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Data Analysis

Also: Machine Learning, Statistical Inference, Data Mining.

Extract meaning from data: Understand statistical properties,
important features, fundamental structures in the data.

Use this knowledge to make predictions about other, similar data.

Foundations in Statistics, then Computer Science (AI, Machine Learning,
Databases, Parallel Systems), more recently Optimization.

For a recent Statistics perspective on past, present, and future, see David
Donoho: 50 Years of Data Science, September 2015.

Modeling and domain-specific knowledge is vital: “80% of data analysis is
spent on the process of cleaning and preparing the data.”
[Dasu and Johnson, 2003].

(Most academic research deals with the other 20%.)
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“Big Data”

New “Data Science Centers” at many institutions, new degree programs
(e.g. Masters in Data Science), new funding initiatives.

Huge amounts of data are being collected, routinely.

I Consumer and citizen data: phone logs (call and text), email,
surveillance cameras, web activity, online shopping activity,...

I Scientific data (particle colliders, satellites, biological / genomic,
astronomical,...)

Affects everyone directly!

Powerful computers make it possible to handle larger data sets and
analyze more thoroughly.

Methodological innovations in some areas. e.g. Deep Learning.

I Speech recognition in smart phones
I AlphaGo: AI playing Go
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Typical Setup
After cleaning and formatting, obtain a data set of m objects:

Vectors of features: aj , j = 1, 2, . . . ,m.

Outcome / observation / label yj for each feature vector.

The outcomes yj could be:

a real number: regression

a label indicating that aj lies in one of M classes (for M ≥ 2):
classification

multiple labels: classify aj according to multiple criteria.

no labels (yj is null):

I subspace identification: Locate low-dimensional subspaces that
approximately contain the (high-dimensional) vectors aj ;

I clustering: Partition the aj into a few clusters.

(Structure may reveal which features in the aj are important /
distinctive, or enable predictions to be made about new vectors a.)
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Fundamental Data Analysis Task

Seek a function φ that:

approximately maps aj to yj for each j : φ(aj ) ≈ yj for j = 1, 2, . . . ,m,
if labels yj are available.

if there are no labels yj , or if some labels are missing, seek φ that
does something useful with the data {aj}, e.g. assigns each aj to an
appropriate cluster or subspace.

satisfies some additional properties — simplicity, structure — that
make it “plausible” for the application, robust to perturbations in the
data, generalizable to other data samples.

Can usually define φ in terms of some parameter vector x — thus
identification of φ becomes a data-fitting problem.

Objective function in this problem often built up of m terms that capture
mismatch between predictions and observations for each (aj , yj ).

The process of finding φ is often called learning or training.
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Why?

What’s the use of φ?

Analysis: φ — especially the parameter x that defines it — reveals
structure in the data. Examples:

I Feature selection: reveal the components of vectors aj that are
most important in determining the outputs yj , and quantifies the
importance of these features.

I Uncovers some hidden structure, e.g.

F finds some low-dimensional subspaces that contain the aj ;
F find clusters that contain the aj ;
F find a decision tree that builds intuition about how yj

depend on aj .

Prediction: Given new data vectors ak , predict outputs yk ← φ(ak ).
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Complications

noise or errors in aj and yj . Would like φ (and x) to be robust to
this. Thus, generalization / regularization.

avoid overfitting: Observed data is viewed as an empirical, sampled
representation of some underlying reality. Want to avoid overfitting to
the particular sample. (Ideally, the training process should produce a
similar result for other samples from the same data set.) Again,
generalization / regularization.

missing data: Vectors aj may be missing elements (but may still
contain useful information).

missing labels: Some or all yj may be missing or null —
semi-supervised or unsupervised learning.

online learning: Data (aj , yj ) is arriving in a stream rather than all
known up-front.
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Application I: Least Squares

min
x

f (x) :=
1

2

m∑
j=1

(aT
j x − yj )

2 =
1

2
‖Ax − y‖2

2.

[Gauss, 1799], [Legendre, 1805]; see [Stigler, 1981].

Here the function mapping data to output is linear: φ(aj ) = aT
j x .

`2 regularization reduces sensitivity of the solution x to noise in y .

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖2
2.

`1 regularization yields solutions x with few nonzeros:

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1.

Feature selection: Nonzero locations in x indicates important
components of aj .

Nonconvex separable regularizers (SCAD, MCP) have nice statistical
properties, but lead to nonconvex optimization formulations.

Wright (UW-Madison) Optimization in Data Analysis August 2016 9 / 59



Application II: Matrix Completion

Regression over a structured matrix: Observe a matrix X by probing it
with linear operators Aj (X ), giving observations yj , j = 1, 2, . . . ,m. Solve
a regression problem:

min
X

1

2m

m∑
j=1

(Aj (X )− yj )
2 =

1

2m
‖A(X )− y‖2

2.

Each Aj may observe a single element of X , or a linear combination of
elements. Can be represented as a matrix Aj , so that Aj (X ) = 〈Aj ,X 〉.

Seek the “simplest” X that satisfies the observations, e.g. low-rank, or
low-rank plus sparse. A nuclear-norm (sum-of-singular-values)
regularization term induces low rank on X :

min
X

1

2m
‖A(X )− y‖2

2 + λ‖X‖∗, for some λ > 0.

[Recht et al., 2010]
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Explicit Low-Rank Parametrization
Compact, nonconvex formulation is obtained by parametrizing X directly:

X = LRT , where L ∈ Rm×r , R ∈ Rn×r ,

where r is known (or suspected) rank.

min
L,R

1

2m

m∑
j=1

(Aj (LR
T )− yj )

2.

For symmetric X , write X = ZZT , where Z ∈ Rn×r , so that

min
Z

1

2m

m∑
j=1

(Aj (ZZ
T )− yj )

2.

(No need for regularizer — rank is hard-wired into the formulation.)

Despite the nonconvexity, near-global minima can be found when Aj are
incoherent. Use appropriate initialization [Candès et al., 2014],
[Zheng and Lafferty, 2015] or the observation that all local minima are
near-global [Bhojanapalli et al., 2016].
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Application III: Nonnegative Matrix Factorization

Given m × n matrix Y , seek factors L (m × r) and R (n × r) that are
element-wise positive, such that LRT ≈ Y .

min
L,R

1

2
‖LRT − Y ‖2

F subject to L ≥ 0, R ≥ 0.

Applications in computer vision, document clustering, chemometrics, . . .

Could combine with matrix completion, when not all elements of Y are
known, if it makes sense on the application to have nonnegative factors.

If positivity constraint were not present, could solve this in closed form
with an SVD, since Y is observed completely.

Wright (UW-Madison) Optimization in Data Analysis August 2016 12 / 59



Application IV: Sparse Inverse Covariance
Let Z ∈ Rp be a (vector) random variable, whose entries have zero mean.
Let z1, z2, . . . , zN be samples of Z . Sample covariance matrix (estimates
covariance between components of Z ):

S :=
1

N − 1

N∑
`=1

z`z
T
` .

Seek a sparse inverse covariance matrix: X ≈ S−1.

X reveals dependencies between components of Z : Xij = 0 if the i and j
components of Z are conditionally independent.

(Nonzeros in X indicate arcs in the dependency graph.)

Obtain X from the regularized formulation:

min
X
〈S ,X 〉 − log det(X ) + λ‖X‖1, where ‖X‖1 =

∑
i ,j |Xij |.

[Friedman et al., 2008, Scheinberg and Ma, 2012].
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Application V: Subspace Identification
Given vectors aj ∈ Rn with missing entries, find a subspace of Rn such
that all “completed” vectors aj lie approximately in this subspace.

If Ωj ⊂ {1, 2, . . . , n} is the set of observed elements in aj , seek X ∈ Rn×d

such that
[aj − Xsj ]Ωj

≈ 0,

for some sj ∈ Rd and all j = 1, 2, . . . .
[Balzano et al., 2010, Balzano and Wright, 2014].

Application: Structure from motion. Reconstruct opaque object from
planar projections of surface reference points.
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Application VI: Linear Support Vector Machines

Each item of data belongs to one of two classes: yj = +1 and yj = −1.

Seek (x , β) such that

aT
j x − β ≥ 1 when yj = +1;

aT
j x − β ≤ −1 when yj = −1.

The mapping is φ(aj ) = sign(aT
j x − β).

Design an objective so that the jth loss term is zero when φ(aj ) = yj ,
positive otherwise. A popular one is hinge loss:

H(x) =
1

m

m∑
j=1

max(1− yj (a
T
j x − β), 0).

Add a regularization term (λ/2)‖x‖2
2 for some λ > 0 to maximize the

margin between the classes.
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Regularize for Generalizability
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Application VII: Nonlinear SVM

Data aj , j = 1, 2, . . . ,m may not be separable neatly into two classes
yj = +1 and yj = −1. Apply a nonlinear transformation aj → ψ(aj )
(“lifting”) to make separation more effective. Seek (x , β) such that

ψ(aj )
T x − β ≥ 1 when yj = +1;

ψ(aj )
T x − β ≤ −1 when yj = −1.

Leads to the formulation:

1

m

m∑
j=1

max(1− yj (ψ(aj )
T x − β), 0) +

1

2
λ‖x‖2

2.

Can avoid defining ψ explicitly by using instead the dual of this QP.
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Nonlinear SVM: Dual

Dual is a quadratic program in m variables, with simple constraints:

min
α∈Rm

1

2
αTQα− eTα s.t. 0 ≤ α ≤ (1/λ)e, yTα = 0.

where Qk` = yky`ψ(ak )Tψ(a`), y = (y1, y2, . . . , ym)T , e = (1, 1, . . . , 1)T .

No need to choose ψ(·) explicitly. Instead choose a kernel K , such that

K (ak , a`) ∼ ψ(ak )Tψ(a`).

[Boser et al., 1992, Cortes and Vapnik, 1995]. “Kernel trick.”

Gaussian kernels are popular:

K (ak , a`) = exp(−‖ak − a`‖2/(2σ)), for some σ > 0.
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Nonlinear SVM
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Application VIII: Logistic Regression
Binary logistic regression is similar to binary SVM, except that we seek a
function p that gives odds of data vector a being in class 1 or class 2,
rather than making a simple prediction.

Seek odds function p parametrized by x ∈ Rn:

p(a; x) := (1 + eaT x )−1.

Choose x so that p(aj ; x) ≈ 1 when yj = 1 and p(aj ; x) ≈ 0 when yj = 2.

Choose x to minimize a negative log likelihood function:

L(x) = − 1

m

∑
yj =2

log(1− p(aj ; x)) +
∑
yj =1

log p(aj ; x)


mapping function: φ(a; x) = index of max element of

[
p(a; x)

1− p(a; x)

]
.

Sparse solutions x are interesting because the indicate which components
of aj are critical to classification. Can solve: minz L(z) + λ‖z‖1.
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Application IX: Multiclass Logistic Regression

Have M classes instead of just 2. M can be large e.g. identify phonemes
in speech, identify line outages in a power grid.

Labels yj` = 1 if data point j is in class `; yj` = 0 otherwise; ` = 1, . . . ,M.

Find subvectors x[`], ` = 1, 2, . . . ,M such that if aj is in class k we have

aT
j x[k] � aT

j x[`] for all ` 6= k .

Find x[`], ` = 1, 2, . . . ,M by minimizing a negative log-likelihood function:

f (x) = − 1

m

m∑
j=1

[
M∑
`=1

yj`(a
T
j x[`])− log

(
M∑
`=1

exp(aT
j x[`])

)]

Can use group LASSO regularization terms to select important features
from the vectors aj , by imposing a common sparsity pattern on all x[`].
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Application X: Deep Learning
Inputs are the vectors aj , out-
puts are odds of aj belonging
to each class (as in multiclass
logistic regression).

At each layer, inputs are con-
verted to outputs by a linear
transformation composed with
an element-wise function:

a`+1 = σ(W `a` + g `),

where a` is node values at
layer `, (W `, g `) are parame-
ters in the network, σ is the
element-wise function.
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Deep Learning

The element-wise function σ makes transformations to scalar input:

Logistic function: t → 1/(1 + e−t);

Hinge: t → max(t, 0);

Bernoulli: random! t → 1 with probability 1/(1 + e−t) and t → 0
otherwise (inspired by neuron behavior).

The example depicted shows a completely connected network — but more
typically networks are engineered to the application (speech processing,
object recognition, . . . ).

local aggregation of inputs: pooling;

restricted connectivity + constraints on weights (elements of W `

matrices): convolutions.
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Training Deep Learning Networks

The network contains many parameters — (W `, g `), ` = 1, 2, . . . , L in the
notation above — that must be selected by training on the data (aj , yj ),
j = 1, 2, . . . ,m.

Objective has the form:
m∑

j=1

h(x ; aj , yj )

where x = (W 1, g1,W 2, g2, . . . ) are the parameters in the model and h
measures the mismatch between observed output yj and the outputs
produced by the model (as in multiclass logistic regression).

Nonlinear, Nonconvex. It’s also random in some cases (but then we can
work with expectation).

Composition of many simple functions.
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GoogLeNet
Visual object recognition: Google’s State of the Art network from 2014
[Szegedy et al., 2015].
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A Basic Paradigm
Many optimization formulations in data analysis have this form:

min
x

1

m

m∑
j=1

hj (x) + λΩ(x),

where

hj depends on parameters x of the mapping φ, and data items (aj , yj );

Ω is the regularization term, often nonsmooth, convex, and separable
in the components of x (but not always!).

λ ≥ 0 is the regularization parameter.

(Ω could also be an indicator for simple set e.g. x ≥ 0.)

Alternative formulation:

min
x

1

m

m∑
j=1

hj (x) s.t. Ω(x) ≤ τ.

Structure in hj (x) and Ω strongly influences the choice of algorithms.
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Optimization in Data Analysis: Some Background
Optimization formulations of data analysis / machine learning problems
were popular, and becoming more so... but not universal:

Heuristics are popular: k-means clustering, random forests.

Linear algebra approaches suffice in some applications.

Greedy feature selection.

Algorithmic developments have sometimes happened independently in the
machine learning and optimization communities, e.g. stochastic gradient
from 1980s-2009.

Occasional contacts in the past:

Mangasarian solving SVM formulations [Mangasarian, 1965,
Wohlberg and Mangasarian, 1990, Bennett and Mangasarian, 1992]

Backpropagation in neural networks equivalent to gradient descent
[Mangasarian and Solodov, 1994]

Basis pursuit [Chen et al., 1998].

...but now, crossover is much more frequent and systematic.
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Optimization in Learning: Context

Naive use of “standard” optimization algorithms is usually not appropriate.

Large data sets make some standard operations expensive: Evaluation of
gradients, Hessians, functions, Newton steps, line searches.

The optimization formulation is viewed as a sampled, empirical
approximation of some underlying “infinite” reality.

Don’t need or want an exact minimizer of the stated objective — this
would be overfitting the empirical data. An approximate solution
suffices.

Choose the regularization parameter λ so that φ gives best
performance on some “holdout” set of data: validation, tuning.
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Low-Dimensional Structure

Generalizability often takes the form of low-dimensional structure, when
the function is parametrized appropriately.

Variable vector x may be sparse (feature selection, compressed
sensing).

Variable matrix X may be low-rank.

Data objects aj lie approximately in a low-dimensional subspace.

Example: Identify genetic risk factors for a disease by identifying the
crucial locations on the genome (alleles).

Convex formulations with regularization are often tractable and
efficient in practice.

Discrete or nonlinear formulations are more natural, but harder to
solve and analyze. Recent advances make discrete formulations more
appealing (Bertsimas et al.)
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ALGORITHMS

Seek optimization algorithms — mostly elementary — that can exploit the
structure of the formulations above.

Full-gradient algorithms.

I with projection and shrinking to handle Ω

Accelerated gradient

Stochastic gradient

I and hybrids with full-gradient

Coordinate descent

Conditional gradient

Augmented Lagrangian / ADMM
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Everything Old is New Again

“Old” approaches from the optimization literature have become popular:

Nesterov acceleration of gradient methods [Nesterov, 1983].

Alternating direction method of multipliers (ADMM)
[Eckstein and Bertsekas, 1992].

Parallel coordinate descent and incremental gradient algorithms
[Bertsekas and Tsitsiklis, 1989]

Stochastic gradient [Robbins and Monro, 1951]

Frank-Wolfe / conditional gradient
[Frank and Wolfe, 1956, Dunn, 1979].

Many extensions have been made to these methods and their convergence
analysis. Many variants and adaptations proposed.
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Gradient Methods
Basic formulation, without regularization:

min
x

H(x) :=
1

m

m∑
j=1

hj (x).

Steepest descent takes steps in the negative gradient direction:

xk+1 ← xk − αk∇H(xk ).

Classical analysis applies for H smooth, convex, and

Lipschitz: ‖∇H(x)−∇H(z)‖ ≤ L‖x − z‖, for some L > 0,

Lojasiewicz: ‖∇H(x)‖2 ≥ 2µ[H(x)− H∗], for some µ ≥ 0.

µ = 0: sublinear convergence for αk ≡ 1/L: H(xk )− H∗ = O(1/k).
µ > 0: linear convergence with αk ≡ 1/L:

H(xk )− H∗ ≤
(

1− µ

L

)k
[H(x0)− H∗].
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Shrinking, Projecting for Ω

In the regularized form:

min
x

H(x) + λΩ(x),

the gradient step in H can be combined with a shrink operation in which
the effect of Ω is accounted for exactly:

xk+1 = arg min
z
∇H(xk )T (z − xk ) +

1

2αk
‖z − xk‖2 + λΩ(z).

When Ω is the indicator function for a convex set, xk+1 is the projection
of xk − αk∇H(xk ) onto this set: gradient projection.

For many Ω of interest, this problem can be solved quickly (e.g. O(n)).

Algorithms and convergence theory for steepest descent on smooth H
usually extend to this setting (for convex Ω).
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Accelerated Gradient and Momentum

Accelerated gradient methods [Nesterov, 1983] highly influential.

Fundamental idea: Momentum! Search direction at iteration k depends
on the latest gradient ∇H(xk ) and also the search direction at iteration
k − 1, which encodes gradient information from earlier iterations.

Heavy-ball & conjugate gradient (incl. nonlinear CG) also use momentum.

Heavy-Ball for minx H(x):

xk+1 = xk − α∇H(xk ) + β(xk − xk−1).

Nesterov’s optimal method:

xk+1 = xk − αk∇H(xk + βk (xk − xk−1)) + βk (xk − xk−1).

Typically αk ≈ 1/L and βk ≈ 1.
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Accelerated Gradient Convergence

Typical convergence:

Weakly convex µ = 0: H(xk )− H∗ = O(1/k2);

Strongly convex µ > 0: H(xk )− H∗ ≤ M

(
1−

√
µ

L

)k

[H(x0)− H∗].

Approach can be extended to regularized functions H(x) + λΩ(x)
[Beck and Teboulle, 2009].

Partial-gradient approaches (stochastic gradient, coordinate descent)
can be accelerated in similar ways.
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Are Gradient Methods Useful?

They’re useful for some problems in which X is a matrix, in which full
gradients are practical to compute.

Matrix completion, including explicitly parametrized problems with
X = LRT or X = ZZT ; and Nonnegative matrix factorization.

Subspace identification;

Sparse covariance estimation;

They are less appealing when m is large. To calculate

∇H(x) =
1

m

m∑
j=1

∇hj (x),

generally need to make a full pass through the data.

Often not practical for massive data sets. But can be hybridized with
stochastic gradient methods (see below).
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Stochastic Gradient (SG)

For H(x) = (1/m)
∑m

j=1 hj (x), iteration k has the form:

Choose jk ∈ {1, 2, . . . ,m} uniformly at random;

Set xk+1 ← xk − αk∇hjk (xk ).

∇hjk (xk ) is a proxy for ∇H(xk ) but it depends on just one data item ajk

and is much cheaper to evaluate.

Unbiased — Ej∇hj (x) = ∇H(x) — but the variance may be very large.

Average the iterates for more robust convergence:

x̄k =

∑k
`=1 γ`x

`∑k
`=0 γ`

,where γ` are positive weights.

Minibatch: Use a set Jk ⊂ {1, 2, . . . ,m} rather than a single item.
(Smaller variance in the gradient estimate.)

See [Nemirovski et al., 2009] and many other works.
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Stochastic Gradient (SG)

Convergence results for hj convex require bounds on the variance of the
gradient estimate:

1

m

m∑
j=1

‖∇hj (x)‖2
2 ≤ B2 + Lg‖x − x∗‖2.

Analyze expected convergence, e.g. E(f (xk )− f ∗) or E(f (x̄k )− f ∗),
where the expectation is over the sequence of indices j0, j1, j2, . . . .

Sample results:

H strongly convex, αk ∼ 1/k : E(H(xk )− H∗) = O(1/k);

H weakly convex, αk ∼ 1/
√
k : E(H(x̄k )− H∗) = O(1/

√
k).

B = 0, H strongly convex, αk = const: E(‖xk − x∗‖2
2) = O(ρk ) for

some ρ ∈ (0, 1).

Generalizes beyond finite sums, to H(x) = Eξf (x ; ξ), where ξ is random.
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Stochastic Gradient Applications

SG fits well the summation form of H (with large m), so has widespread
applications:

SVM (primal formulation).

Logistic regression: binary and multiclass.

Deep Learning. The Killer App! (Nonconvex) [LeCun et al., 1998]

Subspace Identification (GROUSE): Project stochastic gradient
searches onto subspace [Balzano and Wright, 2014].
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Incremental Gradient (Finite Sum, Cyclic Order)

H(x) =
1

m

m∑
j=1

hj (x).

Steps: xk+1 ← xk − αk∇hjk (xk ), where jk = 1, 2, . . . ,m, 1, 2, . . . .

Typical requirements on step lengths αk , for convergence:

∞∑
k=1

αk =∞,
∞∑

k=1

α2
k <∞.

(The last condition required only for convergence of iterates {xk} as well
as function values {f (xk )}.)
Sublinear convergence rates proved in [Nedić and Bertsekas, 2000] for
steplength αk = C/(k + 1).

Random Reshuffling [Gürbüzbalaban et al., 2015] (reordering order of
functions between cycles) still yields sublinear convergence, but with
constants reduced (sometimes dramatically) below worst-case values.
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Hybrids of Full Gradient and Stochastic Gradient
Stabilize SG by hybridizing with steepest descent (full-gradient). Typically
get linear convergence for strongly convex functions, sublinear for weakly
convex.

SAG: [LeRoux et al., 2012] Maintain approximations gj to ∇hj , use search
direction −(1/m)

∑m
j=1 gj . At iteration k , choose jk at random, and

update gjk = ∇hjk (xk ).

SAGA: [Defazio et al., 2014] Similar to SAG, but use search direction

−∇hjk (xk ) + gjk −
1

m

m∑
j=1

gj .

SVRG: [Johnson and Zhang, 2013] Similar again, but periodically do a
full gradient evaluation to refresh all gj .

Too much storage, BUT when hj have the “ERM” form hj (a
T
j x) (linear

least squares, linear SVM), all gradients can be stored in a scalar:

∇xhj (a
T
j x) = ajh

′
j (a

T
j x).
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Coordinate Descent (CD) Framework
... for smooth unconstrained minimization: minx H(x):

Set Choose x1 ∈ Rn;
for ` = 0, 1, 2, . . . do

for j = 1, 2, . . . , n do
Define k = `n + j
Choose index i = i(`, j) ∈ {1, 2, . . . , n};
Choose αk > 0;
xk+1 ← xk − αk∇iH(xk )ei ;

end for
end for

where

ei = (0, . . . , 0, 1, 0, . . . , 0)T : the ith coordinate vector;

∇iH(x) = ith component of the gradient ∇H(x);

αk > 0 is the step length.
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Economics of Partial Gradients (Least Squares, SVM)

H(x) =
1

m

m∑
j=1

hj (a
T
j x) + λ

n∑
i=1

Ωi (xi )

and define A as the m × n matrix with jth row aT
j .

Maintain g = Ax and ∇hj (gj ) for j = 1, 2, . . . ,m. A CD step on
coordinate ik proceeds as follows:

Compute the ik element of the gradient of the summation term:

∇ikH(x) =
1

m

∑
j :Aj,ik

6=0

Aj ,ik∇hj (gj );

Use this information, along with λΩik , to update: xik ← xik + dik ;

Update gj ← gj + Aj ,ikdik and ∇hj (gj ) (only for j s.t. Aj ,ik 6= 0);

Cost: O(nonzeros in A·ik ), vs O(nonzeros in A) for a full-gradient method.

Cheaper (by factor ≈ 1/n) for one element than the full gradient.
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CD Variants

CCD (Cyclic CD): i(`, j) = j .

RCD (Randomized CD a.k.a. Stochastic CD): i(`, j) is chosen
uniformly at random from {1, 2, . . . , n}.
RCCD (Randomized Cyclic CD):

I At the start of epoch `, we choose a random permutation of
{1, 2, . . . , n}, denoted by π`.

I Index i(`, j) is chosen to be the jth entry in π`.

Important quantities in analysis:

Lmax: componentwise Lipschitz constant for ∇H:

|∇iH(x + tei )−∇iH(x)| ≤ Li |t|, Lmax = max
i=1,2,...,n

Li .

L: usual Lipschitz constant: |∇H(x + d)−∇H(x)| ≤ L‖d‖.
Lojasiewicz constant µ: ‖∇H(x)‖2 ≥ 2µ[H(x)− H∗]
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Randomized CD Convergence

Of the three variants, convergence of the randomized form has by far the
most elementary analysis [Nesterov, 2012].

Get convergence rates for quantity φk := E(H(xk )− x∗).

µ > 0 : φk+1 ≤
(

1− µ

nLmax

)
φk , k = 1, 2, . . . ,

µ = 0 : φk ≤
2nLmaxR

2
0

k
, k = 1, 2, . . . ,

where R0 bounds distance from x0 to solution set.

If the economics of evalauting gradient components are right, this can be
a factor L/Lmax faster than full-gradient steepest descent!

This ratio is in range [1, n]. Maximized by H(x) = (11T )x .

Functions like this are good cases for RCD and RCCD, which are much
faster than CCD or steepest descent.
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Cyclic and Randomized Cyclic CD Convergence

Analysis of [Beck and Tetruashvili, 2013] treats CCD as an approximate
form of Steepest Descent, bounding improvement in f over one cycle in
terms of the gradient at the start of the cycle.

Get linear and sublinear rates that are slower than both RCD and Steepest
Descent. This analysis is fairly tight — recent analysis of
[Sun and Ye, 2016] confirms slow rates.

Same analysis applies to Randomized Cyclic (RCCD), but practical results
for RCCD are much better, and usually at least as good as RCD. Results
on quadratic function

H(x) = (1/2)xTAx

demonstrate this behavior (see [Wright, 2015] and my talks in 2015).

We can explain good behavior of RCCD now! [Lee and Wright, 2016]
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Computations: Large 11T component in A (ζ = .3)

0	   5000	   10000	   15000	   20000	   25000	  

STEEPEST	  /	  OPTIMAL	  

STEEPEST	  /	  FIXED	  

CYCLIC	  /	  OPTIMAL	  

CYCLIC	  /	  FIXED	  

STOCHASTIC	  /	  OPTIMAL	  

STOCHASTIC	  /	  FIXED	  

RAND	  CYCLIC	  /	  OPTIMAL	  

RAND	  CYCLIC	  /	  FIXED	  

	  Run	  1	  

	  	  Run	  2	  

	  	  Run	  3	  

	  	  Run	  4	  

	  	  Run	  5	  

cond(A) ≈ 3000, Lmax = 1, L ≈ 50. Steepest Descent and CCD are poor.
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CD Extensions

Block CD: Replace single component i by block I ⊂ {1, 2, . . . , n}.
Dual nonlinear SVM [Platt, 1999]. Choose two components of α per
iteration, to stay feasible w.r.t. constraint yTα = 0.

Can be accelerated (efficiently) using “Nesterov” techniques:
[Nesterov, 2012, Lee and Sidford, 2013].

Adaptable to the separable regularized case H(x) + λΩ(x).

Parallel asynchronous variants, suitable for implementation on
shared-memory multicore computers, have been proposed and
analyzed. [Bertsekas and Tsitsiklis, 1989, Liu and Wright, 2015,
Liu et al., 2015]
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Conditional Gradient / “Frank-Wolfe”

min
x∈Ω

f (x),

where f is a convex function and Ω is a closed, bounded, convex set.

Start at x0 ∈ Ω. At iteration k :

vk := arg min
v∈Ω

vT∇f (xk );

xk+1 := xk + αk (vk − xk ), αk =
2

k + 2
.

Potentially useful when it is easy to minimize a linear function over
the original constraint set Ω;

Admits an elementary convergence theory: 1/k sublinear rate.

Same convergence rate holds if we use a line search for αk .

Revived by [Jaggi, 2013].
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Smooth Nonlinear Optimization: Avoiding Saddle Points
Much recent interest in methods for smooth nonlinear nonconvex problems
minx f (x) with guaranteed convergence to points satisfying approximate
second-order optimality conditions:

∇f (x) = O(ε2), ∇2f (x) ≥ −εI , for small ε > 0.

Useful for matrix optimization problems (see earlier).

Also potentially useful for deep learning. (It’s believed that saddle points
are much more plentiful than local minima, so methods that can escape
saddle points are interesting.)

A fundamental approach: cubic regularization: Given a Lipschitz constant
L on the Hessian of f , form the following upper bounding cubic approx:

TL(z ; x) := f (x) +∇f (x)T (z−x) +
1

2
(z−x)T∇2f (x)(z−x) +

L

6
‖z−x‖3.

Basic algorithm:
xk+1 := arg min

z
TL(z ; xk ).
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Convergence to Second-Order Necessary Points

[Nesterov and Polyak, 2006]; see also [Griewank, 1981],
[Cartis et al., 2011a, Cartis et al., 2011b].

For the cubic-regularized Newton method, we have

‖∇f (xk+1)‖ = O(‖xk+1 − xk‖2), ∇2f (xk+1) ≥ −‖xk+1 − xk‖I .

[Nesterov and Polyak, 2006, Theorem 1]: Given lower bound f ∗ on f and
small ε > 0, have

‖∇f (xk )‖ ≤ ε within k = O(ε−3/2) iterations;

∇2f (xk ) ≥ −εI within k = O(ε−3) iterations,

where the constants in O(·) depend on [f (x0)− f ∗] and L.
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Variants and Extensions

Trust-region methods (second-order model with constraint
‖z − xk‖2

2 ≤ ∆) have similar complexity properties, when modified.

Standard first-order method that evaluates Hessian only when ∇f (xk )
is small has slightly worse complexity.

Extensions using third-derivative tensor can find third-order minima.
Finding a fourth-order minimum is NP-hard.
[Ananakumar and Ge, 2016]

But are saddle points really an issue in practice?

First-order methods are unlikely to converge to such points. An elementary
application of the stable manifold theorem [Lee et al., 2016] shows that
convergence of standard gradient descent converges to a strict saddle
point only for x0 in a measure-zero set. (No complexity guarantees.)
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Augmented Lagrangian
Consider the linearly constrained problem,

min f (x) s.t. Ax = b,

where f : Rn → R is convex.

Define the Lagrangian function:

L(x , λ) := f (x) + λT (Ax − b).

x∗ is a solution if and only if there exists a vector of Lagrange multipliers
λ∗ ∈ Rm such that

−ATλ∗ ∈ ∂f (x∗), Ax∗ = b,

or equivalently:

0 ∈ ∂xL(x∗, λ∗), ∇λL(x∗, λ∗) = 0.

Wright (UW-Madison) Optimization in Data Analysis August 2016 53 / 59



Augmented Lagrangian
The augmented Lagrangian is (with ρ > 0)

L(x , λ; ρ) := f (x) + λT (Ax − b)︸ ︷︷ ︸
Lagrangian

+
ρ

2
‖Ax − b‖2

2.︸ ︷︷ ︸
“augmentation”

Basic Augmented Lagrangian (a.k.a. method of multipliers) is

xk = arg min
x
L(x , λk−1; ρ);

λk = λk−1 + ρ(Axk − b);

[Hestenes, 1969, Powell, 1969]

Some constraints on x (such as x ∈ Ω) can be handled explicitly:

xk = arg min
x∈Ω
L(x , λk−1; ρ);

λk = λk−1 + ρ(Axk − b);
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Alternating Direction Method of Multipliers (ADMM)

min
(x∈Ωx ,z∈Ωz )

f (x) + h(z) s.t. Ax + Bz = c ,

for which the Augmented Lagrangian is

L(x , z , λ; ρ) := f (x) + h(z) + λT (Ax + Bz − c) +
ρ

2
‖Ax − Bz − c‖2

2.

Standard AL would minimize L(x , z , λ; ρ) w.r.t. (x , z) jointly. However,
since coupled in the quadratic term, separability is lost.

In ADMM, minimize over x and z separately and sequentially:

xk = arg min
x∈Ωx

L(x , zk−1, λk−1; ρ);

zk = arg min
z∈Ωz

L(xk , z , λk−1; ρ);

λk = λk−1 + ρ(Axk + Bzk − c).

Extremely useful framework for many data analysis / learning settings.
Major references: [Eckstein and Bertsekas, 1992, Boyd et al., 2011]
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ADMM for Consensus Optimization
Given the unconstrained (but separable) problem

min
m∑

i=1

fi (x),

form m copies of the x , with the original x as a “master” variable:

min
x ,x1,x2,...,xm

m∑
i=1

fi (x
i ) subject to x i − x = 0, i = 1, 2, . . . ,m.

Apply ADMM, with z = (x1, x2, . . . , xm). Get

L(x , x1, x2, . . . , xm, λ1, . . . , λm; ρ) =
m∑

i=1

fi (x
i )+(λi )T (x i−x)+

ρ

2
‖x i−x‖2

2.

The minimization w.r.t. z = (x1, x2, . . . , xm) is separable!

x i
k = arg min

x i
fi (x

i )+(λi
k−1)T (x i−xk−1)+

ρk

2
‖x i−xk−1‖2

2, i = 1, 2, . . . ,m.

Can be implemented in parallel.
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Consensus, continued

The minimization w.r.t. x can be done explicitly — averaging:

xk =
1

m

m∑
i=1

(
x i

k +
1

ρk
λi

k−1

)
.

Update to λi can also be done in parallel, once the new xk is known (and
communicated):

λi
k = λi

k−1 + ρk (x i
k − xk ), i = 1, 2, . . . ,m.

If the initial λi
0 have

∑m
i=1 λ

i
0 = 0, we have

∑m
i=1 λ

i
k = 0 at all iterations

k . Can simplify the update for xk :

xk =
1

m

m∑
i=1

x i
k .
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Not Discussed!

Many interesting topics not mentioned, including

quasi-Newton and approximate Newton methods.

Linear equations Ax = b: Kaczmarz algorithms.

Image processing: denoising and deblurring using regularization.

Graphs: detect structure and cliques, consensus optimization, . . . .

Integer and combinatorial formulations.

Parallel variants: synchronous and asynchronous.

Online learning.
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Conclusions: Optimization in Data Analysis

HUGE interest across multiple communities.

Ongoing challenges because of increasing scale and complexity of
data analysis problems, and the computational platforms on which
they are being solved.

Optimization techniques are meshed with the applications.

The optimization / data analysis / machine learning research
communities are becoming “meshed” too!

FIN
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