New Directions 2016: Mathematical Optimization August 2016
 Worksheet 3

1. Prove Gale's theorem: Given $A \in \mathbb{R}^{p \times n}$ and $c \in \mathbb{R}^{p}$, we have either

$$
(I) \quad A x \leq c \quad \text { for some } x \in \mathbb{R}^{n}
$$

or

$$
\begin{equation*}
A^{T} y=0, \quad c^{T} y=-1, \quad y \geq 0 \quad \text { for some } y \in \mathbb{R}^{p} \tag{II}
\end{equation*}
$$

but never both.
2. Write code in Matlab or Python (or a lower-level language) to solve linear programs using Algorithms LPF from Chapter 5 of PrimalDual Interior-Point Methods. Problems are generated according to the codes main.m and tester.m, available from the web site. (If you are using a language other than Matlab, you'll have to translate these codes yourself.) Run your experiments on dense problems of size 50×200 that are generated by tester.m.

- Experiment with different values of $\gamma, \sigma_{\min }$ and $\sigma_{\max }$.
- Experiment with different heuristics for choosing σ_{k} at each iteration.
- As well as choosing the steplengths rigorously to stay in the neighborhood $\mathcal{N}_{-\infty}(\gamma)$, try alternative heuristics that step .99 or . 999 of the maximum α that can be taken before violating nonnegativity of x and s.

The trickiest part of your code will be to solve the quadratics to find the maximum value of steplength α at each iteration that maintains membership of the neighborhood $\mathcal{N}_{-\infty}(\gamma)$. These quadratics have the following form:
$\left(x_{i}+\alpha \Delta x_{i}\right)\left(s_{i}+\alpha \Delta s_{i}\right) \geq \gamma(x+\alpha \Delta x)^{T}(s+\alpha \Delta s) / n, \quad i=1,2, \ldots, n$.
You need to find the maximal $\alpha \in[0,1]$ such that these inequalities are all satisfied.
Describe your experiments, commenting in particular on the heuristics that you found to be most effective.

