New Directions 2016: Mathematical Optimization August 2016 Worksheet 4

1. Consider the NLP

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_E(x) = 0$
 $c_I(x) \le 0$

where $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and $c_I : \mathbb{R}^n \longrightarrow \mathbb{R}^{m_I}$ are convex, and where $c_E : \mathbb{R}^n \longrightarrow \mathbb{R}^{m_E}$ is affine.

Prove that any local minimizer of the NLP is a global minimizer.

2. Consider the equality-constrained QP

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + g^T x$$

s.t. $Ax + b = 0$

where $g \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ has full rank, and $Q \in \mathbb{R}^{n \times n}$ is symmetric. Let $Z \in \mathbb{R}^{n \times (n-m)}$ be a null-space matrix of A; i.e., the columns of Z form a basis of the null space of A.

Suppose $Z^T Q Z$ has a negative eigenvalue. Prove that then the QP is unbounded.

3. Consider the QP

$$\min_{x \in \mathbb{R}^4} \frac{1}{2} x^T Q x + g^T x$$

s.t. $Ax + b = 0$

with

$$Q = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 0.25 & -1.5 & -2 \\ 1 & -1.5 & 11 & 14 \\ 2 & -2 & 14 & 22 \end{bmatrix} \qquad \qquad g \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -0.5 & 3 & 4 \end{bmatrix} \qquad \qquad b = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

Solve this problem, using the step decomposition method. Compute x^* and λ^* .

- 4. Recall the primal active-set QP method from the lecture, and let $\mathcal{W}_0 \subseteq \mathcal{I}$ be an initial working set. Furthermore, suppose that the constraint gradients $\{a_i\}_{i\in\mathcal{E}\cup\mathcal{W}_0}$ are linearly independent. Prove that in all later iterations, the vectors $\{a_i\}_{i\in\mathcal{E}\cup\mathcal{W}}$ remain linearly independent, as long as the step size α is positive in all iterations.
- 5. Recall the QP

$$\min (x_1 - 1)^2 + (x_2 - 2.5)^2$$

s.t. $-x_1 + 2x_2 - 2 \le 0$ (1)
 $x_1 + 2x_2 - 6 \le 0$ (2)
 $x_1 - 2x_2 - 2 \le 0$ (3)
 $-x_1 \le 0$ (4)
 $-x_2 \le 0$ (5)

from the lecture. Execute the active-set QP algorithm starting from $x_0 = (4, 1)$ and $\mathcal{W}_0 = \{2, 3\}$.

- 6. Write down one NLP and give two separate iterates, one at which the (QP_k) in the SQP method is feasible, and one at which (QP_k) is infeasible.
- 7. Suppose, $p_k = 0$ is the optimal solution of (QP_k) , the QP solved in the SQP method at an iteration x_k for an NLP with equality and inequality constraints. Prove that then x_k is a point at which the KKT conditions for the NLP hold.
- 8. Consider the following NLP from the lecture:

$$\min_{x \in \mathbb{R}^2} x_1 + (x_2 - 1)^2$$

s.t. $x \ge 0$.

Compute the central path, i.e., the set of the minimizers $x^*(\mu)$ of (BP_{μ}) for all $\mu > 0$, together with their dual variables $\lambda^*(\mu)$ and $z^*(\mu)$.

9. Prove that (in the notation introduced in the Nonlinear Optimization Theory slides) we have $T_{\Omega}(\bar{x}) \subset \mathcal{F}(\bar{x})$, without the need for any constraint qualifications. (You need to use the definition of limiting feasible directions, in conjunction with Taylor's theorem.) 10. Suppose that the Mangasarian-Fromowitz constraint qualification is satisfied at \bar{x} . Show that there are no coefficients μ_i for $i \in \mathcal{A}(\bar{x})$ with μ_i not all zero, and $\mu_i \geq 0$ for all $i \in \mathcal{A}(\bar{x}) \cap \mathcal{I}$, such that

$$\sum_{i \in \mathcal{A}(\bar{x})} \mu_i \nabla c_i(\bar{x}) = 0.$$