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OOQP User Guide

by

E. Michael Gertz and Stephen J. Wright

Abstract

OOQP is an object-oriented software package for solving convex quad-
ratic programming problems (QP). We describe the design of OOQP, and
document how to use OOQP in its default configuration. We further
describe OOQP as a development framework, and outline how to develop
custom solvers that solve QPs with exploitable structure or use specialized
linear algebra.
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1 Introduction

OOQP is a package for solving convex quadratic programming problems (QPs).
These are optimization problems in which the objective function is a convex
quadratic function and the constraints are linear functions of a vector of real
variables. They have the following general form:

min
x

1
2xT Qx + cT x s.t. Ax = b, Cx ≥ d, (1)

where Q is a symmetric positive semidefinite n×n matrix,; x ∈ IRn is a vector of
variables; A and C are matrices of dimensions ma×n and mc×n, respectively;
and c, b, and d are vectors of appropriate dimensions.

Many QPs that arise in practice are highly structured. That is, the matrices
that define them have properties that can be exploited in designing efficient so-
lution techniques. For example, they may be general sparse matrices; diagonal,
banded, or block-banded matrices; or low-rank matrices. A simple and common
instance of structure occurs in applications in which the inequality constraints
include simple upper or lower bounds on some components of x; the rows of C
defining these bounds each contain a single nonzero element. A more extreme
example of exploitable structure occurs in the QPs that arise in support vector
machines. In one formulation of this problem, Q is dense but is a low-rank
perturbation of a positive diagonal matrix.

In addition to the wide variations in problem structure, there is wide diver-
gence in the ways in which the problem data and variables for a QP can be
stored on a computer. Part of this variation may be due to the structure of the
particular QP: it makes sense to store the problem data and variables in a way
that is natural to the application context in which the QP arises, rather than
shoehorning it into a form that is convenient for the QP software. Variations
in storage schemes arise also because of different storage conventions for sparse
matrices; because of the ways that matrices and vectors are represented on dif-
ferent parallel platforms; and because large data sets may necessitate specialized
out-of-core storage schemes.

Algorithms for QP, as in many other areas of optimization, depend critically
on linear algebra operations of various types: matrix factorizations, updates,
vector inner products and “saxpy” operations. Sophisticated software packages
may be used to implement the required linear algebra operation in a manner that
is appropriate both to the problem structure and to the underlying hardware
platform.

One might expect this wide variation in structure and representation of QPs
to give rise to a plethora of algorithms, each appropriate to a specific situation.
Such is not the case. Algorithms such as gradient projection, active set, and
interior point all appear to function well in a wide variety of circumstances.
Interior-point methods in particular appear to be competitive in terms of ef-
ficiency on almost all problem types, provided they are coded in a way that
exploits the problem structure.

In OOQP, object-oriented programming techniques are used to implement a
primal-dual interior-point algorithm in terms of abstract operations on abstract
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objects. Then, at a lower level of the code, the abstract operations are special-
ized to particular problem formulations and data representations. By reusing
the top-level code across the whole space of applications, while exploiting struc-
ture and hardware capabilities at the lower level to produce tuned, concrete
implementations of the abstract operations, users can produce efficient, special-
ized QP solvers with a minimum of effort.

This distribution of OOQP contains code to fully implement a solver for a
number of standard OOQP formulations, including a version of the formulation
(1) that assumes Q, A, and C to be general sparse matrices. The code in
the distribution also provides a framework and examples for users who wish
to implement solvers that are tailored to specific structured QPs and specific
computational environments.

1.1 Different Views of OOQP

In this section, we describe different ways in which OOQP may be used.

Shrink-Wrapped Solution. The OOQP distribution can be used as an off-
the-shelf, shrink-wrapped solver for QPs of certain types. Users can simply
install it and execute it on their own problem data, without paying any at-
tention to the structure of the code or the algorithms behind it. In particular,
there is an implementation for solving general QPs (of the form (2) given in Sec-
tion 2) in which the data matrices are sparse without any assumed structure.
(The linear algebra calculations in the distributed version are performed with
the codes MA27 [9], but we have also implemented versions that use MA57 [14],
Oblio [7], and SuperLU [6].) The distribution also contains an implementation
for computing a support vector machine to solve a classification problem; an im-
plementation for solving the Huber regression problem; and an implementation
for solving a quadratic program with simple bounds on a distributed platform,
using PETSc [4]. These implementations each may be called via a command-line
executable, using ascii input files for defining the data in a manner appropri-
ate to the problem. Some of the implementations can also be called via the
optimization modeling language AMPL or via MATLAB.

See the README file in the distribution for further details on the specialized
implementations included in the distribution.

Embeddable Solver. Some users may wish to embed OOQP code into their
own applications, calling the QP solver as a subroutine. This mode of use is
familiar to users of traditional optimization software packages and numerical
software libraries such as NAG or IMSL. The OOQP distribution supplies C
and C++ interfaces that allow the users to fill out the data arrays for the
formulation (2) themselves, then call the OOQP solver as a subroutine.

Development Framework. Some users may wish to take advantage of the
development framework provided by OOQP to develop QP solvers that exploit
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the structure of specific problems. OOQP is an extensible C++ framework;
and by defining their own specialized versions of the storage schemes and the
abstract operations used by the interior-point algorithm, users may customize
the package to work efficiently on their own applications.

Users may also modify one of the default implementations in the distribution
by replacing the matrix and vector representations and the implementations of
the abstract operations by their own variants. For example, a user may wish to
replace the code for factoring symmetric indefinite matrices (a key operation in
the interior-point algorithms) with some alternative sparse factorization code.
Such replacements can be performed with relative ease by using the default
implementation as an exemplar.

Research Tool. Researchers in interior point-methods for convex quadratic
programming problems may wish to modify the algorithms and heuristics used
in OOQP. They can do so by modifying the top-level code, which is quite short
and easy to understand. Because of the abstraction and layering design features
of OOQP, they will then be able to see the effect of their modifications on the
whole gamut of QP problem structures supported by the code.

1.2 Obtaining OOQP

The OOQP Web page www.cs.wisc.edu/~swright/ooqp/ has instructions on
downloading the distribution. OOQP is also distributed by the Optimization
Technology Center (OTC). See the page www.ece.nwu.edu/OTC/software/ for
information on obtaining OOQP and other OTC software.

Unpacking the distribution will create a single directory called OOQP-X.XX,
where X.XX is the revision number. For simplicity, we will refer to this direc-
tory simply as OOQP throughout this document. The OOQP directory contains
numerous files and subdirectories, which are discussed in detail in this man-
ual. Whenever we refer to a particular directory in the text, we mean it to be
taken as a subdirectory of OOQP. For example, when we discuss the directory
src/QpGen, we mean OOQP/src/QpGen.

1.3 How to Read This Manual

This manual gives an overview of OOQP—its structure, the algorithm on which
it is based, the ways in which the solvers can be invoked, and its utility as a
development framework.

Section 2 is intended for those who wish to use the solver for general sparse
quadratic programs (formulation (2)) that is provided with the OOQP distri-
bution. It shows how to define the problem and invoke the solver in various
contexts. Section 3 gives an overview of the OOQP development framework,
explaining the basics of the layered design and details of the directory structure
and makefile-based build process. Section 4 provides additional details on the
top layer of OOQP—the QP solver layer—for the benefit of those who wish
to experiment with variations on the two primal-dual interior-point algorithms
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supplied with the OOQP distribution. Section 5 describes the operations that
must be defined and implemented in order to create a solver for a new problem
formulation. Section 6 is a practical tutorial on OOQP’s linear algebra layer. It
describes the classes for vectors and sparse and dense matrices for the benefit
of users who wish to use these classes in creating solvers for their own problem
formulations. Finally, Section 7 is intended for advanced users who wish to
specialize the linear algebra operations of OOQP by adding new linear solvers
or using different matrix and vector representations.

Users who simply wish to use OOQP as a shrink-wrapped solver for quadratic
programs formulated as general sparse problems (2) need read only Section 2.
Those interested in learning a little more about the design of OOQP should
read Sections 3.1 and 4.1, while those who wish to understand the design and
motivation more fully should read Sections 3.1, 4, 5, and 6, in that order.
Users who wish to implement a solver for their own QP formulation should
read Sections 3, 4.1, 5, and 6 and then review Section 5 with code in hand.
Those who wish to install new linear solvers should read Sections 2, 3, 6, and
then focus on Section 7.

1.4 Other Resources

OOQP is distributed with additional documentation. In the top-level OOQP
directory, the file README describes the contents of the distribution. This
file includes the location of an html page that serves as an index of available
documentation and may be viewed through a browser such as Netscape. This
documentation includes the following items.

Online Reference Manual. We have extensively documented the source code
, using the tool doxygen to create a set of html pages that serve as a com-
prehensive reference manual to the OOQP development framework. De-
tails of the class hierarchy, the purposes of the individual data structures
and methods within each class, and the meanings of various parameters
are explained in these pages.

A Descriptive Paper. The archival paper [12] by the authors of OOQP con-
tains further discussion of the motivation for OOQP, the structure of the
code, and the way in which the classes are reimplemented for various spe-
cialized applications.

Manuals for Other Problem Formulations. Specialized QP formulations
such as Svm, Huber, and QpBound have their own documentation. The
documents describe the problems solved and how the solvers may be in-
voked.

OOQP Installation Guide. This document describes how to build and in-
stall OOQP.

Distribution Documents. These include files such as README that de-
scribe the contents of various parts of the distribution.
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We also supply a number of sample problems and example programs in
the examples/ subdirectory. A README file in this subdirectory explains its
contents.
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2 Using the Default QP Formulation

The “general” quadratic programming formulation recognized by OOQP is as
follows:

min 1
2xT Qx + cT x subject to (2)

Ax = b, d ≤ Cx ≤ f, l ≤ x ≤ u,

where Q is an n× n positive semidefinite matrix, A is an ma × n matrix, C is
an mc×n matrix, and all other quantities are vectors of appropriate size. Some
of the elements of l, u, d, and f may be infinite in magnitude; that is, some
components of Cx and x may not have upper and lower bounds.

The subdirectory src/QpGen in the OOQP distribution, together with the
linear algebra subdirectories, contains code for solving problems formulated as
(2), where Q, A, and C are general sparse matrices. In this section, we de-
scribe the different methods that can be used to define the problem data and,
accordingly, different ways in which the solver can be invoked. We start with
a command-line interface that can be used when the problem is defined via a
text file (Section 2.1). We then describe several other interfaces: calling OOQP
as a function from a C program (Section 2.2); calling it from a C++ program
(Section 2.3); invoking OOQP as a solver from an AMPL process (Section 2.4);
and invoking OOQP as a subroutine from a MATLAB program (Section 2.5).

2.1 Command-Line Interface

When the problem is defined in quadratic MPS (“QPS”) format in an ascii
file, the method of choice for solving the problem is to use an executable
file that applies Mehrotra’s predictor-corrector algorithm [19] with Gondzio’s
multiple corrections [13]. (The Installation Guide that is supplied with the
OOQP distribution describes how to create this executable file, which is named
qpgen-sparse-gondzio.exe.) We also provide qpgen-sparse-mehrotra.exe,
an implementation of Mehrotra’s algorithm that does not use Gondzio’s correc-
tions. These executables take their inputs from a text file in QPS format that
describes the problem.

The QPS format proposed by Maros and Mészáros [17] is a modification
of the standard and widely used MPS format for linear programming. The
format is somewhat awkward and limited in the precision to which it can specify
numerical data. We support it, however, because it is used by a number of QP
solvers and is well known to users of optimization software.

A description of the MPS format, extracted from Murtagh [20], can be found
at the NEOS Guide at

www.mcs.anl.gov/otc/Guide/

(search for “MPS”). The QPS format extends MPS by introducing a new section
of the input file named QUADOBJ (alternatively named QMATRIX), which defines
the matrix Q of the quadratic objective specified in the formulation (2). This
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section, if present, must appear after all other sections in the input file. The
format of this section is the same as the format of the COLUMNS section except
that only the lower triangle of Q is stored. As in the COLUMNS section, the
nonzeros are specified in column major order.

We have relaxed the MPS definition so that strict limitations on field widths
on each line are replaced by tokenization, in which fields are assumed to be
separated by spaces. (Note that this parsing may introduce incompatibilities
with files that are valid under the strict MPS definition, in which spaces may
occur within a single numerical field between a minus sign and the digits it
operates on.) Name records may now be up to 16 characters in length, and
there is no restriction on the size of numerical fields, except those imposed by
the maximum length of a line. The maximum line length is 150 characters.

A second deviation from MPS standard format is that an objective sense
indicator may be introduced at the start of the file, to indicate either that the
specified objetcive is to be minimized or maximized. This field has the form

OBJSENSE
MIN

when the intent is to minimize the objective, and

OBJSENSE
MAX

for maximization. The default is minimization. If this field is included, it must
appear immediately after the NAME line.

Figure 1 shows a sample QPS file, taken from Maros and Mészáros [17]. This
file describes the following problem:

mimimize 4 + 1.5x1 − 2x2 + 1
2 (8x2

1 + 4x1x2 + 10x2
2)

subject to 2 ≤ 2x1 + x2 ≤ ∞
−∞ ≤ −x1 + 2x2 ≤ 6

0 ≤ x1 ≤ 20
0 ≤ x2 ≤ ∞.

(3)

If the file (1) is named Example.qps and is stored in the subdirectory data, and
if the executable qpgen-sparse-gondzio.exe appears in the OOQP directory,
then typing

qpgen-sparse-gondzio.exe ./data/Example.qps

will solve the problem and create the output file OOQP/data/Example.out.
Figure 2 shows the contents of Example.out. The PRIMAL VARIABLES are

the components of the vector x in the formulation (2). The output shows that
the optimal values are x1 = 0.7625 and x2 = 0.475. The bounds on each
component of x, if any were specified, are also displayed. If neither bound is
active, the reported value of the Lagrange multiplier in the final column should
be close to zero. Otherwise, it may take a positive value when the lower bound
is active or a negative value when the upper bound is active.
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NAME Example
ROWS
N obj
G r1
L r2

COLUMNS
x1 r1 2.0 r2 -1.0
x1 obj 1.5
x2 r1 1.0 r2 2.0
x2 obj -2.0

RHS
rhs1 obj -4.0
rhs1 r1 2.0 r2 6.0

BOUNDS
UP bnd1 x1 20.0

QUADOBJ
x1 x1 8.0
x1 x2 2.0
x2 x2 10.0

ENDATA

Figure 1: A sample QPS file

The CONSTRAINTS section shows the values of the vectors Ax and Cx at the
computed solution x, compares these values with their upper and lower bounds
in the case of Cx, and displays Lagrange multiplier information in the final
column, in a similar way to the PRIMAL VARIABLES section.

Note that the problem described in (1) contains no equality constraints
(that is, A is null), so there is no Equality Constraints subsection in the
CONSTRAINTS section of this particular output file.

A number of command-line options are available in calling qpgen-sparse-gondzio.exe.
The current list of options can be seen by typing

qpgen-sparse-gondzio.exe --help

Current options are as follows:

--print-level num: (num is a positive integer) Larger values of num produce
more output to the screen.

--version: shows the current version number and release date.

--quiet: suppresses output to the screen.

--verbose: produces maximal output to the screen.

--scale: scales the variables so that the diagonals of the Hessian matrix remain
in a reasonable range.
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Solution for ’Example ’

Rows: 3, Columns: 2

PRIMAL VARIABLES

Name Value Lower Bound Upper Bound Multiplier

0 x1 7.62500000e-01 0.00000e+00 2.00000e+01 6.37776644e-15
1 x2 4.75000000e-01 0.00000e+00 2.83645544e-12

CONSTRAINTS

Inequality Constraints: 2

Name Value Lower Bound Upper Bound Multiplier

0 r1 2.00000000e+00 2.00000e+00 4.27500000e+00
1 r2 1.87500000e-01 6.00000e+00 -8.81876986e-16

Objective value: 8.37188

Figure 2: Sample output from qpgen-sparse-gondzio.exe

The same options are available for qpgen-sparse-mehrotra.exe.

2.2 Calling from a C Program

OOQP supplies an interface to the default solver for (2) that may be called from
a C program. This operation is performed by the function qpsolvesp, which
has the following prototype.

void
qpsolvesp( double c[], int nx,

int irowQ[], int nnzQ, int jcolQ[], double dQ[],
double xlow[], char ixlow[],
double xupp[], char ixupp[],
int irowA[], int nnzA, int jcolA[], double dA[],
double bA[], int my,
int irowC[], int nnzC, int jcolC[], double dC[],
double clow[], int mz, char iclow[],
double cupp[], char icupp[],
double x[], double gamma[], double phi[],
double y[],
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double z[], double lambda[], double pi[],
double *objectiveValue,
int print_level, int * ierr );

This function uses an old-fashioned calling convention in which each argument
is a native type (for example, an int or an array of double). While calling
such a function can be tedious because of the sheer number of arguments, it is
straightforward in that the relationship of each argument to the formulation (2)
is fairly easy to understand.

Sparse matrices are represented by three data structures—two integer vec-
tors and one vector of doubles, all of the same length. For the (general) matrix
A, these data structures are irowA, jcolA and dA. The total number of nonze-
ros in the sparse matrix A is nnzA. The k nonzero element of A occurs at row
irowA[k] and column jcolA[k] and has value dA[k]. Rows and columns are
numbered starting at zero.

For the symmetric matrix Q, only the elements of the lower triangle of the
matrix are specified in irowQ, jcolQ, and dQ.

The elements of each matrix must be sorted into row-major order before
qpsolvesp is called. While this requirement places an additional burden on the
user, it reduces the memory requirements of the qpsolvesp procedure signifi-
cantly. OOQP provides a routine doubleLexSort that the user may call to sort
the matrix elements in the correct order. To sort the elements of the matrix A,
this routine can be invoked as follows:

doubleLexSort( irowA, nnzA, jcolA, dA )

We now show the correspondence between the input variables to qpsolvesp
(which are not changed by the routine) and the formulation (2).
c is the linear term in the objective function, a vector of length nx.

nx is the number of primal variables, that is, the length of the vector x in
(2). It is the length of the input vectors c, xlow, ixlow, xupp, ixupp,
x, gamma, and phi.

irowQ, jcolQ, dQ hold the nnzQ lower triangular elements of the quadratic
term of the objective function.

xlow, ixlow are the lower bounds on x. These contain the information in the
lower bounding vector l in (2). If there is a bound on element k of x
(that is, lk > −∞), then xlow[k] should be set to the value of lk and
ixlow[k] should be set to one. Otherwise, element k of both arrays
should be set to zero.

xupp, ixupp are the upper bounds on x, that is, the information in the vector
u in (2). These should be defined in a similar fashion to xlow and
ixlow.

irowA, jcolA, dA are the nnzA nonzero elements of the matrix A of linear
equality constraints.
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bA contains the right-hand-side vector b for the equality constraints in (2).
The integer parameter my defines the length of this vector.

clow, iclow are the lower bounds of the inequality constraints.

cupp, icupp are the upper bounds of the inequality constraints.

print level controls the amount of output the solver prints to the terminal.
Larger values of print level cause more information to be printed.
The following values of print level are recognized:

0 operate silently.

≥ 10 print information about each interior point iteration.

≥ 100 print information from the linear solvers.

The remaining parameters are output parameters that hold the solution to
the QP. The variables objectiveValue and x hold the values of interest to most
users, which are the minimal value and solution vector x in (2). The parame-
ter ierr indicates whether the solver was successful. The solver will return a
nonzero value in ierr if it was unable to solve the problem. Negative values
indicate that some error, such as an out of memory error, was encountered. For
a description of the termination criteria of OOQP, and the positive values that
might be returned in ierr, see Section 4.3.

The remaining output variables are vectors of Lagrange multipliers; the array
y contains the Lagrange multipliers for the equality constraints Ax = b, while
lambda and pi contain multipliers for the inequality constraints Cx ≥ d and
Cx ≤ f , respectively. The output variable z should satisfy

z = λ− π.

The multipliers for the lower and upper bounds x ≥ l and x ≤ u, are contained
in gamma and phi, respectively. Among other requirements (see our discussion
of optimality conditions in the next section), these vectors should satisfy the
following relationship on output:

c + Qx−ATy − CTz − γ + φ = 0.

Because it is somewhat cumbersome to allocate storage for all the parameters
of qpsolvesp individually, OOQP provides the following routine to perform all
necessary allocations:

void
newQpGenSparse( double ** c, int nx,

int ** irowQ, int nnzQ, int ** jcolQ, double ** dQ,
double ** xlow, char ** ixlow,
double ** xupp, char ** ixupp,
int ** irowA, int nnzA, int ** jcolA, double ** dA,
double ** b, int my,
int ** irowC, int nnzC, int ** jcolC, double ** dC,
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double ** clow, int mz, char ** iclow,
double ** cupp, char ** icupp,
int * ierr );

The following routine frees all this allocated storage:

void
freeQpGenSparse( double ** c,

int ** irowQ, int ** jcolQ, double ** dQ,
double ** xlow, char ** ixlow,
double ** xupp, char ** ixupp,
int ** irowA, int ** jcolA, double ** dA,
double ** b,
int ** irowC, int ** jcolC, double ** dC,
double ** clow, char ** iclow,
double ** cupp, char ** icupp );

If newQpGenSparse succeeds, it returns ierr with a value of zero. Otherwise, it
sets ierr to a nonzero value and frees any memory that it may have allocated to
that point. We emphasize that users are not required to use these two routines;
users can allocate arrays as they choose.

The distribution also contains a variant of qpsolvesp that accepts sparse
matrices stored in the slightly more compact Harwell-Boeing sparse format (see
Duff, Erisman, and Reid [8]), rather than the default sparse format described
above. In the Harwell-Boeing format, the nonzeros are stored in row-major
form, with jcolA[l] and dA[l] containing the column index and value of the l
nonzero element, respectively. The integer vector krowA[k] indicates the index
in jcolA and dA at which the first nonzero element for row k is stored; its final
element krowA[my+1] points to the index in jcolA and dA immediately after
the last nonzero entry. See [8] and Section 6.4 below for further details. The
Harwell-Boeing version of qpsolvesp has the following prototype.

void
qpsolvehb( double c[], int nx,

int krowQ[], int jcolQ[], double dQ[],
double xlow[], char ixlow[],
double xupp[], char ixupp[],
int krowA[], int my, int jcolA[], double dA[],
double bA[],
int krowC[], int mz, int jcolC[], double dC[],
double clow[], char iclow[],
double cupp[], char icupp[],
double x[], double gamma[], double phi[],
double y[],
double z[], double lambda[], double pi[],
double *objectiveValue,
int print_level, int * ierr );
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The meaning of the parameters other than those that store the sparse matrices
is identical to the case of qpsolvesp.

The prototypes of the preceding routines are located in the header file
cQpGenSparse.h. Most users will need to include the line

#include "cQpGenSparse.h"

in their program. This header file is safe to include not only in a C program
but also in a C++ program. Users who need more control over the solver than
these functions provide should develop a C++ interface to the solver.

We refer users to the Installation Guide in the distribution for further infor-
mation on building the executable using the OOQP header files and libraries.

2.3 Calling from a C++ Program

When calling OOQP from a C++ code, the user must create several objects
and call several methods in sequence. The process is more complicated than
simply calling a C function, but also more flexible. By varying the classes of the
objects created, one can generate customized solvers for QPs of various types.
In this section, we focus on the default solver for the formulation (2). The full
sequence of calls for this case is shown in Figure 3. In the remainder of this
section, we explain each call in this sequence in turn.

QpGenSparseMa27 * qp
= new QpGenSparseMa27( nx, my, mz, nnzQ, nnzA, nnzC );

QpGenData * prob
= (QpGenData * ) qp->makeData( /* parameters here */);

QpGenVars * vars
= (QpGenVars *) qp->makeVariables( prob );

QpGenResiduals * resid
= (QpGenResiduals *) qp->makeResiduals( prob );

GondzioSolver * s = new GondzioSolver( qp, prob );

s->monitorSelf();
int status = s->solve(prob,vars, resid);

Figure 3: The basic sequence for calling OOQP

The first method call in this sequence initializes a new problem formula-
tion qp of class QpGenSparseMa27, which is a subclass of ProblemFormulation.
The definition of this class determines how the problem data will be stored,
how the problem variables will be stored and manipulated, and how linear sys-
tems will be solved. Our subclass QpGenSparseMa27 implements the problem
formulation (2), where the sparse matrices defining the problem are stored in
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sparse (not dense) matrices and that large linear systems that define steps of
the interior-point method will be solved by using the MA27 package from the
Harwell Subroutine Library.

In the next method call in Figure 3, the makeData method in the object qp
created in the first call creates the vectors and matrices that contain the problem
data. In fact, qp contains different versions of the makeData method, which may
be distinguished by their different parameter lists. Users whose matrix data is
in row-major Harwell-Boeing sparse format may use the following form of this
call.
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QpGenData * prob
= (QpGenData * ) qp->makeData( c, krowQ, jcolQ, dQ,

xlow, ixlow, xupp, ixupp,
krowA, jcolA, dA, bA,
krowC, jcolC, dC,
clow, iclow, cupp, icupp);

(The meaning of the parameters is explained in Section 2.2 above.) In this
method, data structure references in prob are set to the actual arrays given in
the parameter list. This choice avoids copying of the data, but it requires that
these arrays not be deleted until after deletion of the object prob.

For users whose data is in sparse triple format, a special version of makeData
named copyDataFromSparseTriple may be called as follows.

QpGenData * prob
= (QpGenData * ) qp->copyDataFromSparseTriple(

c, irowQ, nnzQ, jcolQ, dQ,
xlow, ixlow, xupp, ixupp,
irowA, nnzA, jcolA, dA, bA,
irowC, nnzC, jcolC,
clow, iclow, cupp, icupp );

(The meaning of the parameters is explained in Section 2.2.) In this method,
since the data objects in the argument list are actually copied into prob, they
may be deleted immediately after the method returns.

There distribution includes several other version of makeData that will not
be described here. In general, the preference is to fix references in prob to point
to existing arrays of data, rather than copying the data into prob.

The calls to makeVariables and makeResiduals in Figure 3 create the ob-
jects that store the problem variables and the residuals that measure the in-
feasibility of a given point with respect to the various optimality conditions.
The object vars contains both primal variables for (2) (including x) and dual
variables (Lagrange multipliers). These variables are named vars->x, vars->y,
and so on, following the naming conventions described in Section 2.2. The data
and methods in the residuals class resids are typically of interest only to opti-
mization experts. When an approximate solution to the problem (2) is found,
all data elements in this object will have small values, indicating that the point
in question approximately satisfies all optimality conditions.

The next step is to create the solver object for actually solving the QP. This
is performed by means of the following call.

GondzioSolver * s = new GondzioSolver( qp, prob );

In our example, we then invoke the method s->monitorSelf() to tell the solver
that it should print summary information to the screen as the solver is operating.
(If this line is omitted, the solver will operate quietly.)

Finally, we invoke the algorithm to solve the problem by means of the call
s->solve(prob,vars, resid). The return value from this routine will be zero
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if the solver was able to compute an approximate solution, which will be found
in the object vars. The solver will return a nonzero value if it was unable to
solve the problem. Negative values indicate that some error, such as an out of
memory error, was encountered. For a description of the termination criteria of
OOQP, and the positive values that might be returned in ierr, see Section 4.3.

One must include certain header files to obtain the proper definitions of the
classes used. In general, a class definition is in a header file with the same name
as the class, appended with a “.h”. For the example in Figure 3, the following
lines serve to include all relevant header files.

#include "QpGenData.h"
#include "QpGenVars.h"
#include "QpGenResiduals.h"
#include "GondzioSolver.h"
#include "QpGenSparseMa27.h"

The OOQP Installation Guide explains how to build an executable using the
OOQP header files and libraries.

2.4 Use in AMPL

OOQP may be invoked within AMPL, a modeling language for specifying op-
timization problems. From within AMPL, one must first define the model and
input the data. If the model happens to be a QP, then an option solver com-
mand within the AMPL code can be used to ensure the use of OOQP as the
solver.

An AMPL model file that may be used to describe a problem of the form
(2) without equalities Ax = b is as follows.

set I; set J;
set QJJ within {J,J}; set CIJ within {I,J};

param objadd; param g{J}; param Q{QJJ};
param clow{I}; param C{CIJ}; param cupp{I};
param xlow{J}; param xupp{J};

var x{j in J} >= xlow[j] <= xupp[j];

minimize total_cost: objadd + sum{j in J} g[j] * x[j]
+ 0.5 * sum{(j,k) in QJJ} Q[j,k] * x[j] * x[k];

subject to ineq{i in I} :
clow[i] <= sum{(i,j) in CIJ } C[i,j] * x[j] <= cupp[i] ;

The data for the QP is normally given in a separate AMPL data file, which for
the problem (3) is as follows.
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param objadd := 4 ;

param: J : g := col1 1.5 col2 -2 ;

param: QJJ : Q :=
col1 col1 8 col1 col2 2
col2 col1 2 col2 col2 10 ;

param xlow := col1 0 col2 0 ;
param xupp := col1 20 col2 Infinity ;

param: I : clow := row1 2 row2 -Infinity ;
param cupp := row1 Infinity row2 6 ;

param: CIJ : C :=
row1 col1 2 row1 col2 1
row2 col1 -1 row2 col2 2 ;

Suppose the model file was named example.mod and the data file was named
example.dat. From within the AMPL environment, one would type the follow-
ing lines to solve the problem and view the solution.

model example.mod;
data example.dat;
option solver ooqp-ampl;
solve;
display x;

The following lines containing the optimal value of x would then be displayed.

x [*] :=
col1 0.7625
col2 0.475
;

2.5 Use in MATLAB

OOQP may be invoked from within the MATLAB environment. Instructions
on how to obtain the necessary software may be found in the README-Matlab
in the OOQP directory.

The prototype for the MATLAB function is as follows.

[x, gamma, phi, y, z, lambda, pi] = ...
ooqp( c, Q, xlow, xupp, A, dA, C, clow, cupp, doPrint )

This function will solve the general QP formulation (2), re-expressed here in
MATLAB notation.
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minimize: c’ * x + 0.5 * x’ * Q * x
subject to: A * x = dA

clow <= C * x <= cupp
xlow <= x <= xupp

This is the exactly the default QP formulation (2). The vectors and matrix
objects in the argument list should be MATLAB matrices of appropriate size.
Upper or lower bounds that are absent should be set to inf or -inf, respectively.
(It is important to use these infinite values rather than large but finite values.)

The final parameter in the argument list, doPrint, is optional. If present,
it should be set to one of the strings “yes,” “on,” “no,” or “off.” If the value
is “yes” or “on,” then progress information will be printed while the algorithm
solves the problem. If doPrint is absent, the default value “off” will be assumed.

Help is also available within MATLAB. After you have followed the instruc-
tion in README-Matlab and installed the MATLAB interface in the local direc-
tory or on the MATLAB path, help can by obtained by typing help ooqp at
the MATLAB prompt.
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3 Overview of the OOQP Development Frame-
work

In this section, we start by describing the layered design of OOQP, which is
the fundamental organizing principle for the classes that make it up. We then
discuss the directory structure of the OOQP distribution, and the makefile-based
build process that is used to construct executables.

3.1 The Three Layers of OOQP

OOQP has a layered design in which each layer is built from abstract operations
defined by the layer below it. We sketch these layers and their chief components
in turn.

QP Solver Layer. The top layer of OOQP contains the high-level algorithms
and heuristics for solving quadratic programming problems. OOQP imple-
ments primal-dual interior-point algorithms, that are motivated by the opti-
mality (Karush-Kuhn-Tucker) conditions for a QP. We write these conditions
for the formulation (1) by introducing Lagrange multiplier vectors y and z (for
the equality and inequality constraints, respectively) and a slack vector s to
yield the following system:

c + Qx−AT y − CT z = 0, (4a)
Ax− b = 0, (4b)

Cx− s− d = 0, (4c)
SZe = 0, (4d)
s, z ≥ 0, (4e)

where S and Z are diagonal matrices whose diagonal elements are the compo-
nents of the vectors s and z, respectively. A primal-dual interior-point algorithm
finds a solution to (1) by applying Newton-like methods to the nonlinear sys-
tem of equations formed by (4a), (4b), (4c), and (4d), constraining all iterates
(xk, yk, zk, sk), k = 0, 1, 2, . . . to satisfy the bounds (4e) strictly (that is, all
components of zk and sk are strictly positive for all k).

OOQP implements the primal-dual interior point algorithm of Mehrotra [18]
for linear programming, and the variant proposed by Gondzio [13] that includes
higher-order corrections. See Section 4.1 below, and the text of Wright [23] for
further description of these methods.

Problem Formulation Layer. Algorithms in the QP solver layer are built
entirely from abstract operations defined in the problem formulation layer. This
layer consists of several classes each of which represents an object of interest to
a primal-dual interior-point algorithm. The major classes are as follows.
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Data Stores the data (Q,A,C, c, b, d) defining the QP (1), in an economical
format suited to the specific structure of the data and the operations
needed to perform on it.

Variables Contains storage for the primal and dual variables (x, y, z, s) of the
problem, in a format suited to the specific structure of the problem. Also
implements various methods associated with the variables, including the
computation of a maximum steplength, saxpy operations, and calculation
of µ = (sTz)/mC .

Residuals Contains storage for the residuals—the vectors that indicate in-
feasibility with respect to the KKT conditions—along with methods to
calculate these residuals from formulae such as (4a–4d). This class also
contains methods for performing the projection operations needed by the
Gondzio approach, calculating residual norms, and calculating the current
duality gap (see Section 5.2.3 for a discussion of the duality gap.)

LinearSystem Contain methods to factor the coefficient matrix used in the
Newton-like iterations of the QP solver and methods that use the in-
formation from the factorization to solve the linear systems for different
right-hand sides. The systems that must be solved are described in Sec-
tion 4.1.

To be concrete in our discussion, we have referred to the QP formula-
tion (1) given in the introduction, but the problem formulation layer provides
abstract operations suitable to many different problem formats. For instance,
the quadratic program that arises from classical support vector machine prob-
lems is

min ‖w‖2 + ρeTu, subject to D(V w − βe) ≥ e− u, v ≥ 0, (5)

where V is a matrix of empirical observations, D is a diagonal matrix whose
entries are ±1, ρ is a positive scalar constant, and e is a constant vector of all
ones. In OOQP’s implementation of the solver for this problem, we avoid ex-
pressing the problem in the form (2) by forming the matrices Q and C explicitly.
Rather, the problem formulation layer provides methods to perform operations
involving Q, C, and the other data objects that define the problem. The QP
solver layer implements a solver by calling these methods, rather than operating
on the data and variables explicitly.

Since a solver for general problems of the form (2) is useful in many cir-
cumstances, OOQP provides a solver for this formulation, as well as for several
specialized formulations such as (5). Users may readily specialize the abstract
operations in this layer and thereby create solvers that are specialized to yet
more problem formulations. Section 5 gives instructions on how to develop
specialized implementations of this class.

Linear Algebra Layer. Many of the linear algebra operations and data struc-
tures in OOQP are shared by several problem types. For instance, regardless of
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the particular QP formulation, the Variable, Data, and LinearSystems classes
will need to perform saxpy, dot product, and norm calculations on vectors of
doubles. Furthermore, most sparse problems will need to store matrices in a
Harwell-Boeing format. Reimplementing the linear algebra operations in each
of the problem-dependent classes would result in an unacceptable explosion in
code size and complexity. The solution we implemented in OOQP is to define
another layer that provides the linear algebra functionality needed by many dif-
ferent problem formulations. An added advantage is that by confining linear
algebra to its own layer, we can implement solvers for distributed platforms
with little change in the code.

The linear algebra classes are somewhat a different from the classes in the
QP solver and problem formulation layers. The two topmost layers of OOQP
consist of small, abstract interfaces with no behavior whatsoever. We have pro-
vided concrete implementations based on these interfaces, but even our concrete
classes tend to contain only a small number of methods. Hence, these classes
are easy to understand and easy to override.

By contrast, implementations of linear algebra classes such as DoubleMatrix
and OoqpVector must supply a relatively large amount of behavior. This com-
plexity appears to be inevitable. The widely used BLAS library, which is meant
to contain only the most basic linear algebra operations, consists of forty-nine
families of functions and subroutines. As well as defining operations, the linear
algebra classes also have to handle the storage of their component elements.

Our approach to the linear algebra classes is to identify and provide as
methods the basic operations that are used repeatedly in our implementations
of the problem formulation layer. As much as possible, we use existing packages
such as BLAS [16], LAPACK [1] and PETSc [2, 3, 4] to supply the behavior
needed to implement these methods. Since our goal is simplicity, we provide
only the functionality that we use. We are not striving for a complete linear
algebra package but for a package that may be conveniently used in the setting of
interior point optimization algorithms. For this reason, many BLAS operations
are not provided; and certain operations common in interior-point algorithms,
but rare elsewhere, are given equal status with BLAS routines.

3.2 OOQP Directory Structure and Build Process

The OOQP installation process will generate compiled libraries in the directory
lib and a directory named include containing header files. These libraries
and headers may be copied into a more permanent system-dependent location.
Users who wish to call OOQP code from within their own C or C++ programs
may use any build process they wish to compile and link against the installed
headers and libraries.

Users who wish to do more complex development with OOQP may find it
more convenient to work within the source directory src and use the OOQP
build system to compile their executables. OOQP has a modular directory
structure in which source and header files that logically belong together are
placed in their own subdirectory of src. For example, code that implements
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the solver for the formulation (2) can be found in src/QpGen, while code that
defines classes for dense matrices and dense linear equation solvers can be found
in src/DenseLinearAlgebra.

Any system of building executables in a complex project is necessarily com-
plex. This is especially true for object-oriented code, as the most common
methods for building executables are designed for use with procedural (rather
than object-oriented) languages. In OOQP, we have designed a relatively simple
process but one that requires some effort to learn and understand. Users who
intend to develop a customized solver for a new QP formulation or to replace
the linear algebra subsystem need to understand something of this process, and
this section is aimed primarily at them. Users who do not have an interest in
the details of the build process may safely skip this section.

OOQP is built by using the GNU version of the standard Unix make utility.
GNU make is freely and widely available, yields predictable performance across
a wide variety of platforms, and has a number of useful features absent in many
vendor-provided versions of make. In this section, we assume that the user has a
basic understanding of how to write makefiles, which are the files used as input
to the make utility.

OOQP uses a configure script, generated by the GNU Autoconf utility,
to set machine-dependent variables within the makefiles that appear in various
subdirectories. In the top-level directory, OOQP, configure generates the global
makefile GNUmakefile from an input file named GNUmakefile.in. The user
who wishes to modify this makefile should alter GNUmakefile.in and then re-
run configure to obtain a new GNUmakefile, rather than altering GNUmakefile
directly. (Users will seldom have cause to alter this makefile or any other file un-
der the control of Autoconf but should be aware of the fact that some makefiles
are generated in this way.)

All subdirectories of the src that contain C++ code also contain a file
named Makefile.inc. We give an example of such a file from the directory
src/QpExample, which contains an example problem formulation based directly
on (1). In the src/QpExample directory, the Makefile.inc reads as follows.

QPEXAMPLEDIR = $(srcdir)/QpExample

QPEXAMPLEOBJ = \
$(QPEXAMPLEDIR)/QpExampleData.o \
$(QPEXAMPLEDIR)/QpExampleVars.o \
$(QPEXAMPLEDIR)/QpExampleResids.o \
$(QPEXAMPLEDIR)/QpExampleDenseLinsys.o \
$(QPEXAMPLEDIR)/QpExampleDense.o

qpexample_dense_gondzio_OBJECTS = \
$(QPEXAMPLEDIR)/QpExampleGondzioDriver.o \
$(QPEXAMPLEOBJ) \
$(libooqpgondzio_STATIC) \
$(libooqpdense_STATIC) $(libooqpbase_STATIC)
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This file contains three makefile variable definitions, specifying the subdirec-
tory name (QPEXAMPLEDIR), the list of object files specific to the SVM solver
(QPEXAMPLEOBJ), and the full list of object files that must be linked to create
the executable for the solver (qpexample dense gondzio OBJECTS). Every mod-
ule of OOQP contains a similar Makefile.inc file to define variables relevant
to that module. (Another example is the variable libooqpgondzio STATIC,
used in the definition of qpexample dense gondzio OBJECTS, which is defined
in src/QpSolvers/Makefile.inc.) Note that the variable srcdir in this ex-
ample refers to the OOQP source directory and does not need to be defined in
src/QpExample/Makefile.inc.

Some subdirectories of the src that contain C++ code also contain a file
named MakefileTargets.inc. This file defines targets relevant to the build
process. An example of such a file is src/QpExample/MakefileTargets.inc,
which is as follows.

qpexample-dense-gondzio.exe: $(qpexample_dense_gondzio_OBJECTS)
$(CXX) -o $@ $(CXXFLAGS) $(LDFLAGS) $(LIBS) \

$(qpexample_dense_gondzio_OBJECTS) $(BLAS) $(FLIBS)

The qpexample-dense-gondzio.exe target specifies the dependency of the ex-
ecutable on the object list that was defined in the corresponding Makefile.inc
file.

In using Makefile.inc and MakefileTargets.inc files, we separate target
definitions from variable definitions because unpredictable behavior can occur
if the targets are read before all variables are defined.

When a user invokes GNU make from the OOQP directory, the utility ensures
that

• all variables defined in files named Makefile.inc in direct subdirectories
of the src directory are made available in the build;

• all targets defined in similarly located files named MakefileTargets.inc
are also made available;

• direct subdirectories of the src directory that contain a file that is named
Makefile.inc are placed on the path on which to search for header (.h)
files.

Thus, when the GNU make utility is named gmake, one may build the executable
qpexample-dense-gondzio.exe by typing

gmake qpexample-dense-gondzio.exe

from the command line from within the OOQP directory.
The makefile system can also be used to perform dependency checking. Typ-

ing

gmake depend
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will cause the Unix makedepend utility to generate dependency information for
all source files in direct subdirectories of the src directory that contain a file
named Makefile.inc. This dependency information will then be used in the
next build to determine whether source files are up-to-date with respect to their
included header files.

We emphasize that this process works only on direct subdirectories of the
src directory. Files named Makefile.inc in more deeply nested subdirectories
will not, without extra effort, be recognized. We deliberately restricted the
search to direct subdirectories of the source directory in order to make the build
process more predictable.

User-defined Makefile.inc and MakefileTargets.inc need be no more
complicated than the example files given above. Some of the instances of these
files that are included in the OOQP distribution contain more variables and
targets than those shown above because they need to accomplish additional
tasks. Moreover, they may contain conditional statements to disable certain
targets, if these targets depend on external packages that are not present on the
computer at the time of the build. These advanced issues may be ignored by
all but developers of OOQP.

Finally, we mention that some external packages, such as PETSc, require
specializations to the global makefile. When building executables that use these
packages, one cannot use the default global makefile GNUmakefile. To build
the executable qpbound-petsc-mehrotra.exe, for instance, one must type the
following line.

gmake -f PetscMakefile qpbound-petsc-mehrotra.exe

We may include other such specialized makefiles in the OOQP distribution in
the future. While inclusion of these files is a minor inconvenience, we consider it
important to isolate changes to the global makefile in this manner, so that mis-
configuration of a certain package is less likely to cause problems in an unrelated
build.
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4 Working with the QP Solver

In this section, we focus on the top layer of OOQP, the QP solver.

4.1 Primal-Dual Interior-Point Algorithms

We start by giving some details of the primal-dual interior-point algorithms that
are implemented in the Solver class in the OOQP distribution. By design, the
code that implements these algorithms is short, and one can see the correspon-
dence between the code and the algorithm description below. Therefore, users
who want to modify the basic algorithm will be able to do so after reading this
section.

A primal-dual algorithm seeks variables (x, y, z, s) that satisfy the optimality
conditions for the convex quadratic program (1), introduced in Section 3.1 but
repeated here for convenience.

c + Qx−AT y − CT z = 0, (6a)
Ax− b = 0, (6b)

Cx− s− d = 0, (6c)
SZe = 0, (6d)
s, z ≥ 0. (6e)

The complementarity measure µ defined by

µ = zT s/mc (7)

(where mc is the number of rows in C) is important in measuring the progress
of the algorithm, since it measures violation of the complementarity condition
zT s = 0, which is implied by (6d). Infeasibility of the iterates with respect to
the equality constraints (6a), (6b), and (6c) also makes up part of the indicator
of nonoptimality.

The OOQP distribution contains implementations of two quadratic program-
ming algorithms: Mehrotra’s predictor-corrector method [19] and Gondzio’s
modification of this method that uses higher-order corrector steps [13]. (See
also [23, Chapter 10] for a discussion of both methods.) These algorithms have
proved to be the most effective methods for linear programming problems and in
our experience are just as effective for convex quadratic programming. Mehro-
tra’s algorithm can be specified as follows.

Algorithm MPC (Mehrotra Predictor-Corrector)
Given starting point (x, y, z, s) with (z, s) > 0, and parameter τ ∈ [2, 4];
repeat

Set µ = zT s/mc.
Solve for (∆xaff ,∆yaff ,∆zaff ,∆saff):
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
Q −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 S Z




∆xaff

∆yaff

∆zaff

∆saff

 = −


rQ

rA

rC

ZSe

 , (8)

where

S = diag(s1, s2, . . . , smc), (9a)
Z = diag(z1, z2, . . . , zmc), (9b)

rQ = Qx + c−AT y − CT z, (9c)
rA = Ax− b, (9d)
rC = Cx− s− d. (9e)

Compute αaff to be the largest value in (0, 1] such that

(z, s) + α(∆zaff ,∆saff) ≥ 0.

Set µaff = (z + αaff∆zaff)T (s + αaff∆saff)/mC .
Set σ = (µaff/µ)τ .
Solve for (∆x,∆y, ∆z,∆s):

Q −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 S Z




∆x
∆y
∆z
∆s

 = −


rQ

rA

rC

ZSe− σµe + ∆Zaff∆Saffe

 ,

(10)

where ∆Zaff and ∆Saff are defined in an obvious way.
Compute αmax to be the largest value in (0, 1] such that

(z, s) + α(∆z,∆s) ≥ 0.

Choose α ∈ (0, αmax) according to Mehrotra’s step length heuristic.
Set

(x, y, z, s)← (x, y, z, s) + α(∆x, ∆y, ∆z,∆s).

until the convergence or infeasibility test is satisfied.

The direction obtained from (10) can be viewed as an approximate second-
order step toward a point (x+, y+, z+, s+) at which the conditions (6a), (6b),
and (6c) are satisfied and, in addition, the pairwise products z+

i s+
i are all equal

to σµ. The heuristic for σ yields a value in the range (0, 1), so the step usually
produces a reduction in the average value of the pairwise products from their
current average of µ.
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Gondzio’s approach [13] follows the Mehrotra algorithm in its computation of
directions from (8) and (10). It may then go on to enhance the search direction
further by solving additional systems similar to (10), with variations in the
last mC components of the right-hand side. Successive corrections attempt to
increase the steplength α that can be taken along the final direction, and to
bring the pairwise products sizi whose values are either much larger than or
much smaller than the average into closer correspondence with the average.
The maximum number of corrected steps we calculate is dictated by the ratio
of the time taken to factor the coefficient matrix in (10) to the time taken to
use these factors to produce a solution for a given right-hand side. When the
marginal cost of solving for an additional right-hand side is small relative to the
cost of a fresh factorization, and when the corrections appear to be improving
the quality of the step significantly, we allow more correctors to be calculated,
up to a limit of 5.

The algorithms implemented in OOQP use the step length heuristic de-
scribed in Mehrotra [19, Section 6], modified slightly to ensure that the same
step lengths are used for both primal and dual variables.

4.2 Monitoring the Algorithm: The Monitor Class

OOQP can be used both for solving a variety of stand-alone QPs and for solving
QP subproblems as part of a larger algorithm. Different termination criteria
may be appropriate to each context. For a simple example, the criteria used to
declare success in the solution of a single QP would typically be more stringent
than the criteria for a QP subproblem in a nonlinear programming algorithm,
in which we can afford some inexactness in the solution. Accordingly, we have
designed OOQP to be flexible as to the definition and application of termination
criteria, and as to the way in which the algorithm’s progress is monitored and
communicated to the user. In some instances, a short report on each interior-
point iteration is desirable, while in others, silence is more appropriate. In
OOQP, an abstract Monitor class monitors the algorithm’s progress, while an
abstract Status class tests the termination conditions. We describe the Monitor
class in this section, and the Status class in Section 4.3 below.

Our design assumes that each algorithm in the QP solver layer of the code
has its own natural way of monitoring the algorithm and testing termination.
Accordingly, the two derived Solver classes in the OOQP distribution each
contain a defaultMonitor method to print out a single line of information to
the standard output stream at each iteration, along with a suitable message at
termination of the algorithm. The prototype of this method is as follows.

void Solver::defaultMonitor( Data * data, Variables * vars,
Residuals * resids,
int i, double mu,
int status_code, int stage )

The data argument contains the problem data, while vars and resids contain
the values of the variables and residuals at the current iterate, which together
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depict the status of the algorithm. (See Sections 3.1 and 5 for further informa-
tion about these objects.) The variable i is the current iteration number and
mu is the complementarity measure (7). The integer status code indicates the
status of the algorithm at termination, if termination has occurred; see Sec-
tion 4.3 below. The stage argument indicates to defaultMonitor what type
of information it should print. In our implementations, the values stage=0 and
stage=1 cause the routine to print out a single line containing iteration number,
the value of µ, and the residual norm. The value stage=1 is used after termi-
nation has occurred, and additionally causes a message about the termination
status to be printed.

One mechanism available to the user who wishes to alter the monitoring
procedure is to create a new subclass of Solver that contains an implementation
of defaultMonitor that overrides the existing implementation. This is the
simplest way to proceed and will suffice in many circumstances. However, it
has a disadvantage for users who work with several different implementations of
Solver—versions that implement different primal-dual algorithms, for instance,
or are customized to different applications—in that the new monitoring routine
cannot be shared among the different QP solvers. A subclass of each QP solver
that contains the overriding implementation of defaultMonitor would need to
be created, resulting in a number of new leaves on the class tree. A second
disadvantage is that some applications may require several monitor processes to
operate at once, for example, one process like the defaultMonitor described
above that writes minimal output to standard output, and another process that
writes more detailed information to a log file. It is undesirable to create a new
Solver subclass for each different set of monitor requirements.

In OOQP, we choose delegation, rather than subclassing, as our mechanism
for customizing the monitor process. Delegation is a technique in which the
responsibility for taking some action normally associated with an instance of a
given class is delegated to some other object. In our case, although the Solver
class would normally be responsible for displaying monitor information, we del-
egate responsibility to an associated instance of the Monitor class. The Solver
class contains methods for establishing its defaultMonitor method as one of
the monitor procedures called by the code and for adding monitor procedures
supplied by the user.

The abstract definition of the Monitor class can be found in the OOQP dis-
tribution at src/Abstract/OOQPMonitor.h, along with the definitions of sev-
eral subclasses. The only method of interest in the Monitor class is the doIt
method, which causes the object to perform the operation that is its sole reason
for being. Making these objects instances of a class rather than subroutines
tends to be more natural in the C++ language and makes it far simpler to han-
dle any state information that instances of Monitor may wish to keep between
calls to doIt.

The doIt method has the following prototype, which is identical to the
defaultMonitor method described above.

void OoqpMonitor::doIt( Solver * solver, Data * data,
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Variables * vars, Residuals * resids,
int i, double mu,
int status_code, int stage );

Users who wish to implement their own monitor procedure should create a
subclass of OOQPMonitor, for example by making the following definition:

class myMonitor : public OOQPMonitor {
public:
virtual void doIt( Solver * solver, Data * data,

Variables * vars, Residuals * resids,
int i, double mu,
int status_code, int level );

};

and then implementing their own version of the doIt method. Their code that
creates the instance of the Solver class and uses it to solve the QP should
contain the following code fragments:

OoqpMonitor * usermon = new myMonitor;
...
qpsolver->monitorSelf();
qpsolver->addMonitor( usermon );

The first statement creates an instance of the subclass myMonitor. The second
and third statements should appear after the instance qpsolver of the Solver
class has been created but before the method qpsolver->solve() has been
invoked. The call to monitorSelf statement ensures that the defaultMonitor
method is invoked at each interior-point iteration, while the call to addMonitor
ensures that the user-defined monitor is also invoked. Users who wish to invoke
only their own monitor procedure and not the defaultMonitor method can
omit the second statement. The solver is responsible for deleting any monitors
give to it via the addMonitor method.

The default behavior for an instance of Solver is to display no monitor
information.

4.3 Checking Termination Conditions: The Status Class

In OOQP, the defaultStatus method of the Solver class normally handles
termination tests. However, OOQP allows delegation of these tests to an in-
stance of the Status class, in much the same way as the monitor procedures can
be delegated as described above. Before describing how to replace the OOQP
termination tests, let us describe the termination tests that OOQP uses by
default.

The defaultStatus method of the Solver class uses termination criteria
similar to those of PCx [5]. To discuss these criteria, we again refer to the
problem formulation (1) (discussed in Section 4.1) and use (xk, yk, zk, sk) to
denote the primal-dual variables at iteration k, and µk

def= (zk)T sk/mC to denote
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the corresponding value of µ. Let rk
Q, rk

A, and rk
C be the values of the residuals

at iteration k, and let gapk be the duality gap at iteration k, which may be
defined for formulation (1) by the formula (16) below. We define the quantity
φk as follows,

φk
def=
‖(rk

Q, rk
A, rk

C)‖∞ + gapk

‖(Q,A,C, c, b, d)‖∞
,

where the denominator is simply the element of largest magnitude in all the
data quantities that define the problem (1). Note that φk = 0 if and only if
(xk, yk, zk, sk) is optimal.

Given parameters tolµ and tolr (both of which have default value 10−8),
we declare the termination status to be SUCCESSFUL TERMINATION when

µk ≤ tolµ, ‖(rk
Q, rk

A, rk
C)‖∞ ≤ tolr‖(Q,A,C, c, b, d)‖∞. (11)

We declare the status to be INFEASIBLE if

φk > 10−8 and φk ≥ 104 min
0≤i≤k

φi. (12)

(In fact, since this is not a foolproof test of infeasibility, the true meaning of
this status is “probably infeasible.”) Status UNKNOWN is declared if the algorithm
appears to be making unacceptably slow progress, that is,

k ≥ 30 and min
0≤i≤k

φi ≥
1
2

min
1≤i≤k−30

φi, (13)

or if the ratio of infeasibility to the value of µ appears to be blowing up, that
is,

‖(rk
Q, rk

A, rk
C)‖∞ > tolr‖(Q,A,C, c, b, d)‖∞ (14a)

and ‖(rk
Q, rk

A, rk
C)‖∞/µk ≥ 108‖(r0

Q, r0
A, r0

C)‖∞/µ0. (14b)

We declare status MAX ITS EXCEEDED when the number of iterations exceeds a
specified maximum; the default is 100. If none of these conditions is satisfied,
we declare the status to be NOT FINISHED.

Users who wish to alter the termination test may simply create a subclass
of Solver with their own implementation of defaultStatus. Alternatively,
they may create a subclass of the Status class, whose abstract definition can
be found in the file src/Abstract/Status.h. The sole method in the Status
class is doIt, which has the following prototype.

int Status::doIt( Solver * solver, Data * data,
Variables * vars, Residuals * resids,
int i, double mu, int stage );

The parameters to the doIt method have the same meaning as the correspond-
ingly named parameters of the OOQPMonitor::doIt method. The return value
of the Status::doIt method determines whether the algorithm continues or
terminates. The possible values that may be returned are as follows.
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enum TerminationCode
{
SUCCESSFUL_TERMINATION = 0,
NOT_FINISHED,
MAX_ITS_EXCEEDED,
INFEASIBLE,
UNKNOWN

};

The meanings of these return codes in the defaultStatus method are described
above. Users are advised to assign similar meanings in their specialized imple-
mentation.

Unlike the case of monitor procedures, it does not make sense to have multi-
ple status checks in operation during execution of the interior-point algorithm;
exactly one such check is required. Users who wish to use the defaultStatus
method supplied with the OOQP distributions need do nothing; the default
behavior of an instance of the Solver class is to call this method. Users who
wish to supply their own method can create their own subclass of the Status
class as follows.

class myStatus : public Status {
public:

virtual void doIt( Solver * solver, Data * data,
Variables * vars, Residuals * resids,
int i, double mu, int stage );

};

Then, they can invoke the useStatus method after creating their instance of
the Solver class, to indicate to the solver object that it should use the user-
defined status-checking method. The appropriate lines in the driver code would
be similar to the following.

MyStatus * userstat = new myStatus;
...
qpsolver->useStatus( userstat );

The solver is responsible for deleting any Status objects given to it via the
useStatus method.
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5 Creating a New QP Formulation

Users who wish to construct a solver for a class of QPs with a particular structure
not supported in the OOQP distribution may consider using the framework
to build a new solver that represents and manipulates the problem data and
variables in an economical, natural, and efficient way. In this section, we describe
the major classes that must be implemented in order to develop a solver for a
new problem formulation.

Most of the effort in developing a customized solver for a new class of struc-
tured QPs is in reimplementing the classes in the problem formulation layer. As
described in Section 3, this layer consists of five main classes—Data, Variables,
Residuals, LinearSystem, and ProblemFormulation—that contain data struc-
tures to store the problem data, variables, and residuals, and methods to per-
form the operations that are required by the interior-point algorithms.

As discussed in Section 4.1, the core algebraic operation in an interior-point
solver is the solution of a Newton-like system of linear equations. For formula-
tion (1), the general form of this system is as follows


Q −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 S Z




∆x
∆y
∆z
∆s

 = −


rQ

rA

rC

rz,s

 , (15)

where rQ, rA, and rC are defined in equations (9c), (9d), and (9e), and rz,s

is chosen in a variety of ways, as described in Section 4. Most of the objects
that populate a problem formulation layer can be found in this system. The
Variables in formulation (1) break down naturally into four components x,
y, z, and s. Likewise, there are naturally four components to the Residuals
of this formulation. For other problem formulations, such as SVM (5), this
partitioning of the variables is not natural, and a scheme more suited to the
particular formulation is used instead. However, to focus our discussion of
the implementation of the problem formulation layer in this section, we will
continue to refer to the particular formulation (1) and the system (15). The
implementations of (1) discussed in this section may be found in the OOQP
distribution in directory src/QpExample.

In reimplementing the problem formulation layer for a new QP structure,
it may be helpful to make use of the classes from the linear algebra layer. As
mentioned in Section 3, this layer contains classes for storing and operating
on dense matrices, sparse matrices, and vectors. These classes can be used
as building blocks for implementing the more complex storage schemes and
arithmetic operations needed in the problem formulation layer.

We first elaborate on the use of the linear algebra layer and then describe in
some detail the process of implementing the five classes in the problem formu-
lation layer.
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5.1 Linear Algebra Operations

Most implementations of the problem formulation layer that appear in the
OOQP distribution (the QpGen, QpExample, QpBound, and Huber, and Svm im-
plementations) all are built using the objects in OOQP’s linear algebra layer.
The classes in this layer represent objects such as matrices and vectors, and
they provide methods that are especially useful for developing interior point
QP solvers. By basing our problem formulation layer on the abstract opera-
tions of the linear algebra layer we gain another significant advantage: we can
use the same problem formulation code for several quite varied representations
of vectors and matrices. For instance, the implementation of the problem formu-
lation layer for QPs with simple bounds is independent of whether the Hessian
matrix is represented as a dense array on a single processor or as a sparse array
distributed across several processors.

Use of OOQP’s linear algebra layer in implementing the problem formulation
layer is not mandatory. Users are free to define their own matrix and vector data
structures and implement their own linear algebra operations (inner products,
saxpys, factorizations, and so on) without referring to OOQP’s linear algebra
objects at all. The authors of OOQP recognize that there is a learning curve
associated with the use of the abstract operations in OOQP’s linear algebra
objects and that the implementation might proceed more quickly if users define
their own linear algebra in terms of concrete operations on concrete data.

For maximum effectiveness, we recommend a compromise approach. While
the base classes for our linear algebra layer are defined only in terms of abstract
operations, several of the classes (such as SimpleVector) may also be used
concretely. Users can start by defining their problem formulation in terms of
these simple classes but define their own concrete operations on the data. Later,
they can replace their concrete operations by the abstract methods supplied with
these classes. Finally, having gained proficiency in the use of these classes, they
may then replace the entire class with a more appropriate one. Section 6 is a
short tutorial on the linear algebra layer that can be consulted by those who
wish to use the layer in this way.

5.2 Specializing the Problem Formulation Layer

We now detail how to implement the various classes in the problem formulation
layer.

5.2.1 Specializing Data

The purpose of the Data class is to store the data defining the problem, in some
appropriate format, to provide methods for performing operations with the data
matrices (for example, matrix multiplications or insertion of problem matrices
into the larger matrices of the form (8) or (10)), for calculating some norm of
the data, for filling the data structures with problem data (read from a file, for
instance, or passed from a modeling language or MATLAB), for printing the
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data, and for generating random problem instances for testing and benchmark-
ing purposes.

Since both the data structures and the methods implemented in Data depend
so strongly on the structure of the problem, the parent class is almost empty. It
includes only two pure virtual functions, datanorm (of type double) and print,
whose implementation must appear in any derived classes.

A derived class of Data for the formulation (1) in which the problem data
is dense would include storage for the vectors c, b, and d as arrays of doubles;
storage for A and C as two-dimensional arrays of doubles; and storage for the
lower triangle of the symmetric matrix Q. In our implementation of the derived
class QpExampleData, we have provided methods for multiplying by the matrices
Q, A, and C and for copying the data into a larger structures such as the matrix
in (15). We find it convenient to provide methods like this for manipulating the
data in our QpExampleData class, rather than having code from other problem
formulation classes manipulate the data structures directly; the extra generality
that the added layer of encapsulation affords has sometimes proven useful.

Consider now the two pure virtual functions datanorm and print. One
reasonable implementation of datanorm for the formulation (1) would simply
return the magnitude of of the largest element in the matrices Q, A, and C,
and the vectors c, b, and d that define (1). The implementation of print might
print the data objects Q, A, C, c, b, and d to standard output in some useful
format. Although not compulsory, we might also define a routine datarandom
to generate an instance of (1), given user-defined dimensions n, mA, and mC ,
and possibly a desired level of sparsity for the matrices. Naturally, this method
should take care that Q is positive semidefinite.

The derived Data class might also contain one or more implementations of
a datainput method that allow the user to define the problem data. We could,
for instance, have one implementation of datainput that reads the data in some
simple format from ascii files and another implementation that reads a file in
MPS format, appropriately extended for quadratic programming (Maros and
Mészáros [17]). Since the MPS format allows for bounds and for constraints
of the form lc ≤ Cx ≤ uc, the latter implementation generally would need to
perform transformations to pose the problem in the form (1). (The data from
a MPS file is more naturally represented by our “general” QP formulation (2).)

5.2.2 Specializing Variables

Instances of Variables class store the problem variables ((x, y, z, s) in the case
of (1)) in whatever format is appropriate to the problem structure. The class
includes a variety of methods essential in the implementation of Algorithm MPC.
Most of them defined as pure virtual functions, because they strongly depend
on the structure of the problem.

We now sketch the main methods for the Variables class, illustrating each
one by specifying its implementation for the formulation (1).

mu: Calculate the complementarity gap: µ = zT s/mC .
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mustep: Calculate the complementarity gap that would be obtained from a
step of length α along a specified direction from the current point. For
(1), given the search direction (∆x,∆y, ∆z,∆s) (supplied in an argument
of type Variables) and a positive scalar α, this method would calculate

(z + α∆z)T (s + α∆s)/mC .

negate: Multiply the current set of variables by −1. For (1), we would replace
(x, y, z, s) by −(x, y, z, s).

saxpy: Given another set of variables and a scalar, perform a saxpy operation
with the current set of variables. For (1), we would pass a second instance
of a Variables class containing (x′, y′, z′, s′), together with the scalar α
as arguments, and perform the replacement

(x, y, z, s)← (x, y, z, s) + α(x′, y′, z′, s′).

stepbound: Calculate the longest step in the range [0, 1] that can be taken from
the current point in a specified direction without violating nonnegativity of
the complementary variables. For (1), the argument would be the direction
(x′, y′, z′, s′) (stored in another instance of theVariables class), and this
function would return the largest value of α in [0, 1] such that the condition
(z + αz′, s + αs′) ≥ 0 is satisfied.

findBlocking: Similar to stepbound but returns additional information. Be-
sides returning the maximum step α in the range (0, 1] that can be taken
without violating the appropriate nonnegativity constraint, the method
indicates whether a primal or dual variable was the “blocking” variable
(the one that will violate nonnegativity if the step α is any longer) by
setting its last argument to 1 for a primal blocking variable, to 2 for a
dual blocking variable, and to 0 if a full steplength α = 1 can be taken
without violating nonnegativity. In its second argument, the method re-
turns the component of the primal variable vector that corresponds to the
blocking index, while in its third argument, the method returns the same
component of the primal step vector. In its fourth and fifth arguments, it
returns the corresponding components of the dual variable vector and the
dual step vector, respectively. To illustrate this functionality, suppose in
the case of (1) that the step bound is α and the blocking variable is the
ith primal variable; that is, si +αs′i = 0, while (z+αz′, s+αs′) ≥ 0. Then
the final argument of findBlocking returns 1, while the second through
fifth arguments return the real numbers si, s′i, zi, and z′i, respectively.
The return value of the method itself would be α.

When both a primal and a dual index are “blocking,” the method reports
the dual variable, by setting the final argument to 2 and reporting the
components corresponding to the dual index. Subject to the latter con-
dition, when there is a tie between different indices, the smaller index is
reported.
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interiorPoint: Set all components of the complementary variables to speci-
fied positive constants α and β. In the case of (1), we would set s ← αe
and z ← βe, where e is the vector whose elements are all 1.

shiftBoundVariables: Add specified positive constants α and β to the com-
plementary variables. For (1), this method would perform the replace-
ments s← s + αe and z ← z + βe.

print: Print the variables in some intelligible problem-dependent format.

copy: Copy the data from one instance of the Variables class into another.

onenorm, infnorm: Compute the `1 and `∞ norms of the variables. For (1),
these quantities would be ‖(x, y, z, s)‖1 and ‖(x, y, z, s)‖∞, respectively.

The usefulness of some of these methods in implementing Algorithm MPC
is obvious. For instance, saxpy is used to take a step along the eventual search
direction; stepbound is used to compute αaff and αmax; mustep is used to
compute µaff . The methods interiorPoint and shiftBoundVariables can be
used in the heuristic to determine the starting point, while findBlocking plays
an important role in Mehrotra’s heuristic for determining the step length.

5.2.3 Specializing Residuals

The Residuals class calculates and stores the quantities that appear on the
right-hand side of the linear systems that are solved at each iteration of the
primal-dual method. These residuals can be partitioned into two fundamental
categories: the components arising from the linear equations in the KKT con-
ditions, and the components arising from the complementarity conditions. For
the formulation (1), the components rQ, rA, and rC (which arise from KKT
linear equations (9c), (9d), and (9e)) belong to the former class, while rz,s be-
longs to the latter. As above, we describe the roles of the main methods in the
Residuals class with reference to the formulation (1).

calcresids: Given a Data object and a Variables object, calculate the resid-
ual components arising from the KKT linear equations. For (1), this
method calculates rQ, rA, and rC using the formulae (9c), (9d), and (9e),
respectively.

dualityGap: Calculate the duality gap, which we define for the formulation
(1) as follows:

gapk
def= (xk)T Qxk − bT yk + cT xk − dT zk. (16)

See the discussion below for guidance in formulating an expression for this
parameter.

residualNorm: Calculate the norm of the components arising from the KKT
linear equations. For (1), this method returns ‖(rQ, rA, rC)‖ for some
norm ‖ · ‖.
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clear r1r2: Zero the components arising from the KKT linear equations.
(Gondzio’s method requires the solution of linear equations in which these
residual components are replaced by zeros.)

clear r3: Set the complementarity components to zero. In the case of (1),
for which the general form of the linear system is (15), this operation sets
rz,s ← 0. (This operation is needed only in Gondzio’s algorithm.)

add r3 xz alpha: Given a scalar α and a Variables class, add a complemen-
tarity term and a constant to each of the complementarity components of
the residual vector. For (1), given variables (x, y, z, s), we would set

rz,s ← rz,s + ZSe + αe,

where Z and S are the diagonal matrices constructed from the z and s
variables.

set r3 xz alpha: As for add r3 xz alpha, but overwrite the existing value of
rz,s; that is, set rz,s ← ZSe + α.

project r3: Perform the projection operation used in Gondzio’s method on
the rz,s component of the residual, using the scalars ρmin and ρmax.

As discussed in Section 4.3, the residualNorm and dualityGap functions
are used in termination and infeasibility tests. Users familiar with optimization
theory will recognize the concept of the duality gap and will also recognize
that the formula xT Qx − bT y + cT x − dT z used in (16) is one of a number of
expressions that are equivalent when the residuals rQ, rA, and rC are all equal
to zero. One such equivalent expression is the formula sT z, used in the definition
of µ in the Variables class. We find it useful, however, to use a definition of
the duality gap from which the slack variables have been eliminated and all the
linear equalities in the KKT conditions have been taken into account. Such a
definition can be obtained by starting with the definition of µ and successively
substituting from each of the KKT conditions. For the case of (1), we start
with sT z, substitute for s from the equation Cx− s− d = 0 (see (4c)) to obtain
zT (Cx−d), then substitute for CT z from c+Qx−AT y−CT z = 0 (see (4a)) to
obtain cT x+xT Qx−xT Ay−dT z, and finally substitute for Ax from Ax−b = 0
(see (4b)) to obtain the final expression.

In Algorithm MPC, the method set r3 xz alpha is called with the current
Variables and α = 0 to calculate the right-hand side for the affine-scaling
system (8). Once σ has been determined and the affine-scaling step is known,
add r3 xz alpha is called with α = −σµ and the Variables instance that
contains the affine-scaling step, to add the necessary terms to the rz,s component
to obtain the system (10).

5.2.4 Specializing LinearSystem

As mentioned above, major algebraic operations at each interior-point iteration
are solutions of linear systems to obtain the predictor and corrector steps. For

38



the formulation (1), these systems have the form (15). Such systems need to
be solved two to six times per iteration, for different choices of the right-hand
side components but the same coefficient matrix. Accordingly, it makes sense
to logically separate the factor method that operates only on the matrix and
the solve method that operates on a specific right-hand side.

We use the term “factor” in a general sense, to indicate the part of the solu-
tion process that is independent of the right-hand side. The factor method
could involve certain block-elimination operations on the coefficient matrix,
together with an LU , LDLT , or Cholesky factorization of a reduced system.
Alternatively, when we use an iterative solver, the factor operation could in-
volve computation of a preconditioner. The factor class may need to include
storage—for a permutation matrix, for triangular factors of a reduced system,
or for a preconditioner—for use in subsequent solve operations. We use the
term “solve” to indicate that part of the solution process depends on the spe-
cific right-hand side. Usually, the results of applying methods from the factor
class are used to facilitate or speed the process. Depending on the algorithm
we employ, the solve method could involve triangular back-and-forward substi-
tutions, matrix-vector multiplications, applications of a preconditioner, and/or
permutation of vector components.

Both factor and solve are pure virtual functions; their implementation is
left to the derived class because they depend entirely on the problem structure.
For problems with special structure, the factor method is the one in OOQP
that gives the most scope for exploitation of the structure and for computational
savings over naive strategies. The SVM formulation is one case in which an
appropriate implementation of the factor class yields significant savings over an
implementation that is not aware of the structure. Another instances in which an
appropriate implementation of factor can produce large computational savings
include the case in which Q, A, and C have a block-diagonal structure, as in
optimal control problems, allowing (17a) to be reordered and solved with either
a banded matrix factorization routine or a discrete Riccati substitution (Rao,
Wright, and Rawlings [21]).

We now describe possible implementations of factor for the formulation (1).
Direct factorization of the matrix in (15) is not efficient in general as it ignores
the significant structure in this system—the fact that S and Z are diagonal
and the presence of a number of zero blocks. Since the diagonal elements of Z
and S are strictly positive, we can do a step of block elimination to obtain the
following equivalent system: Q AT CT

A 0 0
C 0 −Z−1S

 ∆x
−∆y
−∆z

 =

 −rQ

−rA

−rC − Z−1rz,s

 , (17a)

∆s = Z−1(−rz,s − S∆y). (17b)

Application of a direct factorization code for symmetric indefinite matrices to
this equivalent form is an effective strategy. The factor routine would per-
form symmetric ordering, pivoting, and computation of the factors, while solve
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would use these factors to solve (17a) and then substitute into (17b) to recover
∆s.

Another possible approach is to perform another step of block elimination
and obtain a further reduction to the form[

Q + CT ZS−1C AT

A 0

] [
∆x
−∆y

]
=

[
−rQ − CT S−1(ZrC + rz,s)

−rA

]
. (18)

The main operation in factor would then be to apply a symmetric indefinite fac-
torization procedure to the coefficient matrix in this system, while solve would
perform triangular substitutions to solve (18) and then substitute to recover ∆z
and ∆s in succession. This variant is less appealing than the approach based
on (17a), however, since the latter approach allows the factorization routine to
compute its own pivot sequence, while in (18) we have partially imposed a pivot
ordering on the system by performing the additional step of block elimination.
However, if the problem (1) contained no equality constraints (that is, A and b
null), the approach (18) might be useful, as it would allow a symmetric positive
definite factorization routine to be applied to the matrix Q + CT ZS−1C.

Alternative implementations of the factor and solve classes for (1) could
apply iterative methods such as QMR [10, 11] or GMRES [22] (see also Kel-
ley [15]) to the system (17a). Under this scenario, the role of the factor routine
is limited to choosing a preconditioner. Since some elements of the diagonal ma-
trix Z−1S approach zero while others approach∞, a diagonal scaling that avoids
the resulting ill conditioning should form part of the preconditioning strategy.

5.2.5 Specializing ProblemFormulation

Once a user has created new subclasses of Data, Variables, Residuals, and
LinearSystem appropriate to the new QP formulation, he or she must create
a subclass of ProblemFormulation to assemble a compatible set objects to be
used by a QP solver. Assembly might seem to be a simple task not requiring
the use of an additional assembly class, but in practice the process of creating
a compatible set of objects can become quite involved, as we now discuss.

Consider our example QP formulation (1). Even in this simple case, one
must create all vectors and matrices so that they have compatible sizes and so
that they are able to copy or wrap the given problem data. The more abstract
and flexible a problem formulation is, the more options tend to be present when
the objects are created. If we wish to create a subclass of Variables for our
new QP formulation in which the code is independent of whether the solver
is executed on a uniprocessor platform or on a multiprocessor platform with
distributed data, we must make some other arrangements to ensure that when
the instance of Variables is created, the storage for the variables is allocated
and distributed in the appropriate way. A traditional approach for managing
this kind of complexity is to isolate the code for creating a compatible set of
components in a separate subroutine. In OOQP, we use the same principle,
isolating the code for managing the complexity in the methods of a subclass of
ProblemFormulation.
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The abstract ProblemFormulation class has the following prototype.

class ProblemFormulation {
public:
// makeData will often take parameters.
// virtual Data * makeData() = 0;
virtual Residuals * makeResiduals( Data * prob_in ) = 0;
virtual LinearSystem * makeLinsys( Data * prob_in ) = 0;
virtual Variables * makeVariables( Data * prob_in ) = 0;
virtual ~ProblemFormulation() {};

};

The makeVariables method is responsible for creating an instance of a subclass
of Variables that is appropriate for this problem structure and for the compu-
tational platform. The other methods have similar purposes for instances of the
other subclasses in the problem formulation layer. An advantage to encapsulat-
ing the creation code in a ProblemFormulation class is that it is not necessary
to specify how many copies of each object need be created. This additional
flexibility is useful because different QP algorithms need different numbers of
instances of variable and residual classes.

Normally, an instance of ProblemFormulation will be given any parameters
that it needs to build a compatible set of objects when it is created. Take, for ex-
ample, the class QpExampleDense, which is a subclass of ProblemFormulation
used to create objects for solving QPs of the form (1) using dense linear algebra.
A partial prototype for the QpExampleDense class is as follows.

class QpExampleDense : public ProblemFormulation {
protected:
int mNx, mMy, mMz;
public:
QpExampleDense( int nx, int my, int mz );

};

When a QpExampleDense is created by code of the form

QpExampleDense * qp = new QpExampleDense( nx, my, mz );

it records the problem dimensions n, mA, and mC , allowing it subsequently to
create objects of the right size.

Note that the ProblemFormulation class does not contain the declaration
of an abstract makeData method. One normally needs additional information to
create Data objects, namely, the problem data itself. A makeData method with
no parameters is normally useless; on the other hand, no one set of parameters
would be useful for all formulations. Therefore, there is no appropriate abstract
definition of makeData.
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6 Using Linear Algebra Objects

This section takes the form of a tutorial on elements of OOQP’s linear algebra
layer. It is intended for those who wish to use these linear algebra objects and
operations concretely to define a new problem formulation. We have found these
objects useful in implementing solvers for the problem formulations supplied
with the OOQP distribution, and we believe they will also be useful to users
who wish to implement solvers for their own special QP formulations. Users are
not, however, compelled to use the OOQP linear algebra layer in implementing
their own problem formulation layer; they may write their own code to store
the data objects and to perform the linear algebra operations that are required
by the interior-point algorithm.

The QP formulations and interior-point algorithms supplied with the OOQP
distribution are written in terms of linear algebra operations in abstract classes,
such as OoqpVector, GenMatrix, and SymMatrix. When we speak of using
linear algebra objects “concretely,” we mean accessing the data contained in
these objects directly, in a manner that depends explicitly on how the data
is stored. A code development process using concrete objects and operations
is as follows. The user starts by creating objects that are instances of spe-
cific concrete subclasses of the abstract linear algebra classes, and manipulates
these objects accordingly. Then, the user migrates to an abstract interface by
systematically replacing the data-structure-dependent code in the problem for-
mulation with mathematical operations from the abstract base classes. Finally,
the user changes the type declarations of the variables from the concrete classes
to abstract base classes such as OoqpVector, causing the compiler to disallow
any remaining data-structure-dependent code. This development process of mi-
grating from a working concrete QP formulation to an abstract QP formulation
may be simpler than trying to use the abstract interface on the first pass. The
material in this section will be helpful for users that follow this path.

We start in Section 6.1 by describing the reference counting scheme used to
manage memory in OOQP. In Section 6.2, we describe SimpleVector, a class
that can be used in place of arrays of double-precision numbers. Section 6.3
describes classes for storing and manipulating dense matrices, while Section 6.4
discusses classes for sparse matrices.

6.1 Reference Counting

Reference counting is a powerful technique for managing memory that helps
prevent objects from being deleted accidentally or more than once. The tech-
nique is not limited to C++ code and, despite its name, is unrelated to the
C++ concept of reference variables. Rather, the term means that we maintain
a count of all “owning references” to an object and delete the object when this
count becomes zero. An owning reference is a typically a pointer to an object
that is a data member of an instance of another class. Consider, for instance,
the following class.

class MyVariables : Variables {

42



SimpleVector * mV;
public:

SimpleVector& v();
SimpleVector * getV();
void copyV( SimpleVector& w );
MyVariables();
MyVariables( SimpleVector * v );
~MyVariables();

};

Instances of MyVariables would hold an owning reference to a SimpleVector
in the variable mV. In the reference counting scheme, the destructor for this class
would be as follows.

MyVariables::~MyVariables()
{

IotrRelease( &mV );
};

Rather than deleting mV, the destructor signals that it is no longer holding a
reference to the object, so the reference count associated with this object is
decremented. In correct code, every object has at least one owning reference.
When the number of owning references has decreased to zero through calls to
IotrRelease, the reference counting scheme deletes the object.

Usually, objects are created in the constructors of other objects and are
released when the creating object no longer needs them, typically in the de-
structor. For instance, the constructor

MyVariables::MyVariables()
{

mV = new SimpleVector(5);
}

creates a new SimpleVector object, and the corresponding destructor will re-
lease the owning reference to this object when the MyVariables object is finished
with it.

Another common scenario is that a pointer to an object may be passed as a
parameter to a method or constructor for another object, which may then wish
to establish its own owning reference for the parameter object. This scenario
arises in the following constructor.

MyVariables::MyVariables(SimpleVector * v_in )
{

mV = v_in;
IotrAddRef( &mV );

}

The call to IotrAddRef informs the reference counting scheme that a new own-
ing reference to the SimpleVector has been established, so the counter asso-
ciated with this object is incremented. If IotrAddRef had not been called,
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the reference counting scheme would assume that the object had declined to
establish a new owing reference.

When objects are passed into methods as C++–style reference variables,
rather than via pointers, owning references must not be established. For in-
stance, the method

void MyVariables::copy( SimpleVector& w )
{
...
}

may not establish a new owing reference for its parameter w. A similar conven-
tion exists for the return values of functions. A return value that is a C++–style
reference variable needs no special attention

SimpleVector& MyVariables::v()
{

return *mV;
}

but if the return value is a pointer, then a new owning reference is always estab-
lished, and so the reference count must be incremented via a call to IotrAddRef:

SimpleVector * MyVariables::getV()
{

IotrAddRef( &mV );
return mV;

}

A typical program makes few calls to IotrAddRef and IotrRelease. For
the most part, one may simply call the IotrRelease function instead of the
C++ operator delete.

Finally, we mention that OOQP contains a SmartPointer class that handles
calls to IotrAddRef and IotrRelease automatically. This class has proven
useful to the OOQP developers and is present in the OOQP distribution for
others who wish to use it. We will not, however, describe it further in this
document.

6.2 Using SimpleVector

SimpleVector is a class whose instances may be used in place of arrays of
double precision numbers. It is a subclass of OOQP’s abstract base vector class,
OoqpVector, and all abstract operations of an OoqpVector are implemented
in SimpleVector. However, there is one important additional feature: The
operator [] has been defined for SimpleVector, which allows indexing to be
used to access individual elements in the SimpleVector object. For example,
the following piece of code involving SimpleVector objects a, b, and c is legal,
provided that these vectors have compatible lengths.
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void add( SimpleVector& a, SimpleVector& b, SimpleVector& c )
{

for( int i = 0; i < a->length(); i++ ) {
c[i] = a[i] + b[i];

}
}

The elements of a SimpleVector may be passed to a legacy C routine in the
manner demonstrated in the following code fragment, which calls the C routine
norm on the elements of a.

extern "C"
double norm( double a[], int len );
double mynorm( SimpleVector& a )
{

return norm( a->elements(), a->length() );
}

(Indeed, in most cases, we could use the calling sequence

norm( &a[0], a->length() );

but this call will fail for vectors of length zero.)
SimpleVector objects may be created via calls to a constructor of the fol-

lowing form:

// Create a vector of length 5
SimpleVector * a = new SimpleVector( 5 );

When interfacing with non-OOQP code, however, it may be preferable to in-
voke an alternative constructor that uses an existing array of doubles to store
the elements of the new SimpleVector instance. Use of this constructor is
demonstrated by the following code fragment.

double * v = new double[5];
SimpleVector * b = new SimpleVector( v, 5 );

The array v will be used as the storage location for the elements of b and will
not be deleted when b is deleted.

We recommend that users always use operator new to create new instances
of SimpleVector. Creating SimpleVector on the stack is not supported and
may cause unforeseen problems. In other words, users should not create vari-
ables of type SimpleVector, but rather should create pointers and references
to instances of SimpleVector, as in the examples above.

6.3 Using DenseGenMatrix and DenseSymMatrix

DenseGenMatrix is a class that represents matrices stored as a dense array in
row-major order. DenseSymMatrix also stores matrix elements in a dense array
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but represents symmetric (rather than general) matrices. Row and columns
indices for the matrices start at zero, following C and C++ conventions.

The indexing operator [] is defined appropriately for both DenseGenMatrix
and DenseSymMatrix. The following code fragment, for example, is legal.

int myFunc( DenseGenMatrix& M )
{
for( int i = 0; i < M.rows(); i++ ) {
for( int j = 0; j < M.columns(); j++ ) M[i][j] = i * 10 + j;

}
}

DenseSymMatrix stores its elements in the lower triangle of the matrix; the
result of accessing the upper triangle is undefined. An example of code to fill a
DenseSymMatrix is the following.

int mySymFunc( DenseSymMatrix& M )
{
for( int i = 0; i < M.size(); i++ ) {
for( int j = 0; j <= i; j++ ) M[i][j] = i * 10 + j;

}
}

The elements of a dense matrix may be passed to legacy C code by invoking
the method elements, which returns a pointer to the full matrix laid out in row
major order. An example is as follows.

void myFactor( DenseGenMatrix& M )
{

factor( M.elements(), M.rows(), M.columns() );
}

Both DenseGenMatrix or DenseSymMatrix provide the method mult, which
performs matrix-vector multiplication. For instance, if M is an instance of either
class, the function

void func(double beta, SimpleVector& y,
double alpha, SimpleVector& x)

{
M.mult( beta, y, alpha, x )

}

perform the computation y ← βy + αMx. Similarly, transMult computes
y ← βy + αMT x.

These classes contain no member functions to factor the matrices. Users may
either program their own factorization on the elements of the matrix or use one
of the linear solvers from the OOQP distribution. For a DenseSymMatrix an
appropriate linear solver is DeSymIndefSolver. We demonstrate the use of
this solver in the following sample code, which solves a linear system with a

46



coefficient matrix M (an instance of DenseSymMatrix) and right-hand side x (an
instance of SimpleVector). The result is returned in the SimpleVector object
y.

void mySolve( SimpleVector& y, DenseSymMatrix * M,
SimpleVector& x )

{
DeSymIndefSolver * solver = new DeSymIndefSolver( M );

solver->matrixChanged();
y.copyFrom( x );
solver->solve( y );

IotrRelease( &solver );
}

The matrixChanged method performs an in-place factorization on the values of
M, overwriting the original values of this matrix with the values of its factors.
The solve method uses the factors to compute the solution to the system.

If it is known that M is positive definite, the solver DeSymPSDSolver should
be used in place of DeSymIndefSolver. OOQP does not supply linear solvers
for instances of DenseGenMatrix.

A DenseGenMatrix may be created by using the operator new. The following
code will create a DenseGenMatrix with five rows and three columns.

DenseGenMatrix * pgM = new DenseGenMatrix( 5, 3 );

Instances of DenseSymMatrix are necessarily square, so only one argument is
needed for the constructor. The following code creates a DenseSymMatrix with
five rows and columns.

DenseSymMatrix * psM = new DenseSymMatrix( 5 )

As in the SimpleVectorclass, other constructors can be invoked to use an
existing array of doubles as storage space for the new DenseGenMatrix or
DenseSymMatrix instances, as demonstrated in the following code fragment.

double * gen = new double[5 * 3]
double * sym = new double[5 * 5];
DenseGenMatrix * pgM = new DenseGenMatrix( gen, 5, 3 );
DenseSymMatrix * psM = new DenseSymMatrix( sym, 5 )

The arrays gen and sym will not be deleted when the matrices pgM and psM are
created or freed.

6.4 Using SparseGenMatrix and SparseSymMatrix

In many practical instances, the matrices used to formulate the QP are large and
sparse. General sparse matrices and sparse symmetric matrices are represented
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by SparseGenMatrix and SparseSymMatrix, respectively. Unlike their dense
counterparts, SparseGenMatrix and SparseSymMatrix cannot be used as drop-
in replacements for an array of doubles because they do not define the indexing
operator [].

The data elements of these matrices are stored in a standard compressed
format known as Harwell-Boeing format. In the SparseGenMatrix class, the
elements are stored in row-major order, and, as in the dense case, the row and
column indices start at zero. Harwell-Boeing format encodes the matrix in three
arrays—two arrays of integers and one array of doubles. For an m × n general
matrix containing len nonzero elements, these arrays are represented by three
data structures within the sparse matrix classes, as follows.

int krowM[m+1];
int jcolM[len];
double M[len];

For each index i = 0, 1, . . . ,m−1, the nonzero elements from row i are stored in
locations krowM[i] through krowM[i+1]-1 of the vector M. (Recall that we index
the rows and columns by 0, 1, . . . ,m− 1 and 0, 1, . . . , n− 1, respectively.) The
column index of each nonzero is stored in the corresponding location of jcolM.
In other words, for any k between krowM[i] and krowM[i+1]-1 (inclusive) the
(i,jcolM[k]) element of the matrix is stored in M[k].

For a symmetric matrix, an instance of SparseSymMatrix stores only the
nonzero elements in the lower triangle of the matrix. Otherwise the format is
identical to that described above for general matrices.

Perhaps the simplest way to understand the format is to study the following
code sample, which prints out the elements of the matrix in row-major order.

for( int i = 0; i < m; i++ ) {
for( int k = krowM[i]; k < krowM[i+1]; k++ ) {

cout << "Row: " << i << "column: " << jcolM[k]
<< "value: " << M[k] << endl;

}
}

As for the dense classes, the SparseGenMatrix and SparseSymMatrix classes
provide mult and transMult methods, which perform matrix-vector multipli-
cations.

No methods within the sparse matrix classes perform factorizations of the
matrices. Classes with this functionality are supplied elsewhere in the OOQP
distribution, however. The default sparse direct linear equation solver in the
OOQP distribution is the code MA27 from the Harwell Sparse Library, wrapped
in a way that makes it callable from C++ code. The following code fragment
solves a system of linear equations involving a sparse symmetric indefinite ma-
trix. On input, M contains the coefficient matrix while x contains the right-hand
side. Neither M nor x is changed in the call, but y is replaced by the solution of
the linear system.
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void mySparseSolve( SimpleVector& y, SparseSymMatrix * M,
SimpleVector& x )

{
Ma27Solver * solver = new Ma27Solver( M );

solver->matrixChanged();
y.copyFrom( x );
solver->solve( y );

IotrRelease( &solver );
}

Users are also free to supply their own sparse solvers. If the solver accepts
Harwell-Boeing format, the three arrays that encode the matrix can be passed
individually as arguments, as can the elements of the right-hand side and the
solution. If M is a SparseGenMatrix or SparseSymMatrix object and x and y
are SimpleVector objects, then the interface to the user-supplied solve routine
may be as follows.

mySparseSolver( M.krowM(), int m, M.jcolM(), M.M(),
x.elements(), y.elements() );

In interior-point algorithms, one frequently must solve a sequence of lin-
ear systems in which the matrices differ from each other only in the diago-
nal elements. Consequently, we supply the methods fromGetDiagonal and
atPutDiagonal, whose function is to transfer the diagonal elements between
an instance of a sparse matrix class and an instance of the SimpleVector class.
For example, the following code copies diagonal elements (4, 4) through (8, 8)
inclusive from the SparseSymMatrix object M into the SimpleVectorobject d.

SimpleVector * getMe( SparseSymMatrix& M )
{

SimpleVector * d = new SimpleVector(5);
M.fromGetDiagonal( 4, *d );
return d;

}

To copy the elements from d into the diagonals of M, one would use a call of the
form

M.atPutDiagonal( 4, *d );

which overwrites diagonal elements (4, 4) through (3+r, 3+r) with the elements
of d, where r is the number of elements in d.

Instances of SparseGenMatrix or SparseSymMatrix can be created by first
filling the three arrays that encode the matrix in Harwell-Boeing format and
then calling a constructor. For general sparse matrices, this call has the following
form:
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SparseGenMatrix * sgm
= new SparseGenMatrix( m, n, len, krowM, jcolM, M );

where m and n are the number of rows and columns, respectively, len is the
number of nonzero elements, and krowM, jcolM, and M are the three arrays
discussed above. For sparse matrices, the corresponding call is

SparseSymMatrix * ssm
= new SparseSymMatrix( m, len, krowM, jcolM, M );

We emphasize that the arrays krowM, jcolM, and M are not copied but rather
are used directly. They are not deleted when the sparse matrix instances sgm
or ssm are freed.

Alternative constructors can be used when a description of the matrix is
available in sparse triple format. In this simple format, the matrix is encoded
in two integer arrays and one double array, all of which have length equal to
the number of nonzeros in the matrix. (In the case of a symmetric matrix, only
the lower triangle of the matrix is stored.) By defining nnz to be the number of
stored nonzeros, and defining the three arrays as follows,

int irow[nnz];
int jcol[nnz];
double A[nnz];

we have for any k in the range 0,...,nnz-1 that the element at row irow[k]
and column jcol[k] has value A[k]. The elements in this format can be sorted
into row-major order by calling another routine from the OOQP distribution,
doubleLexSort, in the following way.

doubleLexSort( irow, nnz, jcol, A );

Given the matrix in this form, with the arrays sorted into row-major form,
we can build an instance of SparseGenMatrix or SparseSymMatrix by first
calling a constructor with the matrix dimensions and the number of non-zeros
as arguments, as follows.

SparseGenMatrix * sgm = new SparseGenMatrix( m, n, nnz );
SparseSymMatrix * ssm = new SparseSymMatrix( m, nnz );

We can then call the method putSparseTriple, available in both classes, to
place the information in irow, jcol, and A into sgm or ssm. This call has the
following form.

sgm.putSparseTriple( irow, nnz, jcol, A, info );

The output parameter info will be set to zero if sgm is large enough to hold
the elements in irow, jcol, and A. Otherwise it will be set to one.
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7 Specializing Linear Algebra Objects

The solver supplied in the OOQP distribution for the formulation (2) with
sparse data uses the MA27 [9] sparse indefinite linear equation solver from
the Harwell Subroutine Library to solve the systems of linear equations that
arise at each interior-point iteration. Some users may wish to replace MA27
with a different sparse solver. (Indeed, we implemented a number of different
solvers during the development of OOQP.) Users also may want to make other
modifications to the linear algebra layer supplied with the distribution. For
example, it may be desirable to alter the representations of matrix and vectors
that are implemented in OOQP’s linear algebra layer, by creating new subclasses
of OoqpVector, SymMatrix, GenMatrix, and DoubleStorage. One motivation
for doing so might be to embed OOQP in an applications code that defines its
own specialized matrix and vector storage schemes.

In Section 7.1, we describe the process of replacing MA27 by a new linear
solver. Section 7.2 discusses the subclassing of objects in OOQP’s linear algebra
layer that may be carried out by users who wish to specialize the representations
of matrices and vectors.

7.1 Using a Different Linear Equation Solver

The MA27 solver for symmetric indefinite systems of linear equations is an effi-
cient, freely available solver from the Harwell Subroutine Library that is widely
used to solve the linear systems that arise in the interior-point algorithm applied
to sparse QPs of the form (2). By the nature of OOQP’s design, however, an
advanced user can substitute another solver without much trouble. This section
outlines the steps that must be taken to do so. We focus on replacing a sparse
linear solver because this operation is of greater practical import than replacing
a dense solver and because there are a greater variety of sparse factorization
codes than of dense codes.

7.1.1 Creating a Subclass of DoubleLinearSolver

The first step is to create a subclass of the DoubleLinearSolver class. A typical
subclass will have the following prototype.

#include "DoubleLinearSolver.h"
#include "SparseSymMatrix.h"
#include "OoqpVector.h"

class MyLinearSolver : public DoubleLinearSolver {
SparseSymMatrix * mStorage;

public:
MyLinearSolver( SparseSymMatrix * storage );
virtual void diagonalChanged( int idiag, int extent );
virtual void matrixChanged();
virtual void solve ( OoqpVector& vec );
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virtual ~MyLinearSolver();
};

Each DoubleLinearSolver object is associated with a matrix. Therefore, a typ-
ical constructor for a subclass MyLinearSolver of DoubleLinearSolver would
be as follows.

MyLinearSolver::MyLinearSolver( SparseSymMatrix * ssm )
{

IotrAddRef( &ssm );
mMat = ssm; // Here mMat is a data member of MyLinearSolver.

}

The call to IotrAddRef establishes an owning reference to the matrix (see Sec-
tion 6.1). It must be balanced by a call to IotrRelease in the destructor, as
follows.

MyLinearSolver::~MyLinearSolver()
{

IotrRelease( &mMat );
}

When the linear solver is first created, the matrix with which it is associ-
ated will not typically contain any data of interest to the linear solver. Once
the contents of the matrix have been loaded, the interior-point algorithm may
call the matrixChanged method, which triggers a factorization of the matrix.
Subsequently, the algorithm performs one or more calls to the solve method,
each of which uses the matrix factors produced in matrixChanged to solve the
linear system for a single right-hand side.

Calls to matrixChanged typically occur once at each interior-point iteration.
It is assumed that the sparsity structure of the matrix does not change between
calls to matrixChanged; only the data values will be altered. This assump-
tion, which holds for all popular interior-point algorithms, allows subclasses of
DoubleLinearSolver to cache information about the sparsity structure of the
matrix and its factors and to reuse this information throughout the interior-
point algorithm.

The diagonalChanged method supports those rare solvers that take a dif-
ferent action if only the diagonal elements of the matrix are changed (while
off-diagonals are left untouched). Most solvers cannot do anything interest-
ing in this case; a typical implementation of diagonalChanged simply calls
matrixChanged, as follows.

void MyLinearSolver::diagonalChanged( int idiag, int extent )
{

this->matrixChanged();
}

The implementation of matrixChanged and solve depends strongly on the
sparse linear system solver in use, as well as on the data format used to store

52



the sparse matrices. Section 6.4 describes the data format used by our sparse
matrix classes. The convention in OOQP is that sparse linear solvers must
not act destructively on the matrix data. In some instances, this restriction
requires a copy of part of the matrix data to be made before factorization
begins. Typically, however, this restriction is not too onerous because the fill-in
that occurs during a typical factorization would make it necessary to allocate
additional storage in any case.

The opposite convention is in place for subclasses of DoubleLinearSolver
that operate on dense matrices. These invariably perform the factorization in
place, overwriting the matrix data. While having two different conventions is
far from ideal, we felt it unwise to enforce unnecessary copying of matrices in
the dense case for the sake of conformity.

7.1.2 Creating a Subclass of ProblemFormulation

Having defined and implemented a new subclass of DoubleLinearSolver, the
user must now arrange so that the new solver, rather than the default linear
solver, is created and used by the quadratic programming algorithm.

In Section 5.2.4 we described how subclasses of LinearSystem are used to
solve the linear systems arising in interior point algorithms. We give specific
examples of how an instance of LinearSystem designed to handle our example
QP formulation (1) assembles a matrix and right-hand side of a system to be
passed to a general-purpose linear solver, which would normally be an instance
of a subclass of DoubleLinearSolver. In this manner, we have separated the
problem-specific reductions and transformations, which are the responsibility of
instances of LinearSystems, from the solution of matrix equations, which are
the responsibility of instances of DoubleLinearSolver.

On the other hand, the nature and properties of the DoubleLinearSolver
will affect the efficiency and feasibility of problem-specific reductions and trans-
formations. Moreover, when the LinearSystem assembles the matrix equa-
tions to be solved, it must assemble the matrix in a format acceptable to
the linear solver. To ensure that a compatible set of objects is created, the
DoubleLinearSolver, the matrix it operates on, and LinearSystem are cre-
ated in the same routine.

As we discussed in Section 5.2.5, OOQP contains classes—specifically, sub-
classes of ProblemFormulation—that exist for the express purpose of creating
a compatible set of objects for implementing solvers for QPs with a given for-
mulation. The makeLinsys methods of these classes is, naturally, the place
in which appropriate instances of subclasses of LinearSystem are created. As
we discussed in the earlier section, code for creating a compatible collection of
objects can become quite involved, so it is natural to collect this code in one
place. OOQP’s approach is to place this code in the methods of subclasses of
ProblemFormulation.

To use a new DoubleLinearSolver with an existing problem formulation,
one must create a new subclass of ProblemFormulation. Since the code needed
to implement a subclass of ProblemFormulation depends strongly on the spe-
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cific data structures of the problem formulation, it is difficult to give general
instructions on how to write such code. However, we describe below the ap-
propriate procedure for users who wish to work with a sparse variant of the
QpGen formulation (2), changing only the DoubleLinearSolver object and re-
taining the data structures and other aspects of the formulation that are used
in the default (MA27-based) solver supplied with the OOQP distribution. To
accommodate such users, we have created a subclass of ProblemFormulation
called QpGenSparseSeq, which holds the code common to all formulations of
QpGen that uses sparse sequential linear algebra. Users can create a subclass of
QpGenSparseSeq in the following way.

class QpGenSparseMySolver : public QpGenSparseSeq {
public:
QpGenSparseMySolver( int nx, int my, int mz,

int nnzQ, int nnzA, int nnzC );
LinearSystem * makeLinsys( Data * prob_in );

};

The constructor may be implemented by simply passing its arguments through
to the parent constructor.

QpGenSparseMySolver::QpGenSparseMySolver( int nx, int my, int mz,
int nnzQ, int nnzA, int nnzC ) :

QpGenSparseSeq( nx, my, mz, nnzQ, nnzA, nnzC )
{
}

The implementation of the makeLinsys method is too solver-specific to be han-
dled by generic code, but the following code fragment, which is based on the file
src/QpGen/QpGenSparseMa27.C, may give a useful guide.

LinearSystem * QpGenSparseMySolver::makeLinsys( Data * prob_in )
{
QpGenData * prob = (QpGenData *) prob_in;
int n = nx + my + mz;

// Include diagonal elements in the matrix, even if they are
// zero. Enforce by inserting a diagonal of zeros.
SparseSymMatrix * Mat =

new SparseSymMatrix( n, n + nnzQ + nnzA + nnzC );

SimpleVector * v = new SimpleVector(n);
v->setToZero();
Mat->setToDiagonal(*v);
IotrRelease( &v );

prob->putQIntoAt( *Mat, 0, 0 );
prob->putAIntoAt( *Mat, nx, 0);
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prob->putCIntoAt( *Mat, nx + my, 0 );
// The lower triangle is now [ Q * ]
// [ A C ]

MyLinearSolver * solver = new MyLinearSolver( Mat );
QpGenSparseLinsys * sys

= new QpGenSparseLinsys( this, prob,
la, Mat, solver );

IotrRelease( &Mat );

return sys;
}

We emphasize that users who wish to alter the MA27-based implementation
of the solver for the sparse variant of (2) only by substituting another solver
with similar capabilities to MA27 will be able to use these examples directly, by
inserting the names they have chosen for their solver into these code fragments.

7.2 Specializing the Representation of Vectors and Matri-
ces

Although the OOQP linear algebra layer provides a comprehensive set of linear
algebra classes, as described in Section 6, some users may wish to use a different
set of data structures to represent vectors and matrices. This could happen, for
instance, when the user needs to embed OOQP in a larger program with its
own data structures already defined. The design of OOQP is flexible enough
to accommodate user-defined linear algebra classes. In this section, we outline
how such classes can be written and incorporated into the code.

The vector and matrix classes need to provide methods that, for the most
part, represent simple linear algebra operations, such as inner products and
saxpy operations. The names are often self-explanatory; those that are specific
to the needs of the interior-point algorithm are described in the class documen-
tation accompanying the OOQP distribution. We note, however, that efficient
implementation of these operations can require a significant degree of expertise,
especially when the data structures are complex. We recommend that users
search for an existing implementation that is compatible with their data stor-
age needs before attempting to implement the methods themselves. As a rule, it
is easier to create OOQP vectors and matrix classes that wrap existing libraries
than to write efficient code from scratch.

To specialize the representation of vectors and matrices, one must create
subclasses of the following abstract classes:

OoqpVector: Represents mathematical vectors.

GenMatrix: Represents nonsymmetric and possibly nonsquare matrices as
mathematical operators.
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SymMatrix: Represents symmetric matrices as mathematical operators.

DoubleStorage: Contains the concrete code for managing the data structures
that hold the matrix data.

DoubleLinearSolver: Solves linear systems with a specific type of matrix as
its coefficient.

LinearAlgebraPackage: Creates instances of vectors and matrices.

We have outlined how to create a new subclass of DoubleLinearSolver in
the preceding section. The remainder of this section will focus on the other
new subclasses. We will not describe the methods of these classes in detail,
because the majority of them are familiar mathematical operations. We refer
the reader to the class documentation accompanying the OOQP distribution for
a description of these methods.

The code in the problem formulation layer is implemented b using the ab-
stract linear algebra classes described above. Objects in the problem formulation
layer can be created by using instances of user-defined subclasses to represent
linear algebra objects. We have discussed in the preceding section and in Sec-
tion 5.2.5 the use of the ProblemFormulation class in creating a compatible set
of objects in the problem formulation layer. Users who wish to specialize the
representation of vectors and matrices will also need to create at least one new
subclass of ProblemFormulation.

The header file src/Vector/OoqpVector.h defines the abstract vector class.
The header files defining the other abstract classes may be found in the subdi-
rectory src/Abstract. As a rule, the files needed to define a particular imple-
mentation of the linear algebra layer are given their own subdirectory. Some
existing implementations are located in the following directories.

src/DenseLinearAlgebra/
src/SparseLinearAlgebra/
src/PetscLinearAlgebra/

Users may wish to refer to these implementations as sample code. Because
DenseLinearAlgebra and SparseLinearAlgebra share the same vector im-
plementation, SimpleVector, this code is located in its own directory, named
src/Vector. Several linear solvers have also been given their own subdirectories
below the directory src/LinearSolvers.

OOQP does not attempt to force matrices and vectors that are represented in
significantly different ways to work together properly. For instance, the distribu-
tion contains no method that multiplies a matrix stored across several processors
by a vector whose data is stored on a tape drive attached to a single processor.
Nor do we perform any compile-time checks that only compatible linear algebra
objects are used together in a particular implementation. Such checks would
require heavy use of the C++ template facility, and we were wary of using tem-
plates because of the portability issues and other costs that might arise. Rather,
we endeavored to design our problem formulation classes in a way that makes it
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difficult to mix representations of linear algebra objects accidentally. (We sug-
gest that users who are modifying the matrix and vector representations follow
this design.) Commonly, we downcast at the start of a method. For example,
the following code fragment downcasts from the abstract OoqpVector class to
the MyVector class, which the mult method in MySymMatrix is intended to use.

void MySymMatrix::mult ( double beta, OoqpVector& y_in,
double alpha, OoqpVector& x_in )

{
MyVector & y = (MyVector &) y_in;
MyVector & x = (MyVector &) x_in;

}

Subclasses of DoubleStorage are responsible for the physical storage of ma-
trix data on a computer. The physical data structure might be as simple as
a dense two-dimensional array. In a distributed-computing setting, it could be
much more complex. Instances of DoubleStorage are rarely used in an abstract
setting. The code will know precisely what type of DoubleStorage is being used
and what concrete data structures are being used to implement it. Thus, many
of the methods of a subclass of DoubleStorage will be data-structure specific.

By contrast, each subclass of DoubleStorage will be associated with sub-
classes of GenMatrix and SymMatrix that are used primarily in an abstract,
data-structure-independent fashion. Subclasses of GenMatrix and SymMatrix
generally implement their methods by calling the structure-specific methods of
a subclass of DoubleStorage. By using this design in OOQP, we were able
to separate abstract mathematical manipulations of matrices and vectors from
details of their representation. Accordingly, in creating their subclasses, users
should feel free to implement any structure-dependent methods they need in
their implementation of the DoubleStorage subclass, whereas their implemen-
tations of the GenMatrix and SymMatrix subclasses should adhere more closely
to the abstract interface.

We emphasize the following points for users who wish to create subclasses
from the matrix classes: Matrices in OOQP are represented in row-major form,
and row and column indices start at zero. Adherence to these conventions will
make it easier to refer to existing implementations in designing new versions
of the linear algebra layer. Symmetric matrices in OOQP store their elements
in the lower triangle of whatever data structure is being used. For some linear
algebra implementations, it might be desirable to symmetrize the structure,
explicitly storing all elements of the matrix, despite the redundancy this entails.
If this approach is chosen, one should be careful to treat the matrix as if only
the lower triangle were significant, as subtle bugs may arise otherwise.

Subclasses of OoqpVector represent mathematical vectors and should adhere
closely to the abstract vector interface. The methods of OoqpVector typically
operate on the entire vector. Access to individual elements of the vector should
be avoided.

Users who implement their own representation of vectors and matrices will
also need to specialize the LinearAlgebraPackage class. This class has the
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following interface (see src/Abstract/LinearAlgebraPackage.h).

class LinearAlgebraPackage {
protected:
LinearAlgebraPackage() {};
virtual ~LinearAlgebraPackage() {};

public:
virtual SymMatrix * newSymMatrix( int size, int nnz ) = 0;
virtual GenMatrix * newGenMatrix( int m, int n, int nnz ) = 0;
virtual OoqpVector * newVector( int n ) = 0;
// Access the type name for debugging purposes.
virtual void whatami( char type[32] ) = 0;

};

Instances of LinearAlgebraPackage do nothing more than create vectors and
matrices on request. Our reason for including this class in the OOQP de-
sign is to provide a mechanism by which abstract code can create new vec-
tors and matrices that are compatible with existing objects. The code can-
not call the operator new on a type name and still remain abstract. Use of
LinearAlgebraPackage, on the other hand, allows users to create new vectors
and matrices, without referring to specific vector and matrix types, by invoking
the newVector, newSymMatrix, and newGenMatrix methods of an instance of
LinearAlgebraPackage.

Instances of LinearAlgebraPackage are never deleted. Because these in-
stances are small, the memory overhead is normally insignificant. However, it
is customary to arrange so that each subclass of LinearAlgebraPackage has at
most one instance, as in the following code fragment.

class MyLinearAlgebraPackage : public LinearAlgebraPackage {
protected:
DenseLinearAlgebraPackage() {};
virtual ~DenseLinearAlgebraPackage() {};

public:
static MyLinearAlgebraPackage * soleInstance();
// ...

}

MyLinearAlgebraPackage * MyLinearAlgebraPackage::soleInstance()
{
static
MyLinearAlgebraPackage * la = new MyLinearAlgebraPackage;

return la;
}

The use of such a scheme is optional.
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A COPYRIGHT

COPYRIGHT NOTIFICATION

The following is a notice of limited availability of this software and disclaimer
which must be included as a preface to the software, in all source listings of the
code, and in any supporting documentation.

COPYRIGHT 2001 UNIVERSITY OF CHICAGO

The copyright holder hereby grants you royalty-free rights to use, reproduce,
prepare derivative works, and to redistribute this software to others, provided
that any changes are clearly documented. This software was authored by:

E. MICHAEL GERTZ gertz@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439-4844

STEPHEN J. WRIGHT swright@cs.wisc.edu
Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706 FAX: (608)262-9777

Any questions or comments may be directed to one of the authors.
ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN

THE STATES OF ILLINOIS AND IDAHO, IS OWNED BY THE UNITED
STATES GOVERNMENT, AND OPERATED BY THE UNIVERSITY OF
CHICAGO UNDER PROVISION OF A CONTRACT WITH THE DEPART-
MENT OF ENERGY.

GOVERNMENT LICENSE

Portions of this material resulted from work developed under a U.S. Goverment
contract and are subject to the following license: the Government is granted
for itself and others acting in its behalf a paid-up, nonexclusive, irrevocable
worldwide license in this computer software to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly.

DISCLAIMER

NEITHER THE UNITED STATES GOVERNMENT NOR ANY AGENCY
THEREOF, NOR THE UNIVERSITY OF CHICAGO, NOR ANY OF THEIR
EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE AC-
CURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION,
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APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS
THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.
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