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Let us start by considering the rationalized preferences choices. In the
traditional economics theory, the rationality of the preferences lies in
the fact that they pass the following consistency test:

1. Any commodity is always considered to be preferred over itself.
2. If commodity A is preferred over commodity B, while B is preferred

over A at the same time, then the decision-maker is clearly
indifferent between A and B, i.e., they are identical to the
decision-maker.

3. If commodity A is preferred over commodity B, then any positive
multiple of A should also be preferred over the same amount of
multiple of B.

4. If commodity A is preferred over commodity B, while commodity B
is preferred over commodity C, then the decision-maker would
prefer A over C.
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In mathematical terms, the analog is an object known as the pointed
convex cone. We shall confine ourself to a finite dimensional Euclidean
space here, to be denoted by Rn. A subset K of Rn is called a pointed
convex cone in Rn if the following conditions are satisfied:

1. The origin of the space – vector 0 – belongs to K .
2. If x P K and ´x P K then x “ 0.
3. If x P K then tx P K for all t ą 0.
4. If x P K and y P K then x` y P K .
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If the objects in question reside in Rn, then a preference ordering is
rational if and only if there is a convex cone K , such that x is preferred
over y is signified by x´ y P K . In this context, the order-defining
convex cone may not be a closed set. Consider the lexicographic
ordering in R2. That is, for any two points in R2, the preferred choice is
the one with greater first coordinate; in case a tie occurs then the point
with larger second coordinate is preferred; in case the second
coordinate is also a tie, then the two points are identical. Now, the
underlying order-defining cone can be explicitly written as

K “

"ˆ

x1
x2

˙ ˇ

ˇ

ˇ

ˇ

x1 ą 0
*

ď

ˆ

R`
ˆ

0
1

˙˙

.
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In general, the preference ordering may not necessarily be complete:
there can be incomparable objects. For convenience, from now on we
shall consider closed pointed convex cones, i.e., clK “ K and
K X p´Kq “ 0. The ordering defined by a closed pointed convex cone
is necessarily partial.

Cone K is called proper if

§ K is convex;
§ K is solid;
§ K is pointed.
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Many decision problems can be formulated using a chosen proper
cone as a preference ordering.

A most famous example is linear programming:

minimize cJx
subject to Ax “ b

x ě 0,

where A is a matrix, and b and c are vectors. The last constraint x ě 0
is understood to be a componentwise relation, which can as well be
written as x P Rn

`.
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Conic Optimization

In this light, linear programming is a special case of the following conic
optimization model

minimize cJx
subject to Ax “ b

x P K

where K Ď Rn is a prescribed closed convex cone. We can always
assume that the rows in A are all linearly independent.
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In practice, the following three convex cones are most popular in conic
optimization:

‚ K “ Rn
`.

‚ K is a Cartesian product of Lorentz cones; that is,

K “

"ˆ

t1
x1

˙ ˇ

ˇ

ˇ

ˇ

t1 P R, x1 P Rd1 , t1 ě }x1}

*

ˆ ¨ ¨ ¨ ˆ

"ˆ

tm
xm

˙
ˇ

ˇ

ˇ

ˇ

tm P R, xm P Rdm , tm ě }xm}

*

.
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For convenience, let us denote the standard Lorentz cone as follows:

SOCpn` 1q “
"ˆ

t
x

˙ ˇ

ˇ

ˇ

ˇ

t P R, x P Rn, t ě }x}
*

.

In this notation, the previous cone is

K “ SOCpd1 ` 1q ˆ ¨ ¨ ¨ ˆ SOCpdm ` 1q
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Semidefinite Programming

‚ K is the cone of positive semidefinite matrices either in Snˆn (n by n
real symmetric matrices) or in Hnˆn (n by n complex Hermitian
matrices); that is, K “ Snˆn

` or K “ Hnˆn
` .

Specifically, the standard conic optimization model in this case is:

minimize C ‚ X
subject to Ai ‚ X “ bi, i “ 1, ...,m

X ľ 0

where
X ‚ Y ” xX,Yy ”

ÿ

i, j

Xi jYi j ” Tr XY.
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The first choice of the cone is also known as polyhedral cone and the
corresponding optimization problem is Linear Programming (LP);

The second choice of the cone corresponds to Second Order Cone
Programming (SOCP);

The third choice of the cone corresponds to Semidefinite Programming
(SDP).

As an appetizer we shall introduce some examples leading to SOCP
and SDP.
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Example 1: The Weber problem

The first traceable problem of SOCP is perhaps the following problem
posed by Pierre de Fermat in the 17th century. Given three points a, b
and c on the plane, find the point in the plane that minimizes the total
distance to the three given points. The solution was found by Torricelli,
hence known as the Torricelli point, and the method was published by
Viviani, a pupil of Torricelli, in 1659. The problem can be formulated as
SOCP:

minimize t1 ` t2 ` t3
subject to u “ x´ a, v “ x´ b, w “ x´ c

ˆ

t1
u

˙

P SOCp3q,
ˆ

t2
v

˙

P SOCp3q,
ˆ

t3
w

˙

P SOCp3q.
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Problems of such type later had gained a renewed interest in
management science. In 1909 the German economist Alfred Weber
introduced the problem of finding a best location for the warehouse of
a company, in such a way that the total transportation cost to serve the
customers is minimum. This is known as the Weber problem. Again,
the problem can be formulated as SOCP. Suppose that there are m
customers needing to be served. Let the location of customer i be ai,
i “ 1, ...,m. Suppose that customers may have different demands, to be
translated as weight wi for customer i, i “ 1, ...,m. Denote the desired
location of the warehouse to be x. Then, the optimization problem is

minimize
m
ÿ

i“1

witi

subject to
ˆ

ti
x´ ai

˙

P SOCp3q, i “ 1, ...,m.
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Example 2: Convex Quadratic Programming

The popularity of SOCP is also due to that it is a generalized form of
convex QCQP (Quadratically Constrained Quadratic Programming). To
be precise, consider the following QCQP:

minimize xJQ0x` 2bJ0 x

subject to xJQix` 2bJi x` ci ď 0, i “ 1, ...,m,
(1)

where Qi ľ 0, i “ 0, 1, ...,m.
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Observe that t ě xJx ðñ
›

›

›

›

ˆ t´1
2
x

˙›

›

›

›

ď t`1
2 . Therefore, (1) can be

equivalently written as

minimize x0

subject to

¨

˚

˚

˝

´2bJ
0 x`x0`1

2
´2bJ

0 x`x0´1
2

Q
1
2
0 x

˛

‹

‹

‚

P SOCpn` 2q

¨

˚

˚

˝

´2bJ
i x´ci`1

2
´2bJ

i x´ci´1
2

Q
1
2
i x

˛

‹

‹

‚

P SOCpn` 2q, i “ 1, ...,m.
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The versatility of the SOCP modelling goes beyond quadratic models.
For the illustrating purpose, let us consider an example of stochastic
queue location problem.

Suppose that there are m potential customers to serve in the region.
Customers’ demands are random, and once a customer calls for
service, then the server in the service center will need to go to the
customer to provide the required service. In case the server is
occupied, then the customer will have to wait. The goal is to find a
good location for the service center so as to minimize the expected
waiting time of the service.
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Suppose that the service calls from the customers are i.i.d., and the
demand process follows the Poisson distribution with overall arrival
rate λ, and the probability that the lth service call is from customer i is
assumed to be pi, where l “ 1, 2, ... and i “ 1, ...,m. The queueing
principle is First Come First Serve, and there is only one server in the
service center. This model can be regarded as M/G/1 queue, and the
expected service time, including waiting and travelling, can be explicitly
computed. To this end, denote the velocity of the server to be v, and
the location of customer i to be ai, i “ 1, ...,m, and the location of the
service center to be x.

Shuzhong Zhang (ISyE@UMN) Mathematical Optimization August 3, 2016 17 / 43



The expected waiting time for customer i is given by

wipxq :“

p2λ{v2q

m
ÿ

i“1

pi}x´ ai}
2

1´ p2λ{vq
m
ÿ

i“1

pi}x´ ai}

`
1
v
}x´ ai}, (2)

where the first term is the expected waiting time for the server to be
free, and the second term is the waiting time for the server to show up
at the door, after his departure at the service center.
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A first glance at (2) may not suggest that it can be modelled by SOCP,
due to the fractional term. One can find the connection, however, by
observing the fact that }x}2{s ď t, s ě 0 is equivalent to
›

›

›

›

ˆ t´s
2
x

˙
›

›

›

›

ď t`s
2 . In view of (2), to minimize the total waiting time the

optimal location of the service center is formulated as

minimizex

p2mλ{v2q

m
ÿ

i“1

pi}x´ ai}
2

1´ p2λ{vq
m
ÿ

i“1

pi}x´ ai}

` p1{vq
m
ÿ

i“1

}x´ ai}
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or, equivalently,

minimize p2mλ{v2q

m
ÿ

i“1

piti ` p1{vq
m
ÿ

i“1

t0i

subject to
ˆ

t0i

x´ ai

˙

P SOCp3q, i “ 1, ...,m

¨

˝

ti`s
2

ti´s
2

x´ ai

˛

‚P SOCp4q, i “ 1, ...,m

s ď 1´ p2λ{vq
m
ÿ

i“1

pisi

ˆ

si

x´ ai

˙

P SOCp3q, i “ 1, ...,m.
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If the objective is to minimize the worst response time, i.e. minimizing
max1ďiďm wipxq, then the problem can be formulated as

minimize t0

subject to t0 ě p2λ{v2q

m
ÿ

i“1

piti ` t0i{v, i “ 1, ...,m
ˆ

t0i

x´ ai

˙

P SOCp3q, i “ 1, ...,m

¨

˝

ti`s
2

ti´s
2

x´ ai

˛

‚P SOCp4q, i “ 1, ...,m

s ď 1´ p2λ{vq
m
ÿ

i“1

pisi

ˆ

si

x´ ai

˙

P SOCp3q, i “ 1, ...,m.
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Departure from Linear Programming

All is fine and familiar, just like in the case of LP. But is that so? Let us
consider some serious discrepancy between SOCP and LP.

A famous result regarding linear programming asserts that a linear
programming problem can only be in one of the three states: (1) the
problem is infeasible, and any slight perturbation of the problem data
will keep the problem infeasible; (2) the problem is feasible but there is
no finite optimal value; (3) the problem is feasible and has an optimal
solution. Does the same hold true for SOCP? The answer is a definite
No!
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Consider
minimize x1 ` x2 ` x3
subject to x1 ´ x2 “ 0

x3 “ 1
¨

˝

x1
x2
x3

˛

‚P SOCp3q.

The conic constraint requires that x1 ě

b

x2
2 ` x2

3. The above problem
is clearly infeasible.
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For any positive ε ą 0 the following perturbed version is however
always feasible

minimize x1 ` x2 ` x3
subject to x1 ´ x2 “ ε

x3 “ 1
¨

˝

x1
x2
x3

˛

‚P SOCp3q,

with a feasible solution e.g. px1, x2, x3q “ p
1
2ε ` ε, 1

2ε , 1q.
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In the same vein, it is possible for SOCP to be not infeasible, not
unbounded in the objective value, yet there is no optimal solution.
Consider

minimize x1 ´ x2
subject to x3 “ 1

¨

˝

x1
x2
x3

˛

‚P SOCp3q.

In this example, for any ε ą 0 the solution px1, x2, x3q “ p
1
2ε ` ε, 1

2ε , 1q
yields an objective value ε. However, there is no attainable solution
with value exactly equal to 0. In this sense, it is a bit of abuse to use
the term ‘minimize’ in the objective. It might be more appropriate to
replace ‘minimize’ by ‘infimum’. In order not to create too many new
symbols, we will still use the old notation, as a suboptimal compromise.
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The choice of K being the cone of positive matrices leads to many
interesting consequences. Later, we will focus on a number of selected
applications for SDP. As an appetizer, here we shall introduce SDP
and consider a few examples. First of all, the second order cone can
be easily embedded into the cone of positive matrices, by observing
the fact that

ˆ

t
x

˙

P SOCpn` 1q ðñ
„

t, xJ

x, tIn



P S
pn`1qˆpn`1q
` .
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In SDP, the decision variables are in the matrix form. In the real
domain, the standard SDP is

minimize
řn

i, j“1 Ci jXi j

subject to
řn

i, j“1 Apkqi j Xi j “ bk, k “ 1, ...,m
X P Snˆn

` ,

where, as problem data, C, Apkq P Snˆn, for k “ 1, ...,m, and b P Rm.
Observe that Tr pCXq “

řn
i, j“1 Ci jXi j, which is an inner product between

the two matrices. To unify the notation, we use xx, yy to denote the
inner product between x and y, which can be either in the vector form
or in the matrix form. In case of SDP, it is often convenient to denote
X ‚ Y as the inner-product between X and Y.
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Example 3: the Eigenvalue Problems

The most obvious application of SDP is perhaps the problem of finding
the largest eigenvalue of a given n by n symmetric matrix A, which can
be cast as

minimize t
subject to tI ´ A P Snˆn

` .

If the matrix A itself is a result of design, say A “ A0 `
řm

j“1 x jA j, then
designing the matrix so as to yield the smallest eigenvalue is again an
SDP problem:

minimize t
subject to tI ´ A0 ´

řm
j“1 x jA j P S

nˆn
` .
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Moreover, the sum (or the weighted sum) of the first k largest
eigenvalues of a matrix can also be expressed by Linear Matrix
Inequalities. Let λ1pAq ě λ2pAq ě ¨ ¨ ¨ ě λnpAq be the n eigenvalues of
the symmetric matrix A in descending order of the symmetric matrix A,
and let fkpAq “

řk
i“1 λipAq. Then,

t ě fkpAq ðñ Ds P R, Z P Snˆn : t´ks´Tr pZq ě 0, Z ľ 0, Z´A` sI ľ 0.

Hence, the problem of designing a matrix so as to minimize the sum of
the k largest eigenvalues can be cast as SDP:

minimize t
subject to t ´ ks´ Tr pZq ě 0

Z ` sI ´ A0 ´
řm

j“1 x jA j P S
nˆn
`

Z P Snˆn
` .
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Example 4: Polynomial Optimization

Consider the problem of finding the minimum of a univariate
polynomial of degree 2n:

minimizex x2n ` a1x2n´1 ` ¨ ¨ ¨ ` a2n´1x` a2n.

The problem can be cast equivalently as

maximize t
subject to x2n ` a1x2n´1 ` ¨ ¨ ¨ ` a2n´1x` a2n ´ t ě 0 for all x P R.

(3)
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It is well known that a univariate polynomial is nonnegative over the
real domain if and only if it can be written as a sum of squares (SOS),
which is equivalent to saying that there must be a positive semidefinite
matrix Z P Spn`1qˆpn`1q

` such that

x2n`a1x2n´1`¨ ¨ ¨`a2n´1x`a2n´ t “ p1, x, x2, ¨ ¨ ¨ , xnqZp1, x, x2, ¨ ¨ ¨ , xnqJ.

Thus, (3) can be equivalently written as

maximize t
subject to a2n ´ t “ Z1,1

a2n´k “
ÿ

i` j“k`2

Zi, j, k “ 1, ..., 2n´ 1

Zpn`1q,pn`1q “ 1
Z P Spn`1qˆpn`1q

` .
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Dual Cones
If K is a convex cone, then its dual cone is defined as

K˚ “ ts | sJx ě 0, @x P Ku.

It is easy to verify that: (1) pRn
`q
˚ “ Rn

`; (2) pSOCpnqq˚ “ SOCpnq;
(3) pSnˆn

` q˚ “ S
nˆn
` .
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Duality in Conic Optimization

Recall the conic optimization

pPq minimize cJx
subject to Ax “ b

x P K .

Upper bounding the optimal value yields its dual

pDq maximize bJy
subject to AJy` s “ c

s P K˚.

Theorem 1

(Weak duality theorem) vpDq ď vpPq.
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The Strong Duality Theorem

Theorem 2

If the primal conic program and its dual conic program both satisfy the
Slater condition, then the optimal solution sets for both problems are
non-empty and compact. Moreover, the optimal solutions are
complementary to each other with zero duality gap.
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Barrier Function
Consider a convex barrier function Fpxq for K :

§ Fpxq ă 8 for all x P int K ;
§ Fpxkq Ñ 8 as xk Ñ x where x is on the boundary of K .

Definition 3

Let K Ď Rn be a given solid, closed, convex cone, and F be a barrier
function defined in int K . We call F to be a self-concordant function if
for any x P int K and any direction h P Rn the following two properties
are satisfied:

§ |∇3Fpxqrh, h, hs| ď 2p∇2Fpxqrh, hsq3{2;
§ |∇Fpxqrhs| ď θp∇2Fpxqrh, hsq1{2.

Then, F is called a self-concordant barrier function for the cone K with
θ as the complexity value.
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Self-Concordant Barrier for SDP

Consider
FpXq “ ´ log det X.

For any direction H P Snˆn we have

∇FpXqrHs “ ´Tr pX´1Hq

and
∇2FpXqrH,Hs “ Tr pX´1Hq2

and
∇3FpXqrH,H,Hs “ ´2Tr pX´1Hq3.

One can easily show that it is self-concordant with θ “
?

n.

Shuzhong Zhang (ISyE@UMN) Mathematical Optimization August 3, 2016 36 / 43



Local Geometry

A geometry is associated with a local inner product system. Suppose
that Fpxq is a strictly convex barrier function for the cone K . Consider

xu, vy “ uJ∇2Fpxqv.

The above inner product is coordinate-free, i.e., if we let y “ A´1x then
the inner product remains invariant.

To be specific about the locality of the inner product, let us denote

xu, vyx :“ uJ∇2Fpxqv.

The norm induced by the inner product is }u}x :“
a

xu, uyx.
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Penalized Problem
For

pPq minimize cJx
subject to x P a`L

x P K ,

where L “ tx P Rn | Ax “ 0u, let

Fµpxq “
1
µ

cJx` Fpxq.

Obviously, Fµpxq is also a barrier function for pPq.

For any 0 ă µ1 ă µ, we have

∇2Fµ1pxq “ ∇2Fµpxq “ ∇2Fpxq

∇Fµ1pxq “
µ

µ1
∇Fµpxq `

µ1 ´ µ

µ1
∇Fpxq.
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Short-step central path following
Let

npµ; xq “ ´p∇2Fµpxqq´1∇Fµpxq,

and
ppµ; xq :“ }npµ; xq}x,

namely, the local norm of Newton direction of Fµ.

Newton step. Let xi`1 “ xi ` npµi; xiq.
Target shifting. Let µi`1 be so that ppµi`1; xi`1q “ 1{4.

Theorem 4

Suppose that µ0 “ Op1q. Then, in Opθ log 1
ε q Newton steps we will

reach a point x with µ ă ε and ppµ; xq ď 1{4.
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Long-step central path following

Newton step.

§ Let y “ xi.
§ While ppµi; yq ě 1{8, find the Newton

direction npµi; yq and do line minimization

t :“ argmin Fµipy` tnpµi; yqq,

and
y :“ y` tnpµi; yq

and return to while.
§ Update the iterate: Let xi`1 “ y.

Target shifting. Let µi`1 “ µi{2.
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By construction, in the while loop, it holds that ppµi; yq ě 1{8 and
ppµi; xi`1q ă 1{8.

Theorem 5

Suppose that µ0 “ Op1q. Then, in Oplog 1
ε q number of target shifting we

will reach a point x with µ ă ε and ppµ; xq ď 1{8. Between each target
shifting it takes at most Opθ2q numbers of Newton steps.
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