New Directions 2016: Mathematical Optimization August 2016
 Worksheet 1

1. Compute the gradient and Hessian of the Rosenbrock function:

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

2. Prove the all isolated minimizers are strict. (One way to do this is to prove that "not isolated" implies "not strict".)
3. (a) Give an example of a matrix that is not positive definite despite having all positive entries.
(b) If A is a positive definite matrix, must its diagonal elements all be positive? Explain.
4. Suppose that $f(x)=\frac{1}{2} x^{T} A x$ where A is symmetric positive semidefinite. Show that f is convex, by proving that the following is true for all $x, y \in \mathbb{R}^{n}$ and all $\alpha \in[0,1]$:

$$
f(x+\alpha(y-x)) \leq(1-\alpha) f(x)+\alpha f(y) .
$$

5. Suppose that $f(x)=x^{T} A x$ where A is an $n \times n$ matrix that is not necessarily symmetric. What is the Hessian $\nabla^{2} f(x)$?
6. Consider the sequence $\left\{x_{k}\right\}$ defined by

$$
x_{k}= \begin{cases}(1 / 4)^{2^{k}}, & \text { for } k \text { even } \\ \left(x_{k-1} / k\right), & \text { for } k \text { odd }\end{cases}
$$

Is this sequence Q-superlinearly convergent? Q-quadratically convergent? R-quadratically convergent?
7. Give an example of a sequence $\left\{x_{k}\right\}$ of positive real numbers, that decreases to zero Q-superlinearly but not Q-quadratically.
8. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth convex function, and suppose that the set of minimizers S defined by $S:=\left\{x^{*}: f\left(x^{*}\right) \leq\right.$ $f(x)$ for all $\left.x \in \mathbb{R}^{n}\right\}$ is nonempty. Show that S is a closed and convex set.
9. Show the interior and closure of a convex set are convex.
10. A point $x \in \mathbb{R}^{n}$ is a convex combination of the points $\left\{x^{1}, x^{2}, \ldots, x^{r}\right\}$ in \mathbb{R}^{n} if for some real numbers $\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}$ that satisfy $\sum \lambda_{i}=1$ and $\lambda_{i} \geq 0$, we have $x=\sum_{i=1}^{r} \lambda_{i} x^{i}$. Show that a set S in \mathbb{R}^{n} is convex if and only if every convex combination of a finite number of points of S is in S.
11. A set C is a cone if for every $\lambda>0$ and every $x \in C, \lambda x \in C$. Prove that a cone is convex if and only if it is closed under addition, that is, $x, y \in C$ implies that $x+y \in C$.

