New Directions 2016: Mathematical Optimization August 2016
 Worksheet 2

1. Suppose $Y_{t} \in \mathbb{R}^{n \times d}$ has orthonormal columns and let

$$
-\nabla f(Y)=-\left.\left(I-Y Y^{T}\right) \frac{d f(Y)}{d Y}\right|_{Y=Y_{t}}=: U \Sigma V^{T}
$$

be the thin SVD of the negative gradient, so $U \in \mathbb{R}^{n \times d}, \Sigma \in \mathbb{R}^{d \times d}$ and $V \in \mathbb{R}^{d \times d}$. Show that the Grassmannian update

$$
Y_{t+1}=Y_{t} V \cos \left(\Sigma \eta_{t}\right) V^{T}+U \sin \left(\Sigma \eta_{t}\right) V^{T}
$$

results in another matrix with orthonormal columns.
2. Find positive values of $\bar{\epsilon}, \gamma_{1}$, and γ_{2} such that the Gauss-Southwell choice $d^{k}=-\left[\nabla f\left(x^{k}\right)\right]_{i_{k}} e_{i_{k}}$, where $e_{i_{k}}$ is the unit vector $(0, \ldots, 0,1,0, \ldots, 0)^{T}$ with the 1 in position i_{k}. where $i_{k}=\arg \max _{i=1,2, \ldots, n}\left|\left[\nabla f\left(x^{k}\right)\right]_{i}\right|$ satisfies conditions
$-\left(d^{k}\right)^{T} \nabla f\left(x^{k}\right) \geq \bar{\epsilon}\left\|\nabla f\left(x^{k}\right)\right\|\left\|d^{k}\right\|, \quad \gamma_{1}\left\|\nabla f\left(x^{k}\right)\right\| \leq\left\|d^{k}\right\| \leq \gamma_{2}\left\|\nabla f\left(x^{k}\right)\right\|$.
3. Consider a line-search method for min $f(x)$ in which the search direction d_{k} satisfies the conditions

$$
-d_{k}^{T} \nabla f\left(x_{k}\right) \geq \bar{\epsilon}\left\|\nabla f\left(x_{k}\right)\right\|\left\|d_{k}\right\|, \quad\left\|d_{k}\right\| \geq \gamma_{1}\left\|\nabla f\left(x_{k}\right)\right\|
$$

for positive $\bar{\epsilon}$ and γ_{1}. The steps have the form

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}, \quad \text { for some } \alpha_{k}>0
$$

Suppose that we use a backtracking procedure to select α_{k}, where we try in turn $\alpha_{k}=\bar{\alpha}, \bar{\alpha} / 2, \bar{\alpha} / 4, \ldots$, for some $\bar{\alpha}>0$, stopping when the following sufficient decrease condition is satisfied:

$$
f\left(x_{k}+\alpha_{k} d_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha_{k} d_{k}^{T} \nabla f\left(x_{k}\right)
$$

for some constant $c_{1} \in(0,1)$. Prove that this backtracking procedure yields the following reduction in f at each iteration:

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\Delta\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

for some $\Delta>0$, and find an appropriate value for Δ. Hints: (a) consider separately the cases of $\alpha_{k}=\bar{\alpha}$ and $\alpha_{k}<\bar{\alpha}$ (that is, whether backtracking was needed, or not); (b) Note that when backtracking is required, the previous value of α_{k} tried (namely, $2 \alpha_{k}$) must have failed the sufficient decrease test.
4. Show that Nesterov's optimal method applied to the convex quadratic $f(x)=\frac{1}{2} x^{T} Q x-b^{T} x+c$ (where Q is a symmetric positive definite matrix whose eigenvalues lie in the range $[m, L]$ for $0<m<L$) yields a linear convergence rate that is approximately the same as for the heavy ball method. The analysis should follow closely the analysis of the heavy-ball method shown in the notes. Proceed in the following steps.
(a) Note that Nesterov's optimal method is given by the formula

$$
x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}+\beta\left(x^{k}-x^{k-1}\right)\right)+\beta\left(x^{k}-x^{k-1}\right) .
$$

Specialize this formula to the particular case of f convex quadratic, and find a matrix T such that

$$
w^{k}=T w^{k-1}, \quad k=1,2, \ldots
$$

where

$$
w^{k}:=\left[\begin{array}{c}
x^{k+1}-x^{*} \\
x^{k}-x^{*}
\end{array}\right]
$$

(b) Following the technique used in the heavy-ball analysis, show that by a similarity transformation, we can transform T to a matrix

$$
\left[\begin{array}{cccc}
T_{1} & 0 & \ldots & 0 \\
0 & T_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & T_{n}
\end{array}\right]
$$

where each T_{i} is a 2×2 block that depends on the i th eigenvalue of Q (that we denote by λ_{i}). Write out the form of T_{i}.
(c) Find the eigenvalues of each T_{i}, as a function of α, β, and λ_{i}.
(d) Show that for the choices

$$
\alpha=1 / L, \quad \beta=\frac{\sqrt{L}-\sqrt{m}}{\sqrt{L}+\sqrt{m}}
$$

we these eigenvalues are all bounded in magnitude by $1-\sqrt{m / L}$.
5. Minimize a quadratic objective $f(x)=(1 / 2) x^{T} A x$ with some firstorder methods, generating the problems using the following code fragment to generate a Hessian with eigenvalues in the range $[m, L]$.

```
mu=0.01; L=1; kappa=L/mu;
n=100;
A = randn(n,n); [Q,R]=qr (A);
D=rand(n,1); D=10.^D; Dmin=min(D); Dmax=max(D);
D=(D-Dmin)/(Dmax-Dmin);
D = mu + D*(L-mu);
A = Q'*diag(D)*Q;
epsilon=1.e-6;
kmax=1000;
x0 = randn(n,1); % use a different x0 for each of the 10 trials
```

Run the code in each case until $f\left(x_{k}\right) \leq \epsilon$ for tolerance $\epsilon=10^{-6}$. Implement the following methods.

- Steepest descent with $\alpha_{k} \equiv 2 /(m+L)$.
- Steepest descent with exact line search.
- Heavy-ball method, with $\alpha=4 /(\sqrt{L}+\sqrt{m})^{2}$ and $\beta=(\sqrt{L}-$ $\sqrt{m}) /(\sqrt{L}+\sqrt{m})$.
- Nesterov's optimal method, with $\alpha=1 / L$ and $\beta=(\sqrt{L}-$ $\sqrt{m}) /(\sqrt{L}+\sqrt{m})$.
(a) Tabulate the average number of iterations required, over 10 random starts.
(b) Draw a plot of the convergence behavior on a typical run, plotting iteration number against $\log _{10}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)$. (Use the same figure, with four different colors for the four algorithms.)
(c) Discuss your results, noting in particular whether the worst-case convergence analysis is reflected in the practical results.

6. Discuss happens to the codes and algorithms in the previous question when we reset m to 0 (making f weakly convex).
7. Prove that Moreau's prox-operator is a contraction.
8. Show that a closed proper convex function h and its Moreau envelope $M_{\lambda, h}$ have identical minimizers.
9. Calculate $\operatorname{prox}_{\lambda h}(x)$ and $M_{\lambda, h}(x)$ for $h(x)=\frac{1}{2}\|x\|_{2}^{2}$.
