PCMI 2016
Some Mathematical Background Material for Optimization Lectures
Steve Wright

Important: Review Appendix A of [3] and make sure you understand it.
The text below hits a few important topics from that material and adds a few more
relevant items. Some of it will be covered in class but it is up to you to fill in the rest.
Many of the things discussed here will be referred to during the semester.

1. Linear Algebra.

DEFINITION 1.1. The vectors x1,Z2,. .., T, in R" are linearly dependent if there
exist scalars aq, s, ..., an, not all zero, such that Z:nzl a;x; = 0. Otherwise, they
are linearly independent.

LEMMA 1.2. Suppose that y1,y2,...,Yms1 are vectors in R" that are each a
linear combination of the vectors x1,xa,...,Tm. Then yi1,ys, ..., Ymr1 are linearly
dependent.

Proof. See Mangasarian [2, p. 177]. O
COROLLARY 1.3.
o Any m > n vectors in R" are linearly dependent.
e Consider the system Az = b, where A € R™*" with m < n. If this system
has a solution, then it has infinitely many solutions.

Proof. First statement follows by noting that each of the m vectors can be ex-
pressed as linear combinations of the unit vectors e;, ¢ = 1,2,...,n where e; is the
vector with all Os except for a 1 in the ith position. Second statement follows from
the fact that Az = 0 has infinitely many solutions. O

DEFINITION 1.4. A set S C R" is a subspace if for any z,y € S we have
ax + By € S for all scalars o and 3.

DEFINITION 1.5. Given a set S C R", a basis is the mazimal set of linearly
independent vectors that can be chosen from S.

Bases are used mostly when S is a subspace.

LEMMA 1.6. The linearly independent vectors x1,xs,...,x, are a basis for S if
and only if any vector y € S is a linear combination of the x;s.

DEFINITION 1.7. Given a matriv A € R™*", the rank of A is the mazimum
number of linearly independent rows in A.

This is the same as the number of linearly independent columns, so rank(A) =
rank(AT).

LEMMA 1.8. If A € R™*™ with r < n has (full) rank r, then the system Ax = b
has a solution for any b. If in addition r < n, it has infinitely many solutions.

DEFINITION 1.9. A matriz A € R**" is nonsingular if it has rank n and singular
otherwise.

A is nonsingular if and only if Ax = b has a unique solution for any b.

DEFINITION 1.10. A matriz A € R**" is positive definite if 27 Az > 0 for any
x # 0. It is positive semidefinite if 7 Az > 0 for any x.

Any positive definite matrix A is nonsingular.

LEmMMA 1.11. If A is symmetric positive semidefinite, the matriz

Ea
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is positive semidefinite for any B (but symmetric only if B is vacuous or zero). The
matrix

A BT

B 0

is symmetric but not positive semidefinite unless B is vacuous or zero.
Proof. Given any vectors x and y of appropriate dimensions, we have for the first

claim that
T T
T4 B3

For the second claim, let the indices ¢ and j be such that B;; # 0. Then if we do
symmetric pivoting to bring rows/columns j and n+1i to the top left 2 x 2 submatrix
we have that this submatrix has the form

Ajj Bij

Bij 0

Since it is symmetric, this matrix has real eigenvalues (A;; + /A%, +4B%)/2, one of
which is positive and the other of which is negative. Choosing z to be the eigenvector
in R? that corresponds to this negative eigenvalue, we have that

T
z T ABT z T Ajj Bij
Ll el e

demonstrating that the matrix in question is not positive semidefinite. O

QR Decomposition. Given any matrix A € R™*" with m > n, there is an n x n
permutation matrix P, an m X m orthogonal matrix @) and an m X m upper triangular
matrix R with nonnegative diagonals such that

AP:Q{IH:[@ Qz]{ﬂ:czm.

(The zero matrix has dimension (n —m) x m, and @1 is n x m.) When A has full
(column) rank, R has all positive diagonal elements. When A is rank deficient (say,

rank 7), R has the form R = { }(3)1 ]32

positive diagonal elements and Ry is r X (m — 7). In this case we can write the
factorization as

}, where R; is r X r upper triangular with

AP:Q{?}:[Ql Qz]{% %Q}ZQl[Rl Ry ].

DEFINITION 1.12. Given a matriz A € R™*", the range space of A is the set

R(A) o {Av|v € R"}. (It is also known as the image of A and is a subspace of R™.)

The null space N (A) is the set of all vectors z such that Az =0. (It is also known as
the kernel of A and is a subspace of R".)
THEOREM 1.13. (Fundamental Theorem of Algebra.) If A € R™*", R(A) @
N(AT) = R™.
Given a matrix A € R™*™ with m < n and full rank m, find a matrix Z €
R™("=™) that spans the null space N (A), that is, N(A) = {Zy|y € R*"™}.
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Method 1. Perform a column permutation of A described by permutation matrix
P, such that

AP=[ A 4],

AT A,
-1 :

where A; is m x m nonsingular and As is m x (n —m). Then set Z = P [

Method 2. Perform a QR decomposition of AT, to get
R
atr=la @] ¢ ]

Then AQy = PPTAQy = P[QT AT P] = 0. Since Q5 has linearly independent columns
and the maximal number of them (n — m) its columns span N (AT).

Norms on R": Euclidean norm (a.k.a. 2-norm): |z|2 = /Y., 7; l-norm:
l[zlly = 3202 fzils co-norm: |[z]|oc = maxi—1 2,5 [2:l.

THEOREM 1.14. Let H and A be matrices with the following properties:

(i) H is symmetric;

(i) A has full row rank;

(iii) If Z is any matriz whose columns span N(A), then ZT HZ is positive definite.
Then the following matrix is nonsingular:

Ea

Proof. We prove the result by showing that (x,y) = (0,0) is the only possible
solution of the following linear system:

H AT z | |0

A 0 y | |0
Since Az = 0, we have x € N(A) and so x = Zu for some vector u. Hence, using the
fact that AZ = 0 and that Z7 HZ is nonsingular, we have

Hrx+ATy=0 = HZu+ATy=0 = Z'THZu=0 = u=0 = z=0.
Hence,
Hr+ATy=0 = ATy=0.

Since A7 has full column rank, we have y = 0, completing the proof. O
Matrix norms: For p = 1,2, 00, induced norm is

141l = max [l Az, /[,

Frobenius norm is

[Alp (| D0 A2

i=1j=1




2. Topology.

Basic background on topology of R™.

DEFINITION 2.1. Given x € R", and the open ball of radius € around x is defined
by Bo(w) = {=] |12 - allz < }.

DEFINITION 2.2. A set x € R" is in the interior of ' C R" (denoted x € int(T")
if there is € > 0 such that B.(xz) C T

DEFINITION 2.3. The closure of the set I' C R" (denoted cl(I')) is the set of
points x with the property that B.(x) NT #£ 0 for all e > 0.

DEFINITION 2.4. A set ' C R" is open if x € int(T") for all z € T. T is closed if
T =cl(I).

DEFINITION 2.5. Given two sets T' C A C R", we say that T' is open (closed)
relative to A if there is some open (closed) set ¥ such that T'= AN 2.

Example: The set {(0,t2) |t2 > 0} is open relative to {0} x R, though it is not
itself open. (Take ¥ = {(t1,¢2)|t1 € R, t2 > 0}.) The set (0,1) C R is closed relative
to itself; take ¥ = [0, 1].

THEOREM 2.6.

e Fvery union of open sets is open.

e FEvery finite interesection of open sets is open.
0 and R™ are open.
Every intersection of closed sets is closed.
Every finite union of closed sets is closed.

e 0 and R" are closed.

The last three results follow immediately from the first three if we use the fact
that the complement of any open set is closed.

3. Sequences.
Now discuss sequences {xk}z‘;l of real vectors. A subsequence is defined by an

infinite subset of integers K wef {k1, ko, ks, ...}, such that k1 < ko < k3 < ---. Write
the subsequence as {2¥7}52, or as {z*} ek

7 € R" is the limit of the sequence {z*} if for any e > 0 there is an integer K
such that ||z% — Z|| < e for all k > K. Write
k

lim z" = z.

k—o00
We say that {2*} converges to z. Example: z* = 1/k has limit 0.

T € R is an accumulation point of the sequence {z*} if for any ¢ > 0 and
any positive integer K, there is some k > K such that ||z* — Z|| < e. Example:
oF = (=1)* + 1/2F has accumulation points —1 and 1, but no limit. Example: z* =
km — |km] has every point in [0, 1] as an accumulation point (but has no limit).

THEOREM 3.1.

(i) If T is an accumulation point, there is a subsequence for which T is the limit.

(i) If T is the limit, the sequence can have no other accumulation points.

If z € cl(C) for some set C, there is a sequence {z*} of points in C for which
is the limit. Any accumulation point of a sequence {z*} in C must be in cl(C).

Now consider sequences of real numbers {cy}.

We say that «y, is the lim inf of {ay} (written liminfy ap = ap) if

arp = lim (inf ay).
n—oo k>n
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Similarly, we have

limsup a = lim (sup ag).
k n—=00 L>n

AXI0M 1. Any nonempty set of real numbers A which has a lower (upper) bound
has a greatest lower (least upper) bound.

THEOREM 3.2. Fwvery bounded nondecreasing sequence of real numbers has a
limit.

Proof. Let B be an upper bound on {ay}. By the axiom, we can choose 8 to
be the least possible upper bound. For any € > 0 there is an integer K such that
2% > 3 — ¢ (otherwise, we could decrease 3 to 3 — ¢, which contradicts the choice of
B as the least upper bound). Because {ay} is nondecreasing, we must have that

B>ak >k >p—¢ for all £ > K.

Hence, 3 is in fact the limit of {«ay}, as claimed. O

A sequence converges to a limit if and only if it is a Cauchy sequence, that is, one
for which for all € > 0 there is an integer K such that ||z, —z,,| < € for all m,n > K.

A set A C R™ is bounded if there is 8 > 0 such that ||z|| < 8 for all z € A.

A compact set A is defined by any one of the following equivalent properties:

(i) A is closed and bounded.

(ii) Every sequence of points in A has an accumulation point in A.

(iii) For every family of open sets A;, 7 = 1,2,3, ... such that A C AJUAUA3U- - -,

there is a finite subfamily 41, 42,3, . . ., 4, such that A C A;; UA;,, UA;, U---U
A .

Rates of convergence. Consider a sequence {z*} that converges to a limit 2*. We
say that the convergence is Q-linear if lim sup||z**! — 2*||/||2* — 2*|| < r for some
r < 1. We say that it is Q-superlinear if lim ||z¥+1 — 2*||/||z*¥ — 2*|| = 0. We say that
it is Q-quadratic if ||2*+1 — 2*||/||z* — 2*||? is bounded. More generally, we say that
it has Q-order 7 for any 7 > 1 if

liminf(log [|2*** — 2*||/ log ||z* — z*||) > 7.

We say the sequence {2*} converges R-linearly (resp. R-superlinearly, R-quadratically)f]
to z* if there is a sequence {az} of real numbers such that ||z — 2*|| < ay and ay
converges Q-linearly (resp. Q-superlinearly, Q-quadratically) to zero.

4. Linear Programming.
Consider the linear program in standard form:

(4.1) min 'z subject to Ax =b, x>0,

x

for which the dual form is:

(4.2) max bTu  subject to ATu <c.
There is a rich mathematical theory known as duality theory that relates these two
problems. This theory is also useful in the construction of some algorithms, e.g.
primal-dual interior-point methods.

THEOREM 4.1 (Weak Duality). If = is feasible for (4.1) and wu is feasible for
(4.2), then cT'x > bTu.



Proof.
blu = (Az)Tu=2TATu < 27,

where the last inequality follows from ATy —c<0and z>0.0

THEOREM 4.2 (Strong Duality). Ezactly one of the following three statements is
true:

(i) Both primal and dual problems are feasible and both have optimal solutions

with equal extrema.

(ii) Ezactly one of the problems is infeasible and the other has unbounded objective

on its feasible region.
(iii) Both problems are infeasible.

This result is proved in [1] by invoking the simplex method with a pivot rule that
prevents cycling.

We say that a function f(z) “attains its minimum” over a feasible region C' if
there exists 2* € C such that

Fa*) = inf f(z).
A function can be bounded below and yet not attain its minimum. When C' is not
closed this is obvious; for example if f(z) is any monotonically increasing function
and C' = (0,1]. Tt can also happen for closed C; for example f(z) = e™® and C =
{z|z > 0}.

COROLLARY 4.3. Suppose the linear program (4.1) is feasible and bounded below.
Then it attains its minimum.

Proof. Case (iii) of the strong duality result does not hold since the primal problem
(4.1) is feasible. Case (ii) does not hold either, because the primal is bounded below.
Therefore case (i) holds, so we conclude that (4.1) has a solution z* that attains the
minimum. O

The Karush-Kuhn-Tucker (KKT) conditions give another important way of re-
lating and recognizing primal and dual solutions.

THEOREM 4.4 (KKT conditions). z solves (4.1) and u solves (4.2) if and only
if x and u satisfy the following relationships:

Az =0b, >0, ATu<e,
(feasibility) and
2T (ATu—¢) =0
(complementarity).

5. Convex Sets and Projections. (From Robinson [4].)

A set C C R" is convez if for each x and y in C' and each A € [0,1], we have
1-XNz+ A yeC.

A half space is a set of the form {z|(z,y) > n} where y € R" and n € R are
constants. A hyperplane is a set of the form {z | (z,y) = n}.

A polyhedral convex set in R" is the intersection of finitely many half-spaces.

A cone is a set with the property that x € K = ax € K for all a > 0. A convex
cone is a cone that is a convex set.

If C is a convex set, a vector y is said to be normal to C at x if for all ¢ € C' we
have (y,c —x) <0.



The normal cone to C' at a point x, denoted N¢(z), is the set of all y that are
normal to C' at z. (If ¢ C, then Ng(z) =0.)
If K is a nonempty cone, the polar of K is defined by

°={z|(x,k) <0 for all k € K}.

The polar is always closed (by continuity of the inner product).

If K and L are two cones in R" with § # K C L, then L° C K°.

The tangent cone to a convex set C' at a point = € C' is To(x) = No(x)°.
In the text below, we assume || - || = || - ||2-

If S is any subset of R", the point-to-set distance to S is defined by

(5.1) ds(z) = inf{|jz — s||| s € S}.

If S =0 then dg(x) = oo for all .
If S is nonempty and closed, then the infimum in the formula above is attained.
To see this, let sg be any element of S. Then

ds = inf{[lz —s|[s € S, [z —s]| < [lz— sol|}.

The infimum is taken over a compact set, so since ||z — || is continuous, it attains its
minimum. (The minimum may be attained at more than one point, in general)
When S is convex, the minimum in (5.1) is attained at one point only, as we show
below. We show first some properties of the point that attains the minimum.
LEMMA 5.1. Let C be a convex set in R", and let xg € R*. The function ||xo—(-)||
attains its minimum on C at a point ¢y € C if and only if for each ¢ € C, we have
(xo — co,c— o) < 0.
Proof. Note first that

(5:2) [lzo —cf?

= |I(zo — co) = (¢ = co)*

= |lzo — col|* — 2{zo — co, ¢ — co) + ||c — co|*
(«=) Assume first that (g — co,c — o) < 0. Rearranging (5.2), we have

0> (xo — co,c — co)

1

1
= 5 (||950 - CO||2 — [Jzo — C||2) *||C - Co||2

(||$o - Co||2 l|lzo — C||2) .

Therefore, ¢y minimizes ||zg — (+)|| over C.

(=) Assume that ||z — ()| attains its minimum on C at a point ¢y € C. Let

¢1 be any point in C. Since C' is convex, we have that for all A € (0,1) that ¢()) %ef

(I =X)eg + Aeq € C. Using (5.2) and the fact that ¢y is the minimizer, we have

> [|lzo — colI* = [lzo — c(V)]*

= 2(z0 — co, ¢(A) = co) — [le(A) = col|* = 2\ (wo — co, 1 — co) = A[ler — ol

Dividing both sides by A and letting A | 0, we obtain (x¢—co,c1 —co) < 0, as required.
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6. Nonconvex sets. When () is nonconvex, we define the tangent cone first,
then define the normal as the polar of the tangent.

A vector w € R" is tangent to  at x € Q if for all sequences z; € Q with
z; — x and all positive scalar sequences t; | 0, there is a sequence w; — w such that
z; + tyw; € Q for all 7.
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