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Convex Optimization

A very well developed tool in optimization: convex optimization.

Essentially, it deals with a model like

min f pxq
s.t. x P X,

where X is a convex set:

@x, y P X, @t P r0, 1s ùñ tx` p1´ tqy P X,

and f is a convex function:

@x, y P X, @t P r0, 1s ùñ f ptx` p1´ tqyq ď t f pxq ` p1´ tq f pyq.
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Convex set

Convex function
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Least Squares

The famous least squares problem can be posed as:

min }ATx´ b}22
s.t. x P Rn.

By setting the gradient of }ATx´ b}22 to zero, we have

∇

´

}ATx´ b}22
¯

“ 2ApATx´ bq “ 0.

If rankpAq “ n then the solution can be found explicitly

x˚ “ pAATq´1Ab.
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The Ridge Regression

In some cases, rankpAq ă n, and the solution set may be unbounded.
In other cases, we may not want the solution to be “too large” anyway.

The concept of least square with a regulatory term becomes important.
The ridge regression is one such example:

min }ATx´ b}22 ` γ}x}22.

The solution is
x˚ “ pAAT ` γIq´1Ab.

The model can also be equivalently posed as

min }ATx´ b}2
s.t. }x}2 ď α
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Matlab and CVX
Michael Grant and Stephen Boyd’s code CVX:
http://cvxr.com/cvx/

Example:
min }Ax´ b}2
s.t. Cx “ d

}x}8 ď e.

CVX syntax:

ąą cvx´begin
ąą variable x(n)
ąą minimize( norm( A ˚ x - b, 2 ) )
ąą subject to
ąą C ˚ x ““ d
ąą norm( x, Inf ) ă“ e
ąą cvx´end
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What if the object is known to be ‘sparse’?

In that case, the optimization model should be something like

min }ATx´ b}22
s.t. }x}0 ď k,

or,
min }ATx´ b}22 ` γ}x}0.

The difficulty with this model is that }x}0 is not really a norm: it is not
even convex.
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The LASSO Regression

The so-called LASSO (Least Absolute Shrinkage and Selection
Operator) regulatory term – the L1 norm – is its closest convex
approximation

min }ATx´ b}22 ` γ}x}1.

The model can also be equivalently posed as

min }ATx´ b}22
s.t. }x}1 ď α.

Unlike the ridge regression case, no closed form solution exists for the
LASSO model.
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A possible CVX code for solving the LASSO problem

ąą cvx´begin
ąą variable x(n)
ąą minimize( norm( A’ ˚ x - b, 2 ) )
ąą subject to
ąą norm( x, 1 ) ă“ alpha
ąą cvx´end
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Compressive Sensing
In image processing, often a picture is expressed by its wavelet
coefficients

y “
n
ÿ

i“1

xiΦi.

Though y is not necessarily a sparse vector, but its wavelet coefficients
xi’s may be very sparse. The situation is depicted as follows:
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The ‘Cameraman’

Sparse approximation of a natural image:

The left picture is the original image;

The right picture is an approximation of image obtained by keeping
only the largest 10% of the wavelet coefficients.
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What if our sensing is incomplete? That is, we only have a small part
of y, and the rest of the vector is simply missing.

So the problem really is to extract a solution x from an
under-determined system ATx “ b.

Though there are infinitely many solutions, we DO know that our true
solution is very compact, or sparse. Therefore, the problem can be
formulated as

min }x}0
s.t. ATx “ b.

Convexification:
min }x}1
s.t. ATx “ b.
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Unlike the Least Squares fitting case, ATx “ b is usually
under-determined in this context.

The above approach is known as sparse optimization, sometimes also
called compressive sensing, or the L1-regularization method.

A penalized version is

min }x}1 ` γ}ATx´ b}22,

which is essentially a LASSO model again.
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Why LASSO regression makes sense
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Convex Optimization Models

Unconstrained optimization

pM1q min f pxq

where f is a convex function.

Example:
min }ATx´ b}22 ` γ}x}22.
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Constrained optimization

pM2q min f pxq
s.t. x P X

where X Ď Rn is a convex set.

Example:
min }ATx´ b}22
s.t. }x}2 ď α.
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Regulated convex optimization

pM3q min f pxq ` hpxq
s.t. x P X

where f , h are both convex functions.

Example:
min }ATx´ b}22 ` γ}x}1
s.t. }x}2 ď α.
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Structured convex optimization with linear constraints

pM4q min f pxq
s.t. x P X

Ax “ b

where X Ď Rn is a convex set.

Example:
min }x}1
s.t. }x}2 ď α

ATx “ b.
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Separable structured convex optimization with coupling lin-
ear constraints

pM5q min f pxq ` hpyq
s.t. x P X, y P Y

Ax` By “ b

where X Ď Rn, Y Ď Rm are convex sets, and f and h are
convex functions.

Example:
min }ATx´ b}22 ` γ}y}1
s.t. }x}2 ď α

x´ y “ 0.
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Convergence Analysis

An iterative algorithm for solving an optimization model, producing
iterates tx0, x1, ...u.

Possible error measurements:
§ epxkq “ }xk ´ x˚};
§ epxkq “ f pxkq ´ f px˚q.

Convergence: limkÑ8 epxkq “ 0.

Rate of Convergence:
§ Linear convergence: there is 0 ă a ă 1 such that epxkq ď Cak;
§ Sub-linear convergence: epxkq ď C{kp, where p ą 0.
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Basic Ideas Behind Many Optimization Algorithms

Approximation: replace unmanageable with manageable
Adaptation: apply approximation with caution!

f pxq ø f pxkq ` ∇ f pxkqTpx´ xkq

min f pxq ú min f pxkq ` ∇ f pxkqTpx´ xkq

s.t. }x´ xk} ď δ

xk`1 “ xk ´ t∇ f pxkq ùñ Gradient (Sub-gradient) method

min f pxq ú

min f pxkq ` ∇ f pxkqTpx´ xkq ` 1
2px´ xkqT∇2 f pxkqpx´ xkq

s.t.
ˇ

ˇ

1
2px´ xkqT∇2 f pxkqpx´ xkq

ˇ

ˇ ď δ

xk`1 “ xk ´ tp∇2 f pxkqq´1∇ f pxkq ùñ Newton type method
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(Sub)-Gradient Algorithm with Line-Search

Consider pM1q.

Let ttk ą 0 | k “ 0, 1, 2, ...u be a sequence of step-sizes.

The (Sub)-Gradient Algorithm
Initialize x0 P X

for k “ 0, 1, ¨ ¨ ¨ , do
Take dk P B f pxkq;
Let xk`1 :“ xk ´ tkdk.

end for

How to choose step-sizes tk’s?
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Convergence of the Gradient Method

Theorem 1
If there are 0 ă m ď M such that 0 ă mI ĺ ∇2 f pxq ĺ MI (i.e., f is
strongly convex), and line-search is performed

tk :“ arg min
t

f
`

xk ´ t∇ f pxkq
˘

,

then
f pxk`1q ´ f px˚q ď

´

1´
m
M

¯

p f pxkq ´ f px˚qq.

What if there is no strong convexity?

Then there is no linear convergence!

But there is still sub-linear convergence.
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Worst case bounds for (sub)-gradient type algorithms

Suppose we generate a sequence of iterates txk | k “ 0, 1, 2, ...u, in
such a way that xk is in the affine space spanned by
x0,∇ f px0q, ...,∇ f pxk´1q.

Suppose f is Lipschitz continuous and no other information is known.
Then, one can construct an example such that

min
xPLtx0,∇ f px0q,...,∇ f pxk´1qu

f pxq ´ f px˚q ě Op1{
?

kq, @k “ 1, 2, ..., tn{2u.

If additionally, we know f is differentiable and ∇ f is Lipschitz
continuous, then one can construct an example such that

min
xPLtx0,∇ f px0q,...,∇ f pxk´1qu

f pxq ´ f px˚q ě Op1{k2q, @k “ 1, 2, ..., tn{2u.
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Conditional Gradient Method
Consider pM2q.

Let t0 ă tk ď 1 | k “ 0, 1, 2, ...u be a sequence of step-sizes.

The Conditional Gradient Algorithm
Initialize x0 P X

for k “ 0, 1, ¨ ¨ ¨ , do
yk`1 :“ arg minyPXp∇ f pxkqqTpy´ xkq;
xk`1 :“ xk ` tkpyk`1 ´ xkq.

end for
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Theorem 2
Suppose that ∇ f is Lipschitz continuous with constant L, and X is
contained in a D-ball. Suppose the constants are chosen such that
f px2q ´ f px˚q ď LD2. If we choose tk “ 2{k for k ě 2, then
f pxkq ´ f px˚q ď 2LD2{k for all k ě 2.
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Proximal Point Algorithm

Let fkpxq be a certain convex approximation of f pxq.

Let ttk ą 0 | k “ 0, 1, ...u be a sequence of parameters.

The Proximal Point Algorithm
Initialize x0 P X

for k “ 0, 1, ¨ ¨ ¨ , do
xk`1 :“ arg minxPX fkpxq ` 1

2tk
}x´ xk}2.

end for
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Theorem 3
Suppose that ∇ f is Lipschitz continuous with constant L, and tk “ 1

L for
all k and fkpxq :“ f pxkq ` ∇ f pxkqTpx´ xkq. Then, the proximal point
algorithm has the convergence rate:

f pxkq ´ f px˚q ď
L}x0 ´ x˚}2

2k
.
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Gradient Projection
Consider pM2q.

Let ttk ą 0 | k “ 0, 1, 2, ...u be a sequence of step-sizes.

The Gradient Projection Algorithm
Initialize x0 P X

for k “ 0, 1, ¨ ¨ ¨ , do
xk`1 :“ rxk ´ tk∇ f pxkqsX.

end for
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The Proximal Point Interpretation
Observe that

rx` ´ t`d`sX “ arg min
xPX

pd`qTpx´ x`q `
1

2t`
}x´ x`}2.

This is true because

pd`qTpx´ x`q `
1

2t`
}x´ x`}2 “

1
2t`
}x´ px` ´ t`d`q}2 ´

t`
2
}d`}2.

Theorem 4
Suppose that ∇ f is Lipschitz continuous with constant L, and tk “ 1

L for
all k. Then, the gradient projection algorithm has the convergence rate:

f pxkq ´ f px˚q ď
L}x0 ´ x˚}2

2k
.
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Iterative Shrinkage-Thresholding Algorithm

Next we consider pM3q.

We introduce an algorithm known as Iterative Shrinkage-Thresholding
Algorithm (ISTA). The method is also known as the Proximal Gradient
algorithm. It is applicable when f is smooth and convex, and h is a
structured simple convex function but may not be differentiable (e.g.
hpxq “ }x}1).

ISTA
Initialize x0 P X

for k “ 0, 1, ¨ ¨ ¨ , do
xk`1 :“ arg minxPX ∇ f pxkqTpx´ xkq ` L

2 }x´ xk}2 ` hpxq.
end for
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Theorem 5
Suppose that ∇ f is Lipschitz continuous with constant L. Then, the
following convergence rate holds for the ISTA

r f pxkq ` hpxkqs ´ r f px˚q ` hpx˚qs ď
L}x0 ´ x˚}2

2k
.
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The Shrinkage Operator
The term ISTA is relevant when we apply it to solve the LASSO
problem

min
1
2
}Ax´ b}2 ` γ}x}1.

In that case, the key step is to implement

xk`1 :“ arg min
x

"

1
2tk
}x´ vk}2 ` γ}x}1

*

which can be explicitly given by the so-called shrinkage operator

arg min
x

"

1
2tk
}x´ vk}2 ` γ}x}1

*

“: Tγtkpv
kq

with
Tαpxqi :“ p|xi| ´ αq` ¨ signpxiq, i “ 1, 2, ..., n.
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The Mirror Descent Algorithm

The choice of Euclidean distance in the proximal point algorithm may
appear to be quite arbitrary.

Let Φpxq be a smooth and strongly convex function defined in the
whole of Rn. The Bregman distance is

Bpy, xq :“ Φpyq ´ Φpxq ´ ∇ΦpxqTpy´ xq.
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Consider pM2q.

Mirror Descent
Initialize x0 P X

for k “ 0, 1, ¨ ¨ ¨ , do
Take dk P B f pxkq;
xk`1 :“ arg minxPXpdkqTpx´ xkq ` 1

tk
Bpx, xkq.

end for

Theorem 6
If f is Lipschitz continuous, then min1ď`ďk

`

f px`q ´ f px˚q
˘

ď
Bpx˚,x0q` L2

4σ?
k

.

Theorem 7
If ∇ f is Lipschitz continuous, then min1ď`ďk

`

f px`q ´ f px˚q
˘

ď
Bpx˚,x0q M

σ

k .
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Nesterov’s Acceleration

If the objective is only known to be convex and Lipschitz continuous,
then we can achieve a convergence rate of Op1{

?
kq after k iterations.

This bound is tight.

If the objective function is convex and differentiable, and moreover its
gradient is Lipschitz continuous, then we have achieved the
convergence rate of Op1{kq.

We also have examples to show that under the scheme
x``1 P Lpx0,∇ f px1q, ...,∇ f px`qq for all iterations, then the convergence
rate cannot be faster than Op1{k2q.

This raises a question: Is the Op1{k2q rate achievable?
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Let us consider the gradient projection algorithm (or equivalently, the
proximal point algorithm) for pM1q.

Nesterov (1983) proposed to modify the proximal point algorithm
slightly: the point being linearized is not xk but a combination of xk and
xk´1.

Nesterov’s Accelerated Algorithm
Initialize x0 “ y1 P X

for k “ 1, 2, ¨ ¨ ¨ , do
xk :“ arg minxPX f pykq ` ∇ f pykqTpx´ ykq ` L

2 }x´ yk}2;
yk`1 :“ xk `

tk´1
tk`1

`

xk ´ xk´1
˘

.
end for

The sequence ttk | k “ 1, 2, ...u is generated recursively:

t1 “ 1, t2
k`1 ´ tk`1 “ tk, k “ 1, 2, ...,. More explicitly, tk`1 “

1`
?

4t2k`1
2 for

k “ 1, 2, .... One easily verifies that tk ě k`1
2 for k “ 1, 2, ....
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Theorem 8
Nesterov’s algorithm has a convergence rate of

f pxkq ´ f px˚q ď
f px1q ´ f px˚q ` L}x1´x˚}2

2

t2
k

ď
4p f px1q ´ f px˚qq ` 2L}x1 ´ x˚}2

pk ` 1q2
.
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FISTA
Nesterov’s algorithm is optimal since it achieves the best possible rate,
in the order of magnitude: Op1{k2q. How about pM2q?

Recall that we discussed the so-called ISTA for pM2q, which is also
known as proximal gradient method. Can we improve the rate of
convergence? The answer is: yes. The result is the so-called FISTA
(‘Fast ISTA’).

FISTA
Initialize x0 “ y1 P X

for k “ 1, 2, ¨ ¨ ¨ , do
xk :“ arg minxPX f pykq ` ∇ f pykqTpx´ ykq ` L

2 }x´ yk}2 ` hpxq;
yk`1 :“ xk `

tk´1
tk`1

`

xk ´ xk´1
˘

.
end for

The sequence ttk | k “ 1, 2, ...u is the same as in Nesterov’s scheme.
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Theorem 9
The FISTA has a convergence rate of

r f pxkq ` hpxkqs ´ r f px˚q ` hpx˚qs

ď
4rp f px1q ` hpx1qq ´ p f px˚q ` hpx˚qqs ` 2L}x1 ´ x˚}2

pk ` 1q2
.
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Method of Multipliers

Let us now consider pM4q:

pM4q min f pxq
s.t. x P X

Ax “ b

Let λ be the Lagrangian multiplier associated with the constraint
Ax “ b.

The augmented Lagrangian function is

Lγpx; λq :“ f pxq ´ λTpAx´ bq `
γ

2
}Ax´ b}2.
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Method of Multipliers
Initialize λ0 P Rm

for k “ 0, 1, ¨ ¨ ¨ , do
xk`1 :“ arg minxPXLγpx; λkq;
λk`1 :“ λk ´ γpAxk`1 ´ bq.

end for

Theorem 10
Let x̄k “ 1

k

řk
`“1 x`. Then, for any fixed ρ ą 0 we have

f px̄kq ´ f px˚q ` ρ}Ax̄k ´ b} ď
ρ2{γ ` }λ0}2{γ

k
.
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The ADMM
Let us now introduce a very popular method for solving

pM5q min f pxq ` hpyq
s.t. x P X, y P Y

Ax` By “ b.

The method is known as Alternating Direction Method of Multipliers.
The augmented Lagrangian function

Lγpx, y; λq :“ f pxq ` hpyq ´ λTpAx` By´ bq `
γ

2
}Ax` By´ b}2.

ADMM
Initialize λ0 P Rm, x0 P X, y0 P Y.
for k “ 0, 1, ¨ ¨ ¨ , do

xk`1 :“ arg minxPXLγpx, yk, λkq

yk`1 :“ arg minyPYLγpxk`1, y, λkq

λk`1 :“ λk ´ γpAxk`1 ` Byk`1 ´ bq.
end for
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The analysis for the ADMM was only completed recently. It is more
involved than that for the method of multipliers. We shall skip the
details and only present the main result below.

Let

x̄k “
1
k

k
ÿ

`“1

x` and ȳk “
1
k

k
ÿ

`“1

y`.

Theorem 11
Consider the ADMM. For any fixed λ P Rm, the following estimation
holds

r f px̄kq ` hpȳkqs ´ r f px˚q ` hpx˚qs ´ λT `Ax̄k ` Bȳk ´ b
˘

ď
}λ´ λ0}2{γ ` }Ax˚ ` By0 ´ b}2γ

2k
.
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