Cross,
@ Object is solid, so some and Zisserman, 1998.)
reference points are
occluded in each photo.
Missing data!
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Missing Data

Example 1: Structure from Motion

For example suppose one camera is aligned on the z-axis:

Then we could factorize:

X1 oy ot Xie Yir X1 Y1 4

Xo1 Y21 Xot Yot Xo Yo Zo| |1 0 o ox
. . = . 0 1 ox ¢y
: : . 0 0 cx ¢y

Xnl  Ym1  c Xnt  Ynt Xn Y, Zn
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Missing Data

Structure from Motion: Figures and Reconstructions

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])
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Missing Data

Example 2: Computer network analysis

Byte counts are limited by the total number of source-destination
flows in a computer network, and so they have a low-rank structure
[Ding and Kolaczyk, 2013]. But the byte counts can not be
streamed to a central location for every router, else they would
congest the network.

University of Michigan
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Missing Data

Example 3: Recommender Systems

Mixture of
hundreds of
models, including |

N avty and au ‘ 08675 882 2008-03-01 07:03:35
gradient descent : 08682 875 2008-02-28 234045
3 08708 847 2008-02-06 14:12:44

Gradient descent
on low-rank
parameterization

53 08900 645 20080214 16:17:54
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Missing Data

Low-rank Matrix Completion

We have an n x N, rank r matrix X. However, we only observe a
subset of the entries, W C {1,...,n} x {1,...,N}.

Users
- O . [ |
g . =
S("m m -
= | }
- o o
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Missing Data

Low-rank Matrix Completion

We have an n x N, rank r matrix X. However, we only observe a
subset of the entries, W C {1,...,n} x {1,..., N}.

We may find a solution by solving the following NP-hard
optimization:

minimize rank(M)
M

subject to My = Xy
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Missing Data

Low-rank Matrix Completion

We have an n x m, rank r matrix X. However, we only observe a
subset of the entries, ¥ C {1,...,n} x {1,...,m}.

Or we may solve this convex problem:

nimize M. — M
minimize || M| ;0( )
subject to My = Xy

Exact recovery guarantees: X is exactly low-rank and incoherent.
MSE guarantees: X is nearly low-rank with bounded (r + 1)
singular value.
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Missing Data

Batch versus Online approach

We could solve the convex problem:

inimi X« + [Py (M — X)||2
minimize 1 X1+ -+ Al Pu( )iz

Or we could solve this non-convex problem incrementally:

span(U)eg(d,n

-
minimize 1Pe(UWT = M)[E = > [Py, (Uw — v)I13
uTu=I =t
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Missing Data

Incremental Euclidean Optimization

T
minimize F(U) = Z f:(U)

nxd
UeR —1

Algorithm 1 Euclidean Incremental Gradient Descent
Given Uy and step size regimen 7);
fort=1,2,..., T do

Compute the negative gradient at U;_1

dfy

—Vft(Ut—l) = —w

U=U;—1

Update: Ut = Ut—l — ntvﬂ'(Ut—l)
end for
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Missing Data

Incremental Grassmannian Optimization

pinisimize ) F(U) =3 Al

Algorithm 2 Grassmannian Incremental Gradient Descent
Given Uy and step size regimen 7);
fort=1,2,..., T do
Compute SVD of negative gradient [Edelman et al., 1998]

df
~VH(Ue1) = —(1 — UUT) L

Update: U; = U;_1Zcos(Sn:)Z7 + Y'sin(Sn:)ZT
end for
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Missing Data

Grassmannian Rank-One Update Subspace Estimation

-
minimize F(U) = Py (Uw — v)II2
span(U)eg(d,n) ( ) ;1“ wt( f)HZ

Given current estimate U; and partial data vector Py, (v;), and a
step size 1y > O:
- 2
W := arg min |Py,(Uta — vi)ll3;  pr:= Urwy;

P\Ut(rt) = P\Ut(Vt — UtWt); P\Ug(rt) = O,

ot = [|rel[| el
T
Iy Wy
—Vi(U) = —0—
[lrell " [lwe]
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Missing Data

Grassmannian Rank-One Update Subspace Estimation

T
. . . FU — P U _ 2
S P 25 [Pl

Current estimate U, projection weights w;, projection residual r,
pr = Uswy, o = ||re||||pe]], and a step size n; > 0:

-
ry Wt
—Vfi(U) =0
+(U) [rell” ] well
Then update:
re wy
Usrs = Vs {(cosoun: = g+ o | f

[Balzano et al., 2010]
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Missing Data

GROUSE

@ Process the v; as a sequential
stream.

@ Cost function
fr(U) = min, || Py, (Ura — v1)|[3

Grassmannian

@ Perform incremental gradient Rank-One Update
. Subspace
descent constrained to the Estimation

Grassmannian G(d, n).

@ Maintain an n x d estimate U;,
with orthonormal columns, of the
basis U for target subspace S.

@ Simple update formula Uy — U;i1
when the next [v¢]y, is received.

L. Balzano University of Michigan
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Missing Data

Convergence definitions

Let ¢;,; represent the ith principal angle between the true subspace
U and our estimate U;. Then let:

d
Z Sin2(¢t7i) =! €t
i=1

d
H cos?(¢e,i) =1 (e

i=1

Suppose v; = Us; where s; are identically distributed, zero-mean,
and uncorrelated, and we have |V| = g measurements of each
vector.
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Missing Data

Calculating the Decrease Factor ('X") from simulations

Theorem ([Balzano and Wright, 2015])
In a local region around the global minimizer, we have a linear

expected convergence rate:
1
0.8
0.6
0.4
0.2
> 0

L. Balzano University of Michigan

E[6t+1|€t] S (1 — X%) €t .

X factor for n=10000 X factor for g=100
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Missing Data

Convergence rate in noise

Theorem (GROUSE convergence in noise
[Zhang and Balzano, 2016])

Let the measurement be vy + n; where ny ~ N (0, 02).

1 1—¢ o?
E [Ce+1lCe] > <1+ <1+%02> ( d ) (1_%>> N

Corollary (No noise)

E [Cty1]¢e] > (1 + = ;Ct> Ct
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Missing Data

Convergence

Theorem (GROUSE convergence from compressed data
[Zhang and Balzano, 2016])

Let the measurement be A(v; + n;) where ny ~ N(0,02) and A is
a g x n Gaussian random matrix.

L= ¢ 2
E [Ceq1]¢e] > (14—51%( d<> (1—$>> Gt

L. Balzano University of Michigan
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Missing Data

Convergence

Theorem (Global Convergence of GROUSE with full data
[Zhang and Balzano, 2016])

Let € > 0 be the desired accuracy of our estimated subspace.
Then for any p, p' > 0 and with a random initialization, after

3 ! 2
K> Kithoe (L 41)0gd=r), 9 - log L
4 d d— €*p

iterations of GROUSE Algorithm,

Plek <e)>1—-p —p. (8)
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Missing Data

The Incremental SVD for Euclidean Subspace Estimation

Given matrix X = UZV'T, form the SVD of [X v;].
Estimate the weights: w = argmin||Ua — v¢||3
a

Compute the residual: r; = v — Uw.

Update the SVD:

X w]=|U ||2||H§ HZHH\({ (1)]T

and diagonalize the center matrix. What if we compute the same
thing but with the partial-data weights and residual?

L. Balzano University of Michigan
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Missing Data

The Incremental SVD with Missing Data

Given matrix X = ULV'T, form the SVD of [X v;].

5

Estimate the weights: w = arg min, || Py, (Ura — v¢)|
Compute the residual: r; = v; — Uw on W, ; zero otherwise.
Update the SVD:
v ][5 mlls 8]
o el Lo 1

and diagonalize the center matrix.
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Missing Data

Incremental SVD with Missing Data: SAGE GROUSE

Given matrix X = ULV'T, form the SVD of [X v;].

| 2

Estimate the weights: w = arg min, ||Py,(Ura — v¢)||5 -

Compute the residual: r; = v; — Uw on W, ; zero otherwise.
Update the SVD:
-
[ U } g w vV 0
flrel 0 |lrel] 0 1
and take the SVD of the center matrix. This is equivalent to the

natural incremental gradient method on the Grassmannian
(GROUSE) for a particular step size [Balzano and Wright, 2013].
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Missing Data

Structure from Motion: Figures and Reconstructions

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])
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Missing Data

Structure from Motion: Figures and Reconstructions

0.4+

0.24

Proportion of runs with 2D RMSE < x

2D RMSE

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])
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Missing Data

Structure from Motion: Figures and Reconstructions

10° 3 19 :
’ \ . oo /_I'_/_‘)
10° o \ | SE—

0.6

2D RMSE
=
|

044

0.2+

Proportion of runs with 2D RMSE < x

——— GROUSE100
T T T 1
6 7 8 9

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])
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Robust PCA

Robust PCA

minimize Py(UWT — M)
Jminimize, [Pyl I

subject to  |[UWT — M|y <7
Ueg(nd)

L. Balzano University of Michigan
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Robust PCA

Grassmannian Robust Adaptive Subspace Tracking Alg

-
minimize F(U) = sell1 4 || Pw, (Uw + s¢ — v) |3
piniimize ) F(U) = 3 sl + [ Pou(Un -+ = )1
Current estimate U, projection weights w;, proxy for projection
residual considering sparse estimate 'y, p; = Urwy, o = ||T¢]||| Pt
and a step size n; > 0:

rt WT
_Vft(U) — 7@71‘
el Tl
Then update:
Pt - I WtT
U =U -1 .
t+1 f*[““”m Wmn+WWWWnﬂnwm

[He et al., 2012]

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Robust PCA

Foreground /background subtraction

Grassmannian
Robust Adaptive
Subspace Tracking
Algorithm

Z

o~

Dataset Resolution Total Frames Training Time Tracking and FPS

Separating Time
Airport Hall 144 %176 3584 11.3 sec 20.9 sec 171.5
Shopping Mall 320 %256 1286 33.9 sec 27.5 sec 46.8
Lobby 144X 176 1546 3.9 sec 71.3 sec 21.7
Hall with Virtual Pan (1) 144 % 88 3584 3.8 sec 191.3 sec 18.7
Hall with Virtual Pan (2) 144 x 88 3584 3.7 sec 144.8 sec 24.8

L. Balz University of Michigan
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Robust PCA

Foreground /background subtraction

t =100 =101 =105 =110 =115 =120 t=125
Demo: Open CV code written by Arthur Szlam!
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Sparse PCA

Sparse PCA

minimize Py(UWT — M)||?
pemminimize [1Pw( )IE
subject to  ||U|1 <7

U e G(n,d)

L. Balzano University of Michigan
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Sparse PCA

Example 1: Face image decomposition

Sparse PCA on Face data identifies salient parts of the image.
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Sparse PCA

Example 2: Air pollution with spatial structure

Sparse PCA on ozone data identifies spatial regions that get
influenced together.

Ozone Concentration

9 78 77
Longitude

42

hin

Latitude
B
o

39r.
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Sparse PCA

SPCAur

T

inimize  F(U,R) = A|UR Py, (Uw — vo)I5
piminimize (U,R) = Al |!1+;|| v (Uw — )3
ReSO(n)

Current estimate U;, and rotation R;.

dfy  [(Uy,w — vy )wT + X -sign(UeRey1) - R, on W,
du A-sign(UeRet1) - R4 on W¢

i3

= YszT
du

CV(Upq) = (/ - Utu,_T)

U=U;—1

L. Balzano University of Michigan
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Sparse PCA

SPCAur (continued)

dfy

—V(Up1) = (/ - Utu,_T) T — vszT
U=U;—1
Then update [Edelman et al., 1998]:
cos (n:S
Urs1 = [UeZ Y] Lin((;';: 5))] 77 (9)

Fix Ury1 and update R;y1 on the Stiefel manifold.
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Sparse PCA

Sparse PCA Results

10
L 3 o - 0 top left zoom
et 107 1
. = - e
107 -® - < ol — v b SR — ¥ —
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10 — / ~Yie ’
e
Z o 4 Yo /7
g / 7 |=sPCAr(diminishing) ¢
2107 - -+-SPCAr(multi-level) /
/ K +=SPCAur(diminishing)
/ e o:SPCAur(multi-level) 2
. e SPCA 7
1074 2
K2 -SPCATt
e crorenieniond’ o ing i
. |=GPower 107" 5 - 2 5 s
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alpha o

Figure : Sparsity of the subspace estimate from complete observations
given by six algorithms.
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Sparse PCA

Sparse PCA
[ Metrics [ SPCAr [ SPCAur [ SPCA | SPCArt | Thres [ GPower |
Subspace 6.0480e—5 0.0020 0.0818 0.0034 0.4680 0.0300
Residual
Runtime 0.0813 0.2442 0.0625 0.0859 0.0005 0.0797
Minimum 90.0000 90.0000 87.3738 89.9093 83.7886 86.9081
Angle
Sparsity 0.7697 0.8337 0.3298 0.8210 0.5498 0.1876
(10-)
Convergence 0.2764 0.9975 1.0000 1.0000 1.0000 1.0000
Proportion

Table : Subspace residuals, runtimes, minimum angles, sparsities when
a = 107* and convergence proportions of these six algorithms including
SPCA [Zou et al., 2006], SPCArt [Hu et al., 2014], and GPower
[Journée et al., 2010].

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD




Sparse PCA

Sparse PCA Results

Ozone Concentration

Latitude
N
o

On our ozone data,
SPCAur gives the
best sparsity result
while still maintain-
ing orthogonality,
while SPCA and
Thresholding do
not.

sparsity

/ Thresholding /

=GPower
10 = = 4 _2
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Calibration

Calibration SVD

minimize || Py (g(X — M)) |7 (10)
XeRMxm g

subject to g is L — Lipschitz and monotonic

X low-rank
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Calibration

Example 1. Recommender Systems

prediction

e deded

H |
modeling‘opﬁmizaﬁon
E

o

NETFLIX .
5

users
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Calibration

Example 2: Blind Sensor Calibration
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Calibration

Example 2: Blind Sensor Calibration

lon Selective Electrodes have a !

nonlinear response to their ions goe

(pH, ammonium, calcium, etc) Zoc
8
50.4
Eo.z

=)

0.2 0.4 0.6 0.8 1

o
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Calibration

Single Index Model

Suppose we have predictor variables x and response variables y,
and we seek a transformation g and vector w relating the two such
that

Ely|x] =g (x"w) .

@ Generalized Linear Model: g is known, y|x are RVs from an
exponential family distribution parameterized by w.

o Includes linear regression, log-linear regression, and logistic
regression

@ Single Index Model: Both g and w are unknown.
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Calibration

Single Index Model Learning

We seek a transformation g and vector w such that

Ely|x] =g (x"w) .

Theorem (Kalai et al 2009, Kakade et al 2011)

Suppose (x;,y;i) € B, x [0,1], i=1,...,p are draws from a
distribution where E[y|x] = g(x"w) for monotonic G-Lipschitz g
and ||w|| < 1. There is a poly(1/e,log(1/d), n) time algorithm
that, given any 6,¢ > 0, with probability > 1 — § outputs

h(x) = g(WwTx) with

err(h) = Ey[(g(x" w) — h(x))*] < ¢

L. Balzano University of Michigan
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Calibration

Single Index Model Learning

Algorithm 3 Lipshitz-Isotron Algorithm, Kakade et al 2011
Given T > 0, (x,-,y,-)le;
Set w(l) .= 1:
fort=1,2,..., T do
Update g using Lipschitz-PAV: g(t) = [ PAV ((X,Tw(t),yi)?:l).
Update w using gradient descent:

P
w1 — () 4 ;Z ()’i - g(t)(XiTW(t))) Xj
i=1

end for

L. Balzano University of Michigan
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Calibration

Lipschitz Pool Adjacent Violator

@ The Pool Adjacent Violator
(PAV) algorithm pools
points and averages to
minimize mean squared error

g(xi) = yi.
@ L-PAV adds the additional of/ % L ipschitz PAV
constraint of a given 02

K i -1 -0.5 0 0.5 1
Lipschitz constant.
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Calibration

High-rank Matrices

For Z low-rank,

Y, =g(Zy) = m Y has full rank.

Yij = g(Zjj) = quantize_to_grid(Zj), Y has full rank.

L. Balzano University of Michigan
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High-rank Matrices: Effective rank

These matrices even have high effective rank.

The effective rank of an n X m matrix Y, m < n, with singular
values o is

re(Y)=min< ke N:
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High-rank Matrices: Effective rank

These matrices even have high effective rank.
For a rank-50, 1000x1000 matrix:

Logistic function Quantizing to a grid
1000 1000
= 800 < 800
o <
(]
2 600 2 600
kS 2
D ()
© 400 — 400
b= 8
< o
© 200 L 200
0 0
0 0.1 02 03 04 05 06 0 20 40 60 80 100 120
gamma number of grid points
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Problem Formulation

Our model is as follows:

o Low-rank matrix Z* € R™™ with m < n and (for now,
known) rank r < m.

@ Lipschitz link function g* : R — R, monotonic, Lipschitz

e Noise matrix N € R™"™ with iid entries E[N] = 0.

e Samples of matrix entries ¥ € {1,...,n} x {1,...,m} isa
multiset, sampled independently with replacement.

We observe Yj; = g*(Z,-j) + Njj for (i,j) e ¥

and we wish to recover g*, Z*.
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Optimization Formulation

min Y (g(Zij) - Yi;)?

374 v

subj. to g :R — R is Lipschitz and monotone
rank(Z) <r

Non-convex in each variable, but we can alternate the standard
approaches:

@ Use gradient descent and projection onto the low-rank cone
for Z.

@ Use LPAV for g.
We call this algorithm MMC-LS.
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MMC-LS Algorithm

Algorithm 4 MMC-LS
Given max iterations T > 0, step size n > 0, rank r, data Yy
Init O)(z) = ¥, 2000 = 72 Yo, where Yq zero-filled Yy.
fort=1,2,..., T do
Update 4 using gradient descent:

29 = 25700 (&7 (2577) - vis) @Y 2 e

Project: Z(1) = P,(Z2(1)
Update g: gV = LPAV ({(2,‘5), Yi,) for (i,j) € w}).
end for
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Optimization of Calibrated Loss

Let @ : R — R be a differentiable function that satisfies ¢’ = g*.
Since g* is monotonic, ® is convex. Consider:

L(®,2)= > &(Z))- YijZ,
(ij)ev

Differentiating with respect to Z we get that a minimizer satisfies
Z(i,j)E\IJ g*(Zij) — Yij = 0; in other words, Z* is a minimizer in
expectation. So L(®, Z) is a calibrated loss for our problem.
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MMC-c Algorithm

Algorithm 5 MMC-calibrated
Given max iterations T > 0, step size n > 0, rank r, data Yy
Init ) (2) = ¥, 200 = 72 Yo, where Yq zero-filled Yy.
fort=1,2,..., T do
Update 4 using gradient descent:

20 =257 —n(2 (Z57) - Yio) Tugew

Project: Z(1) = Pr(f(t))
Update g: g¥) = LPAV ({(2.(“) Yi,) for (i,j) € w}).

ij
end for
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Remarks

MMC consists of three steps: gradient descent, projection, and
LPAV.

@ The gradient descent step requires a step size parameter n; we
chose a small constant stepsize by cross validation.

@ The projection requires rank r. For our implementation, we
started with a small r and increased it, in the same vein as
Wen, Yin, and Zhang 2012.

@ LPAV is the solution of a QP. Ravi developed an ADMM
implementation as well.
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MSE Analysis of MMC-c

Let M = g(Z) and M* = g*(Z*).
Define the MSE as

o3 (41 )’

i=1 j=1

MSE(WI) = E | -
n
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MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration, Ganti, Balzano,
Willett 2015)

Let ||Z*|| = O(v/n) and o,41(Y) = O(v/n) with high probability.
Let o = ||M* — Z*||. Furthermore, assume that elements of Z*

and Y are bounded in absolute value by 1.
Then the MSE of one step of MMC (T = 1) is bounded by

MSE(M)30<\/§+N'J’|7—;’/2+\/mr—\% (1+%>> .

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Calibration

MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration, Ganti, Balzano,
Willett 2015)

In addition to the previous assumptions, let

a=|M"—=Z*| = O(v/n).

Then the MSE of one step of MMC is bounded by

A r mn
MSE(M) < O <\/;+ |‘4’|—3/2> .

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Calibration

Synthetic Data

Z* is 30 x 20 and rank 5.

N=0

Toy ISE calibration function: g*(z) = 1/(1 + exp™ %)
Vary v =1, 10, 40.

Vary probability of observation p = .2,.35,.5,.7.
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Synthetic Data

0.5
804 +—
©
-]
-
§0.3 T T mp=0.2
c
‘é’ p=0.5
e 0.1 ] | T p=0.7
0

LRMC MMC-LS MMC-1 MMC-c
y =1.0
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Synthetic Data

0.8
s
806
=)
g “p=0.2
c 04 =1 — — —
o Kp=0.35
& =0.5
> p=v.
[+ 4

| i
E
|
1
i !

LRMC MMC-LS MMC-1 MMC-c
Yy =10
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Synthetic Data
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Real Data

Paper recommendation: 3426 features from 50 scholars’
research profiles.

Jester: 4.1 Million continuous ratings (-10.00 to +10.00) of
100 jokes from 73,421 users.

Movie lens: 100,000 ratings from 1000 users on 1700 movies.

Cameraman: Dictionary learning on patches of the image.

Dataset Dimension 4 r0.01(Y)
PaperReco | 3426 x 50 | 34294 (20%) 47

Jester-3 | 24938 x 100 | 124690 (5%) | 66
ML-100k | 1682 x 943 | 64000 (4%) | 391
Cameraman | 1536 x 512 | 157016 (20%) 393

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Real Data Performance

Calibration

RMSE on a held-out test set:

Dataset |W|/mn | LMaFit-A | MMC-c T =1 | MMC-c
PaperReco 20% 0.4026 0.4247 0.2965
Jester-3 5% 6.8728 5.327 5.2348
ML-100k 4% 3.3101 1.388 1.1533
Cameraman | 20% 0.0754 0.1656 0.06885
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Conclusion

Conclusion

@ Low-rank matrix constraints may be defined by a smooth
manifold.

@ Standard manifold optimization methods when applied to
these non-convex problems work well.

@ The GROUSE algorithm is just the natural incremental
gradient on the Grassmannian for subspace learning.

@ GROUSE is equivalent to a missing-data ISVD and it exhibits
global convergence behavior.

@ Adding sparsity regularizers works empirically but there is
much to understand theoretically!
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GROUSE Comments

The GROUSE update is essentially a projection of a step along the
search direction r;w,”. Defining the inconsistency measure

E(Ur) = ”‘)Vit” I[Uelw,we — [velw. |13,

we have JE
Tw = —2r1_-WtT,

so we see that the GROUSE search direction is the negative
gradient of £.

The GROUSE update has much in common with quasi-Newton
updates in optimization, in that it makes the minimal adjustment
required to match the latest observations, while retaining a
certain desired structure.
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Partial-data ISVD and GROUSE

This ISVD and GROUSE seem similar:

@ We defined them both to compute and use w; to extract the
missing information from U; and [vt]y,.

@ Both generate a sequence {U;} of estimates of S.
@ Both use only U; and [v¢]y, to generate Us.

@ Neither has different confidence for different subspaces of the
target subspace S; both maintain a “flat” approximation.

Indeed, we can show that ISVD and GROUSE are identical for a
certain choice of the step-size parameter 7);.

The choice of 7; is not the same as the “optimal” choice in
GROUSE, but it works fairly well in practice.
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Relating partial-data ISVD and GROUSE

Theorem

Suppose we have the same U; and [v;]y, at the tt/ iterations of
ISVD and GROUSE. Then we can construct an n; > 0 in GROUSE
such that the next iterates U;11 of both algorithms are identical,
to within an orthogonal transformation by the d X d matrix

W, = [”:;—” zt} ,

where Z; is a d x (d — 1) matrix whose orthonormal columns span
the nullspace of w, .
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GROUSE and ISVD: Details

The precise values for which GROUSE and ISVD are identical are:

1
A= | llwel* + el + 1) + \/(HWtH2 +rel? +1)% - 4||rr|!2]

This is the first eigenvalue of the matrix [ La Wi ] :

0 |re
the next d — 1 eigenvalues are 1 by the interleaving theorem.
el [[we |2 1
: = — arcsin 3.
IrelP[Iwell? + (A = [Ir]1%)? "
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Incremental SVD with Missing Data Options

projection weights w = arg min, || Py, (Ura — v¢)|13;
residual: rr = v — Uw on V; ; zero otherwise.

) o T
ISVD with interpolation: | U 15 roow ][V 0}

i)l o Jrl ]l o 1
- 11 T w voo]’
Tu - d

SAGE GROUSE: | U mir | | 0" ] [ 0 1 ]

) o T
Brand Algorithm (3 <1):| U BO): H‘;VH ] [ Vo ]
] 1] t

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Conclusion

emental SVD with Missing Data Performance
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