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Low-rank Models and Manifold Optimization

Low-rank matrix models have several applications:

communications and radar

computer vision

recommender systems

environmental science.

We therefore often face optimization problems that require
non-convex low-rank constraints.

minimize
M

f (M)

subject to h(M) ≤ τ
M low-rank, or has orthogonal columns, etc
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Low-rank Models and Manifold Optimization

minimize
M

f (M)

subject to h(M) ≤ τ
M low-rank, or has orthogonal columns, etc

Low-rank constraints often form smooth manifolds in Rn.

Low-rank manifold: n ×m matrices of rank-d

Stiefel Manifold: tall n × d matrices with orthonormal
columns denoted S(n, d).

Grassmannian: d-dimensional subspaces of Rn (quotient of
Stiefel) denoted G(n, d).

Flag Manifold: nested sequences of subspaces with given
dimensions, F(n, d1, . . . , ds)
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Manifold Optimization

Classical optimization techniques use
the geometry of Euclidean space.

Manifold optimization techniques use
the geometry of the manifold to take
gradients and gradient steps along the
manifold.

We focus algorithms that use the Stiefel and Grassmann manifolds
to solve “SVD-like” problems.
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Outline

The SVD as an optimization problem and variants where we
may use manifold optimization

Matrix Completion

Robust PCA

Sparse PCA

Calibration Matrix Completion

Conclusion
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Subspace Model for Data

The Singular Value Decomposition (SVD) factors a low-rank
matrix into three matrices:

M = UΣV T

where U,V have orthonormal columns and Σ is diagonal.

Subspace"Modeling"
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Linear Low Rank Subspaces via SVD

If your data matrix is not exactly low-rank but you wish to find the
best low-dimensional linear structure that models the data, you can
use the SVD; that makes it a useful exploratory data analysis tool.

Subspace Representations 
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Subspace Representations 
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The linear subspace is a good model in many applications.
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v ⇧ Rn is a snapshot of the system state
(e.g., temperature at each node)

v ⇧ Rn is a snapshot of the system state
(e.g., tra�c rates at each monitor)

Given matrix X = USV T , form the SVD of [X, v].

Estimate the weights: w = arg min
a

⌃Ua � v⌃2
2

Compute the residual: v� = v � Uw.

Update the SVD:

[X, v] =
⇤

U v�
⇥v�⇥

⌅ �
S w
0 ⌃v�⌃

⇥

⌥ ⌃⇧ �

�
V 0
0 1

⇥T

Diagonalize.

Theorem: Let X be an n ⇥ n matrix in a finite field. Fix � > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n with its value drawn uniformly from the field.

If k > 2rn � r2 + �(rn � r2

2 ), then the probability that the exhaustive-search
minimum rank decoder makes a mistake estimating X, P(En) ⇤ 0 as n ⇤ ⌅.
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v 2 Rn is a single vectorized image
(e.g. one video frame)

Given Ut which approximates the span of the column space of data so far,
incorporate new data v⌦t

into Ut+1.

Estimate the weights: w = arg min
a

kU⌦a � v⌦k2
2

Compute the residual: v? =

⇢
v � Uw on ⌦

0 otherwise

Update the SVD:

[X, v] =
h

U v?
kv?k

i 
S w
0 kv?k

�

| {z }


V 0
0 1

�T

Diagonalize.

Theorem: Let X be an n ⇥ n matrix in a finite field. Fix ✏ > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n, with its value drawn uniformly from the non-

zero elements of the field. If k > 2rn � r2 + ✏(rn � r2

2 ), then the probability
that the exhaustive-search minimum rank decoder makes a mistake estimating
X, P(En) ! 0 as n ! 1.

Theorem: Let X be an n ⇥ N matrix, N = O(np) for p � 2, whose columns
lie in the union of k ⌧ N rank r < n incoherent subspaces which are not “too
close” to one another. Then the matrix X can be perfectly reconstructed from
O(�rN log N) measurements with probability at least 1 � 6kN�2(��1) log2 N .

Theorem: Let X be an n⇥N matrix whose columns lie in the union of k ⌧ N
rank r incoherent subspaces which are not “too close” to one another, and let
N = O(np) for p � 2. Then the matrix X can be perfectly reconstructed from
O(rN log N) measurements with high probability.
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Linear Low Rank Subspaces via SVD

The SVD gives the solution to the following problem1:

minimize ‖UΣW T −M‖2
F (1)

subject to U,W ∈ G(n, d)

Σ ≥ 0; d × d diagonal (2)

where G(n, d) is the Grassmannian, the space of all d-dimensional
subspaces of Rn.

1This result was discovered independently by both Schmidt in 1907
[Stewart, 1993, Stewart, 2011, Schmidt, 1907] and Eckart and Young in 1936
[Eckart and Young, 1936].
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Linear Low Rank Subspaces via SVD

Goal: Given matrix A, form the SVD UΣV T = X .

The left singular vectors and singular values of A can be computed
from the eigenvectors and the eigenvalues of AAT . The right
singular vectors from eigenvectors of ATA. But the evals and evecs
are hard to compute!

What we actually do is householder reflections to get a bidiagonal
matrix, and versions of QR to get the SVD. O(kn3) operations for
a square n × n matrix and k singular values/vectors.
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The Incremental SVD for Euclidean Subspace Estimation

Goal: Given matrix X = UΣV T , form the SVD of
[
X vt

]
.

Estimate the weights: w = arg min
a
‖Ua− vt‖2

2

Compute the residual: rt = vt − Uw .

Update the SVD:

[
X vt

]
=
[
U rt

‖rt‖

] [ Σ w
0 ‖rt‖

] [
V 0
0 1

]T

and diagonalize the center matrix. What if we compute the same
thing but with the partial-data weights and residual?
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Adjustments to the SVD problem

If we add anything to the objective function, or add constraints,
how do we adjust the SVD?

An observation function (e.g., missing data) of the form g(·)
Any regularizer (e.g., `1 norm penalty) of the form h(·)

minimize
U∈Rn×d ,W∈RN×d

‖g(UW T −M)‖2
F (3)

subject to h(g ,U,W ) ≤ τ
U ∈ G(n, d)

With the lack of obvious extension to SVD computations, we turn
to optimization!
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Streaming SVD

Additionally we may observe our data streaming, again perhaps
incomplete or under some other observation function.

…
For these problems we focus on first order methods and relate
them to ISVD.
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Example Applications I

1 Missing Data SVD (Low-Rank Matrix Completion):
PΨ projects onto the coordinates Ψ ⊂ {1, . . . , n}.

minimize
U∈Rn×d ,W∈RN×d

‖PΨ(UW T −M)‖2
F s.t. U ∈ G(n, d) (4)
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Example Applications II

2 Robust SVD:

minimize
U∈Rn×d ,W∈RN×d

‖PΨ(UW T −M)‖2
F

s.t. ‖UW T −M‖1 ≤ τ and U ∈ G(n, d) (5)

Figure 8: Real-time video background and foreground separation from partial information.
We show the separation quality at t = 1, 230, 1400. The resolution of the video is 144�176. The
first row is the original video frame at each time; the middle row is the recovered background at
each time only from 5% information; and bottom row is the foreground calculated by Equation
(4.7).

Figure 9: Real-time video background and foreground separation from partial information.
We show the separation quality at t = 1, 600, 1200. The resolution of the video is 320�256. The
first row is the original video frame at each time; the middle row is the recovered background at
each time only from 1% information; and bottom row is the foreground calculated by Equation
(4.7).
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Example Applications III

3 Sparse SVD:

minimize
U∈Rn×d ,W∈RN×d

‖PΨ(UW T −M)‖2
F s.t. ‖U‖1 ≤ τ. U ∈ G

(6)
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Example Applications IV

4 Calibration SVD:

minimize
U∈Rn×d ,W∈RN×d ,g

‖PΨ

(
g(UW T + M)

)
‖2
F (7)

subject to g is L− Lipschitz and monotonic

U ∈ G(n, d)

Figure 3: Top panel is the layout of our deployment in the field. Depths
below ground are indicated on the diagram. Light rectangle corresponds to
a full suite of 7 ISEs, and dark rectangle corresponds to 1 temperature and 1
moisture sensor. Bottom panel is an image of a pylon without a lid deployed
in the rice paddy in Bangladesh.

Pylon Design In addition to choosing sensors for our
deployment, we had to design an enclosure for the mote
system, implement the software, and test the hardware and
software that we would deploy. The first challenge was to
design an enclosure that would protect the motes from the
environment, be easy to deploy, and minimize disturbance
of the soil during the deployment process. At each location,
we wanted to deploy a full suite of sensors at 3 different
depths, in order to characterize the chemistry above, in
middle, and below an iron band that the scientists suspected
was located at an approximate depth of 3 feet. We designed
and deployed the PVC enclosure which houses all the
networking hardware needed for three depths and sits on top
of a column (Figure 3). One suite of sensors included the 7
ISEs listed above and temperature and moisture sensors. The
layout of the sensors and pylons is in Figure 3.
Initially our plan was to deploy all sensors in a single

hole beneath the pylon column. However, placing sensors
at multiple depths disturbed the soil too much, making it
hard to pack down. Thus, we settled on deploying a single
depth of sensors in a hole, and placing the holes as close
together as possible. We could not fit more than 4 ISEs in
one hole, and the moisture sensors were isolated so that
their electromagnetic radiation would not interfere with the
electric potential measured by the ISEs. Thus, we dug three
holes per depth to accommodate a full suite of sensors. When
the pylon is deployed, the sensor cables come out from the
bottom of the pylon and extend to the satellite holes.
To aid in ease of deployment, we are developing javelin

pylons [4] to replace the pylons we used in Bangladesh.

These pylons are even easier to deploy as the pylon column
itself contains the sensors. The javelin narrows at the bottom
so that it can be driven into the ground, minimizing the
impact on the soil and avoiding the need to dig holes for the
sensors or for the pylon structure itself.

Networking The enclosure of the pylon housed the
networking and sensor-related hardware. We used Mica2
motes connected to a MDA300 sensor-board to collect data
from the sensors in the pylon. The base-station, a Stargate6
powered by a car battery, collected data from the network.
We used the Extensible Sensing System [5] for our network
stack; this included multihop data collection at a centralized
sink, time synchronization, a network debugging tool [6],
and a disruption tolerant networking layer [3] based on delay
tolerant networking [8].
Since improving the quantity of data is especially

important for rapid deployments, the disruption tolerant
networking layer was critical for our success. While
this layer does not provide end-to-end reliability, it
can handle longer-term route disruptions that MAC-layer
retransmissions cannot. If a valid route to the base station
is not present or the MAC layer fails to successfully transmit
a packet to its next hop, the disruption tolerant networking
layer saves the packet to local storage [3]. Writing data to
local flash consumes power, but the additional reliability
justified the tradeoff in practice. For example, many nights
we were not able to deploy our base station due to
security issues (even the car battery was vulnerable to theft)
and various software problems. However, we lost minimal
data as a result of these issues or any other base station
outages, eventually receiving 76% of the expected packets—
a relatively high yield in the spectrum of sensor network
deployments [19].

4 CALIBRATION AND TESTING
Before deploying our sensor network in Bangladesh we
spent 2 months in the lab calibrating and testing our system.
Calibration is the process of mapping a sensor’s measured
output to an estimate of the property being sensed. The
calibration process for the ISEs is the most involved of all the
sensors we used in Bangladesh, so we focus our discussion
on them.
Mistakes in the process of calibrating the sensor can result

in large margins of error when translating sensor readings.
Thus, proper pre-deployment calibration is a critical step in
enhancing a user’s confidence in the subsequent collected
data.
The accuracy requirements of the application must be

considered during this step. As described in Section 3, the
purpose of our deployment was to collect data to learn more
about the groundwater chemistry in the shallow soil of the
rice paddies. We were interested in diurnal behavior of the
ionic content. Thus, we needed a good characterization of
the sensor’s response to changing ionic concentrations.

6All of our networking hardware is manufactured by Crossbow, Inc.
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Missing Data SVD (Low-Rank Matrix Completion)

minimize
U∈Rn×d ,W∈RN×d

‖PΨ(UW T −M)‖2
F

subject to U ∈ G(n, d)

PΨ projects onto the coordinates Ψ ⊂ {1, . . . , n}.
We could also replace PΨ with any compressed measurement
matrix A.
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Example 1: Structure from Motion

Observe an object from different
camera angles, matching
reference points on the object
from image to image.

Matrix of reference point
locations for an orthographic
camera in 2-d images has
rank three, and the range
subspace reveals 3-d
location of reference points.

Object is solid, so some
reference points are
occluded in each photo.
Missing data!

(Figure from Fitzgibbon, Cross,

and Zisserman, 1998.)
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Example 1: Structure from Motion

For example suppose one camera is aligned on the z-axis:

Then we could factorize:
x11 y11 · · · x1t y1t

x21 y21 x2t y2t

...
...

xn1 yn1 · · · xnt ynt

 =


X1 Y1 Z1

X2 Y2 Z2

...
Xn Yn Zn


1 0 cxx cyx
0 1 cyx cyy · · ·
0 0 czx czy
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Structure from Motion: Figures and Reconstructions

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])
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Example 2: Computer network analysis

Byte counts are limited by the total number of source-destination
flows in a computer network, and so they have a low-rank structure
[Ding and Kolaczyk, 2013]. But the byte counts can not be
streamed to a central location for every router, else they would
congest the network.

2"

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Introduction Missing Data Robust PCA Sparse PCA Calibration Conclusion

Example 3: Recommender Systems
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Low-rank Matrix Completion

We have an n × N, rank r matrix X . However, we only observe a
subset of the entries, Ψ ⊂ {1, . . . , n} × {1, . . . ,N}.
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Low-rank Matrix Completion

We have an n × N, rank r matrix X . However, we only observe a
subset of the entries, Ψ ⊂ {1, . . . , n} × {1, . . . ,N}.
We may find a solution by solving the following NP-hard
optimization:

minimize
M

rank(M)

subject to MΨ = XΨ

L. Balzano University of Michigan
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Low-rank Matrix Completion

We have an n ×m, rank r matrix X . However, we only observe a
subset of the entries, Ψ ⊂ {1, . . . , n} × {1, . . . ,m}.
Or we may solve this convex problem:

minimize
M

‖M‖∗ =
n∑

i=1

σi (M)

subject to MΨ = XΨ

Exact recovery guarantees: X is exactly low-rank and incoherent.
MSE guarantees: X is nearly low-rank with bounded (r + 1)th

singular value.
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Batch versus Online approach

We could solve the convex problem:

minimize
X∈Rn×T

‖X‖∗ + λ‖PΨ(M − X )‖2
F

Or we could solve this non-convex problem incrementally:

minimize
span(U)∈G(d ,n)

UTU=I

‖PΨ(UW T −M)‖2
F =

T∑

t=1

‖PΨt (Uw − vt)‖2
2
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Incremental Euclidean Optimization

minimize
U∈Rn×d

F (U) =
T∑

t=1

ft(U)

Algorithm 1 Euclidean Incremental Gradient Descent

Given U0 and step size regimen ηt
for t = 1, 2, . . . ,T do

Compute the negative gradient at Ut−1

−∇ft(Ut−1) = −dft
dU

∣∣∣∣
U=Ut−1

Update: Ut = Ut−1 − ηt∇ft(Ut−1)
end for
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Incremental Grassmannian Optimization

minimize
span(U)∈G(d ,n)

F (U) =
T∑

t=1

ft(U)

Algorithm 2 Grassmannian Incremental Gradient Descent

Given U0 and step size regimen ηt
for t = 1, 2, . . . ,T do

Compute SVD of negative gradient [Edelman et al., 1998]

−∇ft(Ut−1) = −(I − UUT )
dft
dU

∣∣∣∣
U=Ut−1

=: YSZT

Update: Ut = Ut−1Z cos(Sηt)Z
T + Y sin(Sηt)Z

T

end for
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Grassmannian Rank-One Update Subspace Estimation

minimize
span(U)∈G(d ,n)

F (U) =
T∑

t=1

‖PΨt (Uw − vt)‖2
2

Given current estimate Ut and partial data vector PΨt (vt), and a
step size ηt > 0:

wt := arg min
a
‖PΨt (Uta− vt)‖2

2; pt := Utwt ;

PΨt (rt) := PΨt (vt − Utwt); PΨC
t

(rt) := 0;

σt := ‖rt‖‖pt‖

−∇ft(U) =
rt
‖rt‖

σt
wT
t

‖wt‖
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Grassmannian Rank-One Update Subspace Estimation

minimize
span(U)∈G(d ,n)

F (U) =
T∑

t=1

‖PΨt (Uw − vt)‖2
2

Current estimate Ut , projection weights wt , projection residual rt ,
pt = Utwt , σt = ‖rt‖‖pt‖, and a step size ηt > 0:

−∇ft(U) =
rt
‖rt‖

σt
wT
t

‖wt‖
Then update:

Ut+1 = Ut +

[
(cosσtηt − 1)

pt
‖pt‖

+ sinσtηt
rt
‖rt‖

]
wT
t

‖wt‖
.

[Balzano et al., 2010]
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GROUSE

Process the vt as a sequential
stream.

Cost function
ft(U) = mina ‖PΨt (Uta− vt)‖2

2

Perform incremental gradient
descent constrained to the
Grassmannian G(d , n).

Maintain an n × d estimate Ut ,
with orthonormal columns, of the
basis Ū for target subspace S.

Simple update formula Ut → Ut+1

when the next [vt ]Ψt is received.
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Convergence definitions

Let φt,i represent the i th principal angle between the true subspace
Ū and our estimate Ut . Then let:

d∑

i=1

sin2(φt,i ) =: εt

d∏

i=1

cos2(φt,i ) =: ζt

Suppose vt = Ūst where st are identically distributed, zero-mean,
and uncorrelated, and we have |Ψ| = q measurements of each
vector.
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Calculating the Decrease Factor (’X’) from simulations

Theorem ([Balzano and Wright, 2015])

In a local region around the global minimizer, we have a linear
expected convergence rate:

E[εt+1|εt ] ≤
(

1− X
q

nd

)
εt .
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Convergence rate in noise

Theorem (GROUSE convergence in noise
[Zhang and Balzano, 2016])

Let the measurement be vt + nt where nt ∼ N (0, σ2).

E [ζt+1|ζt ] ≥
(

1 +

(
1

1 + d
nσ

2

)(
1− ζt
d

)(
1− σ2

1−ζt
d + σ2

))
ζt

Corollary (No noise)

E [ζt+1|ζt ] ≥
(

1 +
1− ζt
d

)
ζt
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Convergence

Theorem (GROUSE convergence from compressed data
[Zhang and Balzano, 2016])

Let the measurement be A(vt + nt) where nt ∼ N (0, σ2) and A is
a q × n Gaussian random matrix.

E [ζt+1|ζt ] ≥
(

1 + β1
q

n

(
1− ζt
d

)(
1− σ2

1−ζt
d + σ2

))
ζt
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Convergence

Theorem (Global Convergence of GROUSE with full data
[Zhang and Balzano, 2016])

Let ε∗ > 0 be the desired accuracy of our estimated subspace.
Then for any ρ, ρ′ > 0 and with a random initialization, after

K ≥ K1 + K2 =

((
d3

ρ′
+ 1

)
log

(d − ρ′)
d

+
d2

d − 1
log

(
1

ε∗ρ

))

iterations of GROUSE Algorithm,

P (εK ≤ ε∗) ≥ 1− ρ′ − ρ . (8)
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The Incremental SVD for Euclidean Subspace Estimation

Given matrix X = UΣV T , form the SVD of
[
X vt

]
.

Estimate the weights: w = arg min
a
‖Ua− vt‖2

2

Compute the residual: rt = vt − Uw .

Update the SVD:

[
X vt

]
=
[
U rt

‖rt‖

] [ Σ w
0 ‖rt‖

] [
V 0
0 1

]T

and diagonalize the center matrix. What if we compute the same
thing but with the partial-data weights and residual?
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The Incremental SVD with Missing Data

Given matrix X = UΣV T , form the SVD of
[
X vt

]
.

Estimate the weights: w = arg mina ‖PΨt (Uta− vt)‖2
2 .

Compute the residual: rt = vt − Uw on Ψt ; zero otherwise.

Update the SVD:

[
U rt

‖rt‖

] [ Σ w
0 ‖rt‖

] [
V 0
0 1

]T

and diagonalize the center matrix.
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Incremental SVD with Missing Data: SAGE GROUSE

Given matrix X = UΣV T , form the SVD of
[
X vt

]
.

Estimate the weights: w = arg mina ‖PΨt (Uta− vt)‖2
2 .

Compute the residual: rt = vt − Uw on Ψt ; zero otherwise.

Update the SVD:

[
U rt

‖rt‖

] [ Id w
0 ‖rt‖

] [
V 0
0 1

]T

and take the SVD of the center matrix. This is equivalent to the
natural incremental gradient method on the Grassmannian
(GROUSE) for a particular step size [Balzano and Wright, 2013].

isvd details
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Structure from Motion: Figures and Reconstructions

(Kennedy, Balzano, Wright, Taylor [Kennedy et al., 2016])
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Structure from Motion: Figures and Reconstructions
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Structure from Motion: Figures and Reconstructions
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Robust PCA

minimize
U∈Rn×d ,W∈RN×d

‖PΨ(UW T −M)‖2
F

subject to ‖UW T −M‖1 ≤ τ
U ∈ G(n, d)
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Grassmannian Robust Adaptive Subspace Tracking Alg

minimize
span(U)∈G(d ,n)

F (U) =
T∑

t=1

‖st‖1 + ‖PΨt (Uw + st − vt)‖2
2

Current estimate Ut , projection weights wt , proxy for projection
residual considering sparse estimate Γt , pt = Utwt , σt = ‖Γt‖‖pt‖,
and a step size ηt > 0:

−∇ft(U) =
Γt

‖Γt‖
σt

wT
t

‖wt‖
Then update:

Ut+1 = Ut +

[
(cosσtηt − 1)

pt
‖pt‖

+ sinσtηt
Γt

‖Γt‖

]
wT
t

‖wt‖
.

[He et al., 2012]
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Foreground/background subtraction

Figure 8: Real-time video background and foreground separation from partial information.
We show the separation quality at t = 1, 230, 1400. The resolution of the video is 144�176. The
first row is the original video frame at each time; the middle row is the recovered background at
each time only from 5% information; and bottom row is the foreground calculated by Equation
(4.7).

Figure 9: Real-time video background and foreground separation from partial information.
We show the separation quality at t = 1, 600, 1200. The resolution of the video is 320�256. The
first row is the original video frame at each time; the middle row is the recovered background at
each time only from 1% information; and bottom row is the foreground calculated by Equation
(4.7).
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real-time performance. In order to show GRASTA can han-
dle higher resolution video effectively, we use the “Shop-
ping Mall” [17] video with resolution 320 � 256 as the
second experiment. We also do the subspace training stage
with the same parameter settings as “Airport Hall”. We do
the background and foreground separation only from 1%
entries of each frame. For “Shopping Mall” the separat-
ing time is 27.5 seconds for total 1286 frames. Thus we
achieve 46.8 FPS real-time performance. Figure 4 shows
the separation quality at t = 1, 600, 1200. In all of these
static background video experiments we used a maximum
of K = 10 iterations of the ADMM algorithm per subspace
update. The details of each tracking set-up are described in
Table 2.

Dataset Resolution Total Frames Training Time Tracking and FPS
Separating Time

Airport Hall 144�176 3584 11.3 sec 20.9 sec 171.5
Shopping Mall 320�256 1286 33.9 sec 27.5 sec 46.8

Lobby 144�176 1546 3.9 sec 71.3 sec 21.7
Hall with Virtual Pan (1) 144�88 3584 3.8 sec 191.3 sec 18.7
Hall with Virtual Pan (2) 144�88 3584 3.7 sec 144.8 sec 24.8

Table 1. Real-time video background and foreground separation by
GRASTA. Here we use three different resolution video datasets,
the first two with static background and the last three with dynamic
background. We train from 50 frames; in the first two experiments
they are chosen randomly from throughout, and in the last three
they are the first 50 frames. The subspace dimension is 5 for all.

Dataset Training Tracking Separation Tracking/Separation
Sub-Sampling Sub-Sampling Sub-Sampling Algorithm

Airport Hall 30% - 1% ADMM Separation
Shopping Mall 30% - 1% ADMM Separation

Lobby 30% 30% 100% Full GRASTA Alg 1
Hall with Virtual Pan (1) 100% 100% 100% Full GRASTA Alg 1
Hall with Virtual Pan (2) 50% 50% 100% Full GRASTA Alg 1

Table 2. Here we summarize the approach for the various video
experiments. When the background is dynamic, we use the full
GRASTA for tracking. We used K = 10 ADMM iterations for
static background Airport Hall and Shopping Mall, and K = 20
for all other video experiments.

3.2. Dynamic Background: Changing Lighting

Here we want to consider a problem where the lighting
in the video is changing throughout. We use the “Lobby”
dataset from [17]. In order to adjust to the lighting changes,
GRASTA tracks the subspace throughout the video; that is,
we run the full GRASTA Algorithm 1 for every frame. We
use 30% of the pixels of every frame to do this update and
100% of the pixels to do the separation. In all of these dy-
namic background video experiments we used a maximum
of K = 20 iterations of the ADMM algorithm per subspace
update. Again, see the numerical results in Table 1. The
results are illustrated in Figure 5.

3.3. Dynamic Background: Virtual Pan

In the last experiment, we demonstrate that GRASTA
can effectively track the right subspace in video with a dy-

Figure 4. Real-time video background and foreground separation
from partial information. The first row is the original video frame
at each time; the middle row is the recovered background at each
time only from 1% information; and bottom row is the foreground
estimated by ADMM separation.

namic background. We consider panning a “virtual camera”
from left to right and right to left through the video to simu-
late a dynamic background. Periodically, the virtual camera
pans 20 pixels. The idea of the virtual camera is illustrated
cleanly with Figure 6.

!"#$%&'()&*+#&(,&--"-.(#"./$(01(,"2+'3

Figure 6. Demonstration of panning the “virtual camera” right 20
pixels.

We choose “Airport Hall” as the original dataset. We set
the scope of the virtual camera to be half the width, so the
resolution of the virtual camera is 144 � 88. We set the
subspace dimension to 5. Figure 7 shows how GRASTA
can quickly adapt to the changed background in just 25
frames when the virtual camera pans 20 pixels to the right at
t = 101. We also let GRASTA track and do the separation
task for all frames. When we use 100% of the pixels for the
tracking and separation, the total computation time is 191.3
seconds, or 18.7 FPS, and adjusting to a new camera posi-
tion after the camera pans takes 25 frames as can be seen
in Figure 7. When we use 50% of the pixels for tracking
and 100% of the pixels for separation, the total computa-
tion time is 144.8 seconds or 24.8 FPS, and the adjustment

6
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Foreground/background subtraction

Demo: Open CV code written by Arthur Szlam!
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Sparse PCA

minimize
U∈Rn×d ,W∈RN×d

‖PΨ(UW T −M)‖2
F

subject to ‖U‖1 ≤ τ
U ∈ G(n, d)
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Example 1: Face image decomposition

Sparse PCA on Face data identifies salient parts of the image.
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Example 2: Air pollution with spatial structure

Sparse PCA on ozone data identifies spatial regions that get
influenced together.
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SPCAur

minimize
span(U)∈G(d ,n)

R∈SO(n)

F (U,R) = λ‖UR‖1 +
T∑

t=1

‖PΨt (Uw − vt)‖2
2

Current estimate Ut , and rotation Rt .

dft
dU

=

{
(UΨtw − vΨt )w

T + λ · sign(UtRt+1) · RT
t+1 on Ψt

λ · sign(UtRt+1) · RT
t+1 on ΨC

t

−∇ft(Ut−1) =
(
I − UtU

T
t

) dft
dU

∣∣∣∣
U=Ut−1

=: YSZT

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Introduction Missing Data Robust PCA Sparse PCA Calibration Conclusion

SPCAur (continued)

−∇ft(Ut−1) =
(
I − UtU

T
t

) dft
dU

∣∣∣∣
U=Ut−1

=: YSZT

Then update [Edelman et al., 1998]:

Ut+1 =
[
UtZ Y

] [cos (ηtS)
sin (ηtS)

]
ZT (9)

Fix Ut+1 and update Rt+1 on the Stiefel manifold.
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Sparse PCA Results
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Figure : Sparsity of the subspace estimate from complete observations
given by six algorithms.
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Sparse PCA

Metrics SPCAr SPCAur SPCA SPCArt Thres GPower

Subspace
Residual

6.0480e−5 0.0020 0.0818 0.0034 0.4680 0.0300

Runtime 0.0813 0.2442 0.0625 0.0859 0.0005 0.0797
Minimum

Angle
90.0000 90.0000 87.3738 89.9093 83.7886 86.9081

Sparsity
(10−4)

0.7697 0.8337 0.3298 0.8210 0.5498 0.1876

Convergence
Proportion

0.2764 0.9975 1.0000 1.0000 1.0000 1.0000

Table : Subspace residuals, runtimes, minimum angles, sparsities when
α = 10−4 and convergence proportions of these six algorithms including
SPCA [Zou et al., 2006], SPCArt [Hu et al., 2014], and GPower
[Journée et al., 2010].
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Sparse PCA Results
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On our ozone data,
SPCAur gives the
best sparsity result
while still maintain-
ing orthogonality,
while SPCA and
Thresholding do
not.
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Calibration SVD

minimize
X∈Rn×m,g

‖PΨ (g(X −M)) ‖2
F (10)

subject to g is L− Lipschitz and monotonic

X low-rank
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Example 1: Recommender Systems
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Example 2: Blind Sensor Calibration
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Example 2: Blind Sensor Calibration

Ion Selective Electrodes have a
nonlinear response to their ions
(pH, ammonium, calcium, etc)
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ABSTRACT
Rapidly deployable sensor networks are portable, reusable,
and can take advantage of a human user in the field attending
to the deployment. Unfortunately, even small disruptions or
problems in collected data must be addressed quickly, as the
overall quantity of data gathered is small relative to long-
term deployments.
In this paper we describe a procedure for calibration and

a system for online fault remediation. Care in the calibration
process for ion selective electrodes used for water quality
assists interpretation of the data. Scientists will have more
confidence in the data obtained from a rapid deployment
if in-field users can detect and compensate for problems
as they occur. We have designed and implemented a tool
for use in the field to detect potential faults and provide
actions to remedy or validate the faulty data. In January of
2006 we deployed 48 sensors over a period of 12 days in
Bangladesh in order to aid in validating a hypothesis on the
mass presence of arsenic in the groundwater. Our system
is based on the the approximately 25,000 measurements we
collected.

1 INTRODUCTION
The presence of arsenic in groundwater has led to
the largest environmental poisoning in history; tens of
millions of people in the Ganges Delta continue to drink
groundwater that is dangerously contaminated with arsenic.
In Bangladesh alone, if consumption of contaminated water
continues, the prevalence of arsenicosis and skin cancer will
be approximately 2,000,000 and 100,000 cases per year,
respectively, and the incidence of death from cancer induced
by arsenic will be approximately 3,000 cases per year [23].
A current working hypothesis is that the influx of

dissolved arsenic into the ground water is greatly enhanced
where irrigation for rice cultivation provides the primary
source of aquifer recharge [15]. To aid in validating this

Figure 1: Depiction of deployment (drawing by XXXXXX).

hypothesis, we accompanied a group of scientists fromMIT,
Stanford, and the Bangladesh University of Engineering and
Technology, to undertake a rapid deployment of a wireless
sensor network in a rice paddy in Bangladesh in January
of 2006. We deployed 48 sensors over a period of 12
days, collecting approximately 25,000 measurements. The
deployment setup is illustrated in Figure 1.

Rapid deployment We discuss this Bangladesh
experiment as a case study in the rapid deployment of
a wireless sensor network (WSN). This model, which holds
great promise for environmental monitoring, has emerged
as one alternative to the traditional long-term, autonomous,
and static WSN deployment model. Rapidly deployable
networks are designed to be quick and simple to deploy; also
they may only be left in place for a relatively short period
of time [2]. Water quality sensing can benefit greatly from
rapidly deployed sensor networks. Although good water
quality is critical for public health, “analysis is still primarily
conducted in a laborious manner by physical collection of a
sample that is analyzed back in a laboratory.” [22] This kind
of data collection and analysis is time consuming, mostly
undirected, and, in many instances, misses the contaminant
events of interest. While a long-term deployment could
simplify collection, it would not be able to respond quickly

1

Figure 3: Top panel is the layout of our deployment in the field. Depths
below ground are indicated on the diagram. Light rectangle corresponds to
a full suite of 7 ISEs, and dark rectangle corresponds to 1 temperature and 1
moisture sensor. Bottom panel is an image of a pylon without a lid deployed
in the rice paddy in Bangladesh.

Pylon Design In addition to choosing sensors for our
deployment, we had to design an enclosure for the mote
system, implement the software, and test the hardware and
software that we would deploy. The first challenge was to
design an enclosure that would protect the motes from the
environment, be easy to deploy, and minimize disturbance
of the soil during the deployment process. At each location,
we wanted to deploy a full suite of sensors at 3 different
depths, in order to characterize the chemistry above, in
middle, and below an iron band that the scientists suspected
was located at an approximate depth of 3 feet. We designed
and deployed the PVC enclosure which houses all the
networking hardware needed for three depths and sits on top
of a column (Figure 3). One suite of sensors included the 7
ISEs listed above and temperature and moisture sensors. The
layout of the sensors and pylons is in Figure 3.
Initially our plan was to deploy all sensors in a single

hole beneath the pylon column. However, placing sensors
at multiple depths disturbed the soil too much, making it
hard to pack down. Thus, we settled on deploying a single
depth of sensors in a hole, and placing the holes as close
together as possible. We could not fit more than 4 ISEs in
one hole, and the moisture sensors were isolated so that
their electromagnetic radiation would not interfere with the
electric potential measured by the ISEs. Thus, we dug three
holes per depth to accommodate a full suite of sensors. When
the pylon is deployed, the sensor cables come out from the
bottom of the pylon and extend to the satellite holes.
To aid in ease of deployment, we are developing javelin

pylons [4] to replace the pylons we used in Bangladesh.

These pylons are even easier to deploy as the pylon column
itself contains the sensors. The javelin narrows at the bottom
so that it can be driven into the ground, minimizing the
impact on the soil and avoiding the need to dig holes for the
sensors or for the pylon structure itself.

Networking The enclosure of the pylon housed the
networking and sensor-related hardware. We used Mica2
motes connected to a MDA300 sensor-board to collect data
from the sensors in the pylon. The base-station, a Stargate6
powered by a car battery, collected data from the network.
We used the Extensible Sensing System [5] for our network
stack; this included multihop data collection at a centralized
sink, time synchronization, a network debugging tool [6],
and a disruption tolerant networking layer [3] based on delay
tolerant networking [8].
Since improving the quantity of data is especially

important for rapid deployments, the disruption tolerant
networking layer was critical for our success. While
this layer does not provide end-to-end reliability, it
can handle longer-term route disruptions that MAC-layer
retransmissions cannot. If a valid route to the base station
is not present or the MAC layer fails to successfully transmit
a packet to its next hop, the disruption tolerant networking
layer saves the packet to local storage [3]. Writing data to
local flash consumes power, but the additional reliability
justified the tradeoff in practice. For example, many nights
we were not able to deploy our base station due to
security issues (even the car battery was vulnerable to theft)
and various software problems. However, we lost minimal
data as a result of these issues or any other base station
outages, eventually receiving 76% of the expected packets—
a relatively high yield in the spectrum of sensor network
deployments [19].

4 CALIBRATION AND TESTING
Before deploying our sensor network in Bangladesh we
spent 2 months in the lab calibrating and testing our system.
Calibration is the process of mapping a sensor’s measured
output to an estimate of the property being sensed. The
calibration process for the ISEs is the most involved of all the
sensors we used in Bangladesh, so we focus our discussion
on them.
Mistakes in the process of calibrating the sensor can result

in large margins of error when translating sensor readings.
Thus, proper pre-deployment calibration is a critical step in
enhancing a user’s confidence in the subsequent collected
data.
The accuracy requirements of the application must be

considered during this step. As described in Section 3, the
purpose of our deployment was to collect data to learn more
about the groundwater chemistry in the shallow soil of the
rice paddies. We were interested in diurnal behavior of the
ionic content. Thus, we needed a good characterization of
the sensor’s response to changing ionic concentrations.

6All of our networking hardware is manufactured by Crossbow, Inc.
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Single Index Model

Suppose we have predictor variables x and response variables y ,
and we seek a transformation g and vector w relating the two such
that

E[y |x ] = g
(
xTw

)
.

Generalized Linear Model: g is known, y |x are RVs from an
exponential family distribution parameterized by w .

Includes linear regression, log-linear regression, and logistic
regression

Single Index Model: Both g and w are unknown.
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Single Index Model Learning

We seek a transformation g and vector w such that

E[y |x ] = g
(
xTw

)
.

Theorem (Kalai et al 2009, Kakade et al 2011)

Suppose (xi , yi ) ∈ Bn × [0, 1], i = 1, . . . , p are draws from a
distribution where E[y |x ] = g(xTw) for monotonic G -Lipschitz g
and ‖w‖ ≤ 1. There is a poly(1/ε, log(1/δ), n) time algorithm
that, given any δ, ε > 0, with probability ≥ 1− δ outputs
h(x) = ĝ(ŵT x) with

err(h) = Ey |x [(g(xTw)− h(x))2] < ε
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Single Index Model Learning

Algorithm 3 Lipshitz-Isotron Algorithm, Kakade et al 2011

Given T > 0, (xi , yi )
p
i=1;

Set w (1) := 1;
for t = 1, 2, . . . ,T do

Update g using Lipschitz-PAV: g (t) = LPAV
(
(xTi w (t), yi )

p
i=1

)
.

Update w using gradient descent:

w (t+1) = w (t) +
1

p

p∑

i=1

(
yi − g (t)(xTi w (t))

)
xi

end for
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Lipschitz Pool Adjacent Violator

The Pool Adjacent Violator
(PAV) algorithm pools
points and averages to
minimize mean squared error
g(xi )− yi . PAV

L-PAV adds the additional
constraint of a given
Lipschitz constant.
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High-rank Matrices

For Z low-rank,

Yij = g(Zij) = 1

1+exp
−γZij

, Y has full rank.

Yij = g(Zij) = quantize to grid(Zij), Y has full rank.
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High-rank Matrices: Effective rank

These matrices even have high effective rank.

Definition

The effective rank of an n ×m matrix Y , m < n, with singular
values σj is

rε(Y ) = min



k ∈ N :

√√√√
∑m

j=k+1 σ
2
j∑m

j=1 σ
2
j

≤ ε



 .
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High-rank Matrices: Effective rank

These matrices even have high effective rank.
For a rank-50, 1000x1000 matrix:
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Problem Formulation

Our model is as follows:

Low-rank matrix Z ∗ ∈ Rn×m with m ≤ n and (for now,
known) rank r � m.

Lipschitz link function g∗ : R→ R, monotonic, Lipschitz

Noise matrix N ∈ Rn×m with iid entries E[N] = 0.

Samples of matrix entries Ψ ∈ {1, . . . , n} × {1, . . . ,m} is a
multiset, sampled independently with replacement.

We observe Yij = g∗(Z ∗ij ) + Nij for (i , j) ∈ Ψ

and we wish to recover g∗, Z ∗.
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Optimization Formulation

min
g ,Z

∑

Ψ

(g(Zi ,j)− Yi ,j)
2

subj. to g : R→ R is Lipschitz and monotone

rank(Z ) ≤ r

Non-convex in each variable, but we can alternate the standard
approaches:

Use gradient descent and projection onto the low-rank cone
for Z .

Use LPAV for g .

We call this algorithm MMC-LS.
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MMC-LS Algorithm

Algorithm 4 MMC-LS

Given max iterations T > 0, step size η > 0, rank r , data YΨ

Init ĝ (0)(z) = |Ψ|
mnz , Ẑ (0) = mn

|Ψ|Y0, where Y0 zero-filled YΨ.
for t = 1, 2, . . . ,T do

Update Ẑ using gradient descent:

Ẑ
(t)
i ,j = Ẑ

(t−1)
i ,j −η

(
ĝ t−1

(
Ẑ

(t−1)
i ,j

)
− Yi ,j

)
(ĝ t−1)′(Ẑ

(t−1)
i ,j )I(i ,j)∈Ψ

Project: Ẑ (t) = Pr (Ẑ (t))

Update ĝ : ĝ (t) = LPAV
(
{(Ẑ (t)

i ,j ,Yi ,j) for (i , j) ∈ Ψ}
)

.

end for
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Optimization of Calibrated Loss

Let Φ : R→ R be a differentiable function that satisfies Φ′ = g∗.
Since g∗ is monotonic, Φ is convex. Consider:

L(Φ,Z ) =
∑

(i ,j)∈Ψ

Φ(Zi ,j)− Yi ,jZi ,j

Differentiating with respect to Z we get that a minimizer satisfies∑
(i ,j)∈Ψ g∗(Zi ,j)− Yi ,j = 0; in other words, Z ∗ is a minimizer in

expectation. So L(Φ,Z ) is a calibrated loss for our problem.
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MMC-c Algorithm

Algorithm 5 MMC-calibrated

Given max iterations T > 0, step size η > 0, rank r , data YΨ

Init ĝ (0)(z) = |Ψ|
mnz , Ẑ (0) = mn

|Ψ|Y0, where Y0 zero-filled YΨ.
for t = 1, 2, . . . ,T do

Update Ẑ using gradient descent:

Ẑ
(t)
i ,j = Ẑ

(t−1)
i ,j − η

(
ĝ t−1

(
Ẑ

(t−1)
i ,j

)
− Yi ,j

)
I(i ,j)∈Ψ

Project: Ẑ (t) = Pr (Ẑ (t))

Update g : g (t) = LPAV
(
{(Ẑ (t)

i ,j ,Yi ,j) for (i , j) ∈ Ψ}
)

.

end for
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Remarks

MMC consists of three steps: gradient descent, projection, and
LPAV.

The gradient descent step requires a step size parameter η; we
chose a small constant stepsize by cross validation.

The projection requires rank r . For our implementation, we
started with a small r and increased it, in the same vein as
Wen, Yin, and Zhang 2012.

LPAV is the solution of a QP. Ravi developed an ADMM
implementation as well.

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Introduction Missing Data Robust PCA Sparse PCA Calibration Conclusion

MSE Analysis of MMC-c

Let M̂ = ĝ(Ẑ ) and M∗ = g∗(Z ∗).
Define the MSE as

MSE (M̂) = E


 1

mn

n∑

i=1

m∑

j=1

(
M̂i ,j −M∗i ,j

)2
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MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration, Ganti, Balzano,
Willett 2015)

Let ‖Z ∗‖ = O(
√
n) and σr+1(Y ) = Õ(

√
n) with high probability.

Let α = ‖M∗ − Z ∗‖. Furthermore, assume that elements of Z ∗

and Y are bounded in absolute value by 1.
Then the MSE of one step of MMC (T = 1) is bounded by

MSE (M̂) ≤ O

(√
r

m
+

mn

|Ψ|3/2
+

√
rα

m
√
n

(
1 +

α√
n

))
.
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MSE Analysis of MMC-c

Theorem (MSE of MMC-c after one iteration, Ganti, Balzano,
Willett 2015)

In addition to the previous assumptions, let

α = ‖M∗ − Z ∗‖ = O(
√
n) .

Then the MSE of one step of MMC is bounded by

MSE (M̂) ≤ O

(√
r

m
+

mn

|Ψ|3/2

)
.
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Synthetic Data

Z ∗ is 30× 20 and rank 5.

N = 0

Toy ISE calibration function: g∗(z) = 1/(1 + exp−γz)

Vary γ = 1, 10, 40.

Vary probability of observation p = .2, .35, .5, .7.
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Synthetic Data

0"

0.1"

0.2"

0.3"

0.4"

0.5"

LRMC" MMC-LS" MMC-1" MMC-c"

RM
SE
%o
n%
te
st
%d
at
a%

c=1.0%

p=0.2"

p=0.35"

p=0.5"

p=0.7"

γ"

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Introduction Missing Data Robust PCA Sparse PCA Calibration Conclusion

Synthetic Data
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Synthetic Data
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Real Data

Paper recommendation: 3426 features from 50 scholars’
research profiles.

Jester: 4.1 Million continuous ratings (-10.00 to +10.00) of
100 jokes from 73,421 users.

Movie lens: 100,000 ratings from 1000 users on 1700 movies.

Cameraman: Dictionary learning on patches of the image.

Dataset Dimension |Ψ| r0.01(Y )

PaperReco 3426 × 50 34294 (20%) 47
Jester-3 24938 × 100 124690 (5%) 66
ML-100k 1682 × 943 64000 (4%) 391

Cameraman 1536 × 512 157016 (20%) 393
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Real Data Performance

RMSE on a held-out test set:

Dataset |Ψ|/mn LMaFit-A MMC-c T = 1 MMC-c

PaperReco 20% 0.4026 0.4247 0.2965
Jester-3 5% 6.8728 5.327 5.2348
ML-100k 4% 3.3101 1.388 1.1533

Cameraman 20% 0.0754 0.1656 0.06885
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Conclusion

Low-rank matrix constraints may be defined by a smooth
manifold.

Standard manifold optimization methods when applied to
these non-convex problems work well.

The GROUSE algorithm is just the natural incremental
gradient on the Grassmannian for subspace learning.

GROUSE is equivalent to a missing-data ISVD and it exhibits
global convergence behavior.

Adding sparsity regularizers works empirically but there is
much to understand theoretically!
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GROUSE Comments

The GROUSE update is essentially a projection of a step along the
search direction rtw

T
t . Defining the inconsistency measure

E(Ut) := min
wt
‖[Ut ]Ψtwt − [vt ]Ψt‖2

2,

we have
dE
dUt

= −2rtw
T
t ,

so we see that the GROUSE search direction is the negative
gradient of E .

The GROUSE update has much in common with quasi-Newton
updates in optimization, in that it makes the minimal adjustment
required to match the latest observations, while retaining a
certain desired structure.
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Partial-data ISVD and GROUSE

This ISVD and GROUSE seem similar:

We defined them both to compute and use wt to extract the
missing information from Ut and [vt ]Ψt .

Both generate a sequence {Ut} of estimates of S.

Both use only Ut and [vt ]Ψt to generate Ut+1.

Neither has different confidence for different subspaces of the
target subspace S; both maintain a “flat” approximation.

Indeed, we can show that ISVD and GROUSE are identical for a
certain choice of the step-size parameter ηt .

The choice of ηt is not the same as the “optimal” choice in
GROUSE, but it works fairly well in practice.
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Relating partial-data ISVD and GROUSE

Theorem

Suppose we have the same Ut and [vt ]Ψt at the tth iterations of
ISVD and GROUSE. Then we can construct an ηt > 0 in GROUSE
such that the next iterates Ut+1 of both algorithms are identical,
to within an orthogonal transformation by the d × d matrix

Wt :=
[

wt
‖wt‖ Zt

]
,

where Zt is a d × (d − 1) matrix whose orthonormal columns span
the nullspace of wT

t .
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GROUSE and ISVD: Details

The precise values for which GROUSE and ISVD are identical are:

λ =
1

2

[
(‖wt‖2 + ‖rt‖2 + 1) +

√
(‖wt‖2 + ‖rt‖2 + 1)2 − 4‖rt‖2

]

This is the first eigenvalue of the matrix

[
Id wt

0 ‖rt‖

]
;

the next d − 1 eigenvalues are 1 by the interleaving theorem.

β =
‖rt‖2‖wt‖2

‖rt‖2‖wt‖2 + (λ− ‖rt‖2)2
; ηt =

1

σt
arcsinβ.

L. Balzano University of Michigan

Manifold Optimization for Constrained SVD



Introduction Missing Data Robust PCA Sparse PCA Calibration Conclusion

Incremental SVD with Missing Data Options

projection weights w = arg mina ‖PΨt (Uta− vt)‖2
2;

residual: rt = vt − Uw on Ψt ; zero otherwise.

ISVD with interpolation:
[
U rt

‖rt‖

] [ Σ w
0 ‖rt‖

] [
V 0
0 1

]T

SAGE GROUSE:
[
U rt

‖rt‖

] [ Id w
0 ‖rt‖

] [
V 0
0 1

]T

Brand Algorithm (β ≤ 1) :
[
U rt

‖rt‖

] [ βΣ w
0 ‖rt‖

] [
V 0
0 1

]T
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Incremental SVD with Missing Data Performance

isvd grouse
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