
Chapter 3

Gradient Methods Using Momentum
and Memory

The steepest descent method described in Chapter 2 always steps in the negative gradient direction,
which is orthogonal to the boundary of the level set for f at the current iterate. This direction can
change sharply from one iteration to the next. For example, when the contours of f are narrow
and elongated, this strategy can produce wild swings in direction, and small steps with only slow
progress toward a solution.

The steepest descent method is “greedy” in a sense. It uses a direction that is always the most
productive direction at this particular iterate, making no explicit use of knowledge gained about
the function f at earlier iterations. In this chapter, we examine methods that encode knowledge
of the function in various ways, and exploit this knowledge in their choice of search directions
and step lengths. One such class of techniques makes use of momentum, in which the search
direction tends to be similar to that one used on the previous step, with a small tweak in the
direction of a negative gradient evaluated at the current point or a nearby point. Each search
direction is thus a combination of all gradients encountered so far during the search — a compact
encoding of the history of the search. Momentum methods in common use include the heavy-
ball method, the conjugate gradient method, and Nesterov’s accelerated gradient methods. We
will also consider model-based methods, which construct an explicit model of the function f from
information gathered at previous iterations, and uses this model to determine the search direction.

3.1 Motivation from Differential Equations

An intuition for momentum methods comes from looking at an optimization algorithm as a dynam-
ical system. By taking the continuous limit of an algorithm, it often traces out the solution path
of a differential equation. For instance, the gradient method is akin to moving down a potential
well where the potential is defined by the gradient of f :

dx

dt
= −∇f(x)

This differential equation has fixed points precisely when ∇f(x) = 0, which are minimizers of a
convex smooth function f .

31



There are other differential equations whose fixed points occur precisely at points for which
∇f(x) = 0. Consider the second-order differential equation that governs a particle with mass
moving in a potential defined by the gradient of f :

µ
d2x

dt2
= −∇f(x)− bdx

dt
. (3.1)

As before, points x for which ∇f(x) = 0 are fixed points of this ODE. In this setting µ governs
the mass of the particle and b governs the friction dissipated during the evolution of the system.
If b = 0, then the system may always gain acceleration. Trajectories tend to continue to move in
the direction they were moving before, and heavier objects move down hill faster than light objects
in the presence of friction. Note that in the limit as the mass µ goes to zero, we recover the ODE
that we had derived for the gradient method.

If we approximate this ODE using simple finite differences, we have

µ
x(t+ ∆t)− 2x(t) + x(t−∆t)

∆t2
≈ −∇f(x(t))− bx(t+ ∆t)− x(t)

∆t

Rearranging the terms in this expression and redefining parameters gives the finite difference equa-
tion:

x(t+ ∆t) = x(t)− α∇f(x(t)) + β(x(t)− x(t−∆t)). (3.2)

The algorithm defined by (3.2) is exactly Heavy-Ball Method of Polyak, for certain choices of the
parameters α and β. With a minor modification, this becomes Nesterov’s optimal method. When
f is a convex quadratic, is known also as Chebyshev’s iterative method.

By rewriting (3.2) in terms of discrete iterates, we obtain

xk+1 = xk − α∇f(xk) + β(xk − xk−1) , (3.3)

Defining
pk = xk+1 − xk = −α∇f(xk) + β(xk − xk−1) = −α∇f(xk) + βpk−1.

With this identification, we can rewrite the iteration in terms of two sequences:

xk+1 = xk + pk

pk = −α∇f(xk) + βpk−1

Nesterov’s optimal method (also known as Nesterov’s accelerated method) is defined by the formula

xk+1 = xk − α∇f(xk + β(xk − xk−1)) + β(xk − xk−1) . (3.4)

This method only differs in the way that the underlying ODE (3.1) is discretized. In the two-state
version, Nesterov’s method becomes

xk+1 = xk + pk

pk = −α∇f(xk + βpk−1) + βpk−1

By a change of variable, Nesterov’s optimal method can also be written in the following equivalent
form:

yk = xk + βk(xk − xk−1)

xk+1 = yk − αk∇f(yk) .
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3.2 Heavy-Ball Method

In this section, we analyze the convergence behavior of the heavy-ball method (3.3), and derive
suitable values for its parameters α and β. Our development is done in terms of an inhomogeneous
convex quadratic objective

f(x) =
1

2
xTQx− bTx+ c, (3.5)

with positive definite Hessian Q and eigenvalues

0 < m = λn ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ1 = L.

Note that Qx∗ = b at the minimizer x∗ of f .
We’ll show a powerful linear convergence result for the heavy-ball method on the quadratic

function (3.5). But we need to be careful! This result does not imply similar convergence behavior
on all strongly sonvex quadratics! A simple one-dimensional example from the Exercises serves to
demonstrate the distinction.

By substituting ∇f(xk) = Qxk−b = Q(xk−x∗) in (3.3), and sprinkling x∗ liberally throughout
this expression, we obtain

xk+1 − x∗ = (xk − x∗)− αQ(xk − x∗) + β
(

(xk − x∗)− (xk−1 − x∗)
)
. (3.6)

By concatenating the error vector xk − x∗ over two successive steps, we obtain[
xk+1 − x∗
xk − x∗

]
=

[
(1 + β)I − αQ −βI

I 0

] [
xk − x∗
xk−1 − x∗

]
(3.7)

By defining

wk :=

[
xk+1 − x∗
xk − x∗

]
, T :=

[
(1 + β)I − αQ −βI

I 0

]
(3.8)

we can write the iteration (3.7) as

wk = Twk−1, k = 1, 2, . . . . (3.9)

The properties of T are key to analyzing the convergence of the sequence {wk} to zero. The
following theorem shows how the eigenvalues of T depend on α, β, and the eigenvalues λi of Q.

Theorem 3.1. If we choose β such that

1 > β > max
(
|1−
√
αm|, |1−

√
αL|

)2
, (3.10)

the matrix T has all complex eigenvalues, which are as follows:

λ̄i,1 =
1

2

[
(1 + β − αλi) + i

√
4β − (1 + β − αλi)2

]
,

λ̄i,2 =
1

2

[
(1 + β − αλi)− i

√
4β − (1 + β − αλi)2

]
, i = 1, 2, . . . , n.

We have λ̄i,1 6= λ̄i,2 for all i, and all eigenvalues have magnitude β.
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Proof. We write the eigenvalue decomposition of Q as Q = UΛUT , where Λ = diag(λ1, λ2, . . . , λn).
By definining the permutation matrix Π as follows:

Πij =


1 i odd, j = (i+ 1)/2

1 i even, j = n+ (i/2)

0 otherwise.

we have by applying a similarity transformation to the matrix T that

Π

[
U 0
0 U

]T [
(1 + β)I − αQ −βI

I 0

] [
U 0
0 U

]
ΠT = Π

[
(1 + β)I − αΛ −βI

I 0

]
ΠT

=


T1 0 . . . 0
0 T2 . . . 0
...

. . .
...

0 0 . . . Tn

 ,
where

Ti =

[
1 + β − αλi −β

1 0

]
, i = 1, 2, . . . , n.

The eigenvalues of T are the eigenvalues of Ti, for i = 1, 2, . . . , n. The eigenvalues of Ti are the
roots of the following quadratic:

u2 − (1 + β − αλi)u+ β = 0,

which are given by the familiar formula:

u =
1

2

[
(1 + β − αλi)±

√
(1 + β − αλi)2 − 4β

]
.

The two roots are distinct complex numbers when (1 + β − αλi)2 − 4β < 0, which happens when

β ∈
(

(1−
√
αλi)

2, (1 +
√
αλi)

2
)
. (3.11)

When β is in the range (3.10), it satisfies (3.11) for all i. Hence, the eigenvalues of each Ti are two
distinct complex numbers, for all i, and have the values λ̄i,1, λ̄i,2 defined above.

It is easy to check that all λ̄i,1, λ̄i,2, i = 1, 2, . . . , n, have magnitude β.

Because λ̄i,1 6= λ̄i,2 for the chosen value of β, there exists a (complex) eigenvalue decomposition
of each Ti, of the form

U−1
i TiUi = Si, Si =

[
λ̄i,1 0
0 λ̄i,2

]
.

In fact, by composing Ui, = 1, 2, . . . , n with the orthgonal matrices U and Π defined in the proof
above, we can define a (2n)× (2n) nonsingular matrix V such that

V −1TV = S, where S :=


S1 0 . . . 0
0 S2 . . . 0
...

. . .
...

0 0 . . . Sn

 .
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Therefore, by defining
zk := V −1wk, (3.12)

we can express the relation (3.9) as

zk = Szk−1 = S2zk−2 = · · · = Skz0. (3.13)

Since S is a diagonal matrix whose diagonal elements all have magnitude β, we have that

‖zk‖ = βk‖z0‖, (3.14)

where ‖z‖ =
√
zHz.

When we choose

α :=
4

(
√
L+
√
m)2

, (3.15)

we find that

|1−
√
αm|2 = |1−

√
αL|2 =

(√
L−
√
m√

L+
√
m

)2

, (3.16)

so a choice of β that satisfies (3.10) would be

β :=

√
L−
√
m√

L+
√
m
. (3.17)

(Note that this value of β lies strictly between the lower bound (3.16) and the upper bound of 1,
as required by (3.10).) When we use κ = L/m to denote the condition number of Q, we have

β = 1− 2√
κ+ 1

. (3.18)

We conclude with the following result concerning R-linear convergence of xk to x∗.

Theorem 3.2. For the choices (3.15) of α and (3.17) β, the heavy-ball iteration (3.3) produces a
sequence {xk} that converges R-linearly to x∗ with factor β = 1− 2/(

√
κ+ 1).

Proof. We have from (3.8), (3.12), and (3.14) that

‖xk − x∗‖ ≤ ‖wk‖ ≤ ‖V ‖‖zk‖ = βk‖V ‖‖z0‖,

proving the result.

We have monotonic decrease in the norm of the transformed vector zk (from (3.13)) but not the
original error vector wk. In fact, experiments can show sharp increases in wk on early iterations
before the R-linear convergence promised by Theorem 3.2 takes effect.

Let us compare the linear convergence of heavy ball against steepest descent, on nonconvex
quadratics. Recall from (2.18) that the steepest-descent method with constant step α = 1/L
requires O(((L/m) log ε) iterations to obtain a reduction of factor ε in the function error f(xk)−f∗.
The rate defined by β in Theorem 3.2 suggests a complexity of O(

√
L/m log ε) to obtain a reduction

of factor ε in ‖wk‖ (a different quantity). For problems in which the condition number κ = L/m
is moderate to large, the heavy-ball method has a significant advantage. For example, if κ = 1000,
the improved rate translates into a factor-of-30 reduction in number of iterations required, with
virtually identical workload per iteration (one gradient evaluation and a few vector operations).
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