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Abstract—Many problems in signal processing and statistical
inference involve finding sparse solutions to under-determined, or
ill-conditioned, linear systems of equations. A standard approach
consists in minimizing an objective function which includes a
quadratic (squared 2) error term combined with a sparseness-in-
ducing ( 1) regularization term. Basis pursuit, the least absolute
shrinkage and selection operator (LASSO), wavelet-based decon-
volution, and compressed sensing are a few well-known examples
of this approach. This paper proposes gradient projection (GP)
algorithms for the bound-constrained quadratic programming
(BCQP) formulation of these problems. We test variants of this
approach that select the line search parameters in different ways,
including techniques based on the Barzilai–Borwein method.
Computational experiments show that these GP approaches per-
form well in a wide range of applications, often being significantly
faster (in terms of computation time) than competing methods.
Although the performance of GP methods tends to degrade as
the regularization term is de-emphasized, we show how they can
be embedded in a continuation scheme to recover their efficient
practical performance.

Index Terms—Compressed sensing, convex optimization, decon-
volution, gradient projection, quadratic programming, sparseness,
sparse reconstruction.

I. INTRODUCTION

A. Background

THERE has been considerable interest in solving the convex
unconstrained optimization problem

(1)

where , , is an matrix, is a non-
negative parameter, denotes the Euclidean norm of , and
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is the norm of . Problems of the form (1)
have become familiar over the past three decades, particularly
in statistical and signal processing contexts. From a Bayesian
perspective, (1) can be seen as a maximum a posteriori crite-
rion for estimating from observations

(2)

where is white Gaussian noise of variance , and the prior on
is Laplacian (that is, ) [1], [25], [54].

Problem (1) can also be viewed as a regularization technique to
overcome the ill-conditioned, or even singular, nature of matrix

, when trying to infer from noiseless observations
or from noisy observations as in (2).

The presence of the term encourages small components
of to become exactly zero, thus promoting sparse solutions
[11], [54]. Because of this feature, (1) has been used for more
than three decades in several signal processing problems where
sparseness is sought; some early references are [12], [37], [50],
and [53]. In the 1990s, seminal work on the use of sparse-
ness-inducing penalties/log-priors appeared in the literature: the
now famous basis pursuit denoising (BPDN, [11, Section 5])
criterion and the least absolute shrinkage and selection oper-
ator (LASSO, [54]). For brief historical accounts on the use of
the penalty in statistics and signal processing, see [41], [55].

Problem (1) is closely related to the following convex con-
strained optimization problems:

(3)

and

(4)

where and are nonnegative real parameters. Problem (3) is a
quadratically constrained linear program (QCLP) whereas (4)
is a quadratic program (QP). Convex analysis can be used to
show that a solution of (3) (for any such that this problem
is feasible) is either , or else is a minimizer of (1), for
some . Similarly, a solution of (4) for any is also a
minimizer of (1) for some . These claims can be proved
using [49, Theorem 27.4].

The LASSO approach to regression has the form (4), while
the basis pursuit criterion [11, (3.1)] has the form (3) with ,
i.e., a linear program (LP)

(5)
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Problem (1) also arises in wavelet-based image/signal recon-
struction and restoration (namely deconvolution); in those prob-
lems, matrix has the form , where is (a matrix
representation of) the observation operator (for example, con-
volution with a blur kernel or a tomographic projection),
contains a wavelet basis or a redundant dictionary (that is, mul-
tiplying by corresponds to performing an inverse wavelet
transform), and is the vector of representation coefficients of
the unknown image/signal [24]–[26].

We mention also image restoration problems under total
variation (TV) regularization [10], [47]. In the one-dimensional
(1-D) case, a change of variables leads to the formulation (1).
In 2-D, however, the techniques of this paper cannot be applied
directly.

Another intriguing new application for the optimization
problems above is compressed sensing1 (CS) [6]–[9], [18].
Recent results show that a relatively small number of random
projections of a sparse signal can contain most of its salient
information. It follows that if a signal is sparse or approxi-
mately sparse in some orthonormal basis, then an accurate
reconstruction can be obtained from random projections, which
suggests a potentially powerful alternative to conventional
Shannon-Nyquist sampling. In the noiseless setting, accurate
approximations can be obtained by finding a sparse signal that
matches the random projections of the original signal. This
problem can be cast as (5), where again matrix has the form

, but in this case represents a low-rank randomized
sensing matrix (e.g., a matrix of independent realizations
of a random variable), while the columns of contain the
basis over which the signal has a sparse representation (e.g., a
wavelet basis). Problem (1) is a robust version of this recon-
struction process, which is resilient to errors and noisy data, and
similar criteria have been proposed and analyzed in [8], [32].

B. Previous Algorithms

Several optimization algorithms and codes have been pro-
posed to solve the QCLP (3), the QP (4), the LP (5), and the
unconstrained (but nonsmooth) formulation (1). We review that
work here, identifying those contributions that are most suitable
for signal processing applications, which are the target of this
paper.

In the class of applications that motivates this paper, the ma-
trix cannot be stored explicitly, and it is costly and impractical
to access significant portions of and . In wavelet-based
image reconstruction and some CS problems, for which

, explicit storage of , , or is not practical for prob-
lems of interesting scale. However, matrix-vector products in-
volving and can be done quite efficiently. For example,
if the columns of contain a wavelet basis, then any multi-
plication of the form or can be performed by a fast
wavelet transform (see Section III-G, for details). Similarly, if

represents a convolution, then multiplications of the form
or can be performed with the help of the fast Fourier trans-
form (FFT) algorithm. In some CS applications, if the dimen-
sion of is not too large, can be explicitly stored; however,

1A comprehensive repository of CS literature and software can be found in
http://www.dsp.ece.rice.edu/cs/.

is still not available explicitly, because the large and dense
nature of makes it highly impractical to compute and store

.
Homotopy algorithms that find the full path of solutions, for

all nonnegative values of the scalar parameters in the various
formulations ( in (1), in (3), and in (4)), have been pro-
posed in [22], [39], [46], and [57]. The formulation (4) is ad-
dressed in [46], while [57] addresses (1) and (4). The method
in [39] provides the solution path for (1), for a range of values
of . The least angle regression (LARS) procedure described
in [22] can be adapted to solve the LASSO formulation (4).
These are all essentially homotopy methods that perform piv-
oting operations involving submatrices of or at cer-
tain critical values of the corresponding parameter ( , , or ).
These methods can be implemented so that only the subma-
trix of corresponding to nonzero components of the current
vector need be known explicitly, so that if has few nonzeros,
these methods may be competitive even for problems of very
large scale. (See for example the SolveLasso function in the
SparseLab toolbox, available from http://www.sparselab.stan-
ford.edu.) In some signal processing applications, however, the
number of nonzero components may be significant, and since
these methods require at least as many pivot operations as there
are nonzeros in the solution, they may be less competitive on
such problems. The interior-point (IP) approach in [58], which
solves a generalization of (4), also requires explicit construction
of , though the approach could in principle modified to
allow iterative solution of the linear system at each primal-dual
iteration.

Algorithms that require only matrix-vector products in-
volving and have been proposed in a number of recent
works. In [11], the problems (5) and (1) are solved by first
reformulating them as “perturbed linear programs” (which
are linear programs with additional terms in the objective
which are squared norms of the unknowns), then applying a
standard primal-dual IP approach [60]. The linear equations or
least-squares problems that arise at each IP iteration are then
solved with iterative methods such as LSQR [48] or conjugate
gradients (CG). Each iteration of these methods requires one
multiplication each by and . MATLAB implementations
of related approaches are available in the SparseLab toolbox;
see in particular the routines SolveBP and pdco. For addi-
tional details see [51].

Another IP method was recently proposed to solve a
quadratic programming reformulation of (1), different from the
one used here. Each search step is computed using precondi-
tioned conjugate gradient (PCG) and requires only products
by and [36]. The code, available at http://www.stan-
ford.edu/~boyd/l1_ls/, is reported to be faster than competing
codes on the problems tested in [36].

The -magic suite of codes (which is available at
http://www.l1-magic.org) implements algorithms for sev-
eral of the formulations described in Section I-A. In particular,
the formulation (3) is solved by recasting it as a second-order
cone program (SOCP), then applying a primal log-barrier
approach. For each value of the log-barrier parameter, the
smooth unconstrained subproblem is solved using Newton’s
method with line search, where the Newton equations may be
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solved using CG. (Background on this approach can be found
in [6] and [9].) As in [11] and [36], each CG iteration requires
only multiplications by and ; these matrices need not be
known or stored explicitly.

Iterative shrinkage/thresholding (IST) algorithms can also be
used to handle (1) and only require matrix-vector multiplica-
tions involving and . Initially, IST was presented as an
EM algorithm, in the context of image deconvolution problems
[25], [45]. IST can also be derived in a majorization-minimiza-
tion (MM) framework2 [16], [26] (see also [23], for a related
algorithm derived from a different perspective). Convergence
of IST algorithms was shown in [13], [16]. IST algorithms are
based on bounding the matrix (the Hessian of )
by a diagonal (i.e., is positive semi-definite), thus
attacking (1) by solving a sequence of simpler denoising prob-
lems. While this bound may be reasonably tight in the case of
deconvolution (where is usually a square matrix), it may be
loose in the CS case, where matrix usually has many fewer
rows than columns. For this reason, IST may not be as effec-
tive for solving (1) in CS applications, as it is in deconvolution
problems.

Finally, we mention matching pursuit (MP) and orthogonal
MP (OMP) [5], [17], [20], [56], which are greedy schemes to
find a sparse representation of a signal on a dictionary of func-
tions. (Matrix is seen as an -element dictionary of -di-
mensional signals). MP works by iteratively choosing the dic-
tionary element that has the highest inner product with the cur-
rent residual, thus most reduces the representation error. OMP
includes an extra orthogonalization step, and is known to per-
form better than standard MP. Low computational cost is one
of the main arguments in favor of greedy schemes like OMP,
but such methods are not designed to solve any of the optimiza-
tion problems above. However, if , with sparse and
the columns of sufficiently incoherent, then OMP finds the
sparsest representation [56]. It has also been shown that, under
similar incoherence and sparsity conditions, OMP is robust to
small levels of noise [20].

C. Proposed Approach

The approach described in this paper also requires only ma-
trix-vector products involving and , rather than explicit
access to . It is essentially a gradient projection (GP) algo-
rithm applied to a quadratic programming formulation of (1),
in which the search path from each iterate is obtained by pro-
jecting the negative-gradient direction onto the feasible set. (See
[3], for example, for background on gradient projection algo-
rithms.) We refer to our approach as GPSR (gradient projection
for sparse reconstruction). Various enhancements to this basic
approach, together with careful choice of stopping criteria and
a final debiasing phase (which finds the least squares fit over the
support set of the solution to (1)), are also important in making
the method practical and efficient.

Unlike the MM approach, GPSR does not involve bounds
on the matrix . In contrasts with the IP approaches dis-
cussed above, GPSR involves only one level of iteration. (The

2Also known as bound optimization algorithms (BOA). For a general intro-
duction to MM/BOA, see [33].

approaches in [11] and [36] have two iteration levels—an outer
IP loop and an inner CG, PCG, or LSQR loop. The -magic
algorithm for (3) has three nested loops—an outer log-barrier
loop, an intermediate Newton iteration, and an inner CG loop.)

GPSR is able to solve a sequence of problems (1) efficiently
for a sequence of values of . Once a solution has been ob-
tained for a particular , it can be used as a “warm-start” for
a nearby value. Solutions can therefore be computed for a range
of values for a small multiple of the cost of solving for a single

value from a “cold start.” This feature of GPSR is somewhat
related to that of LARS and other homotopy schemes, which
compute solutions for a range of parameter values in succes-
sion. In particular, “warm-starting” allows using GPSR within
a continuation scheme (as suggested in [31]). IP methods such
as those in [11], [36], and -magic have been less successful
in making effective use of warm-start information, though this
issue has been investigated in various contexts (see, e.g., [30],
[35], and [61]). To benefit from a warm start, IP methods require
the initial point to be not only close to the solution but also suf-
ficiently interior to the feasible set and close to a “central path,”
which is difficult to satisfy in practice.

II. PROPOSED FORMULATION

A. Formulation as a Quadratic Program

The first key step of our GPSR approach is to express (1) as a
quadratic program; as in [28], this is done by splitting the vari-
able into its positive and negative parts. Formally, we intro-
duce vectors and and make the substitution

(6)

These relationships are satisfied by and
for all , where denotes

the positive-part operator defined as . We
thus have , where is
the vector consisting of ones, so (1) can be rewritten as the
following bound-constrained quadratic program (BCQP):

(7)

Note that the -norm term is unaffected if we set
and , where is a shift vector. However such
a shift increases the other terms by . It follows that,
at the solution of the problem (7), or , for

, so that in fact and for all
, as desired.

Problem (7) can be written in more standard BCQP form

(8)

where
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and

(9)

B. Dimensions of the BCQP

It may be observed that the dimension of problem (8) is twice
that of the original problem (1): , while . How-
ever, this increase in dimension has only a minor impact. Matrix
operations involving can be performed more economically
than its size suggests, by exploiting its particular structure (9).
For a given , we have

indicating that can be found by computing the vector differ-
ence and then multiplying once each by and . Since

(the gradient of the objective function in (8)),
we conclude that computation of requires one multipli-
cation each by and , assuming that , which depends on

, is pre-computed at the start of the algorithm.
Another common operation in the GP algorithms described

below is to find the scalar for a given . It
is easy to see that

indicating that this quantity can be calculated using only a single
multiplication by . Since , it fol-
lows that evaluation of also requires only one multiplica-
tion by .

C. A Note Concerning Nonnegative Solutions

It is worth pointing out that when the solution of (1) is
known in advance to be nonnegative, we can directly rewrite
the problem as

(10)

This problem is, as (8), a BCQP, and it can be solved with the
same algorithms. However the presence of the constraint
allows us to avoid splitting the variables into positive and nega-
tive parts.

III. GRADIENT PROJECTION ALGORITHMS

In this section we discuss GP techniques for solving (8). In
our approaches, we move from iterate to iterate as
follows. First, we choose some scalar parameter and
set

(11)

We then choose a second scalar and set

(12)

Our approaches described next differ in their choices of
and .

A. Basic Gradient Projection: The GPSR-Basic Algorithm

In the basic approach, we search from each iterate along
the negative gradient , projecting onto the nonneg-
ative orthant, and performing a backtracking line search until a
sufficient decrease is attained in . (Bertsekas [3, p. 226] refers
to this strategy as “Armijo rule along the projection arc.”) We
use an initial guess for that would yield the exact minimizer
of along this direction if no new bounds were to be encoun-
tered. Specifically, we define the vector by

if or ,
otherwise.

We then choose the initial guess to be

which we can compute explicitly as

(13)

To protect against values of that are too small or too large, we
confine it to the interval , where .
(In this connection, we define the operator to be the
middle value of its three scalar arguments.) This technique for
setting is apparently novel, and produces an acceptable step
much more often than the earlier choice of as the minimizer
of along the direction , ignoring the bounds.

The complete algorithm is defined as follows.

Step 0 (initialization): Given , choose parameters
and ; set .

Step 1: Compute from (13), and replace by
.

Step 2 (backtracking line search): Choose to be the
first number in the sequence such that

and set .
Step 3: Perform convergence test and terminate with
approximate solution if it is satisfied; otherwise set

and return to Step 1.

Termination tests used in Step 3 are discussed below in
Section III-D.

The computation at each iteration consists of matrix-vector
multiplications involving and , together with a few (less
significant) inner products involving vectors of length . Step
2 requires evaluation of for each value of tried, where
each such evaluation requires a single multiplication by . Once
the value of is determined, we can find and then
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with one more multiplication by . Another mul-
tiplication by suffices to calculate the denominator in (13) at
the start of each iteration. In total, the number of multiplica-
tions by or per iteration is two plus the number of values
of tried in Step 2.

B. Barzilai–Borwein Gradient Projection: The GPSR-BB
Algorithm

Algorithm GPSR-Basic ensures that the objective function
decreases at every iteration. Recently, considerable attention

has been paid to an approach due to Barzilai and Borwein (BB)
[2] that does not have this property. This approach was origi-
nally developed in the context of unconstrained minimization
of a smooth nonlinear function . It calculates each step by the
formula , where is an approxima-
tion to the Hessian of at . Barzilai and Borwein propose
a particularly simple choice for the approximation : they set
it to be a multiple of the identity , where is
chosen so that this approximation has similar behavior to the
true Hessian over the most recent step, that is,

with chosen to satisfy this relationship in the least-squares
sense. In the unconstrained setting, the update formula is

and this step is taken even if it yields an increase in . This
strategy is proved analytically in [2] to be effective on simple
problems. Numerous variants have been proposed recently, and
subjected to a good deal of theoretical and computational eval-
uation.

The BB approach has been extended to BCQPs in [15], [52].
The approach described here is simply that of [52, Sec. 2.2].
We choose in (12) as the exact minimizer over the interval
[0,1] and choose at each iteration in the manner described
above, except that is restricted to the interval

. In defining the value of in Step 3 below,
we make use of the fact that for defined in (3), we have

Step 0 (initialization): Given , choose parameters
, , , and set .

Step 1: Compute step:

(14)

Step 2 (line search): Find the scalar that minimizes
on the interval , and set

.

Step 3 (update ): compute

(15)

if , let , otherwise

Step 4: Perform convergence test and terminate with
approximate solution if it is satisfied; otherwise set

and return to Step 1.

Since is quadratic, the line search parameter in Step
2 can be calculated simply using the following closed-form ex-
pression:

(When , we set .) The use of this
parameter removes one of the salient properties of the
Barzilai–Borwein approach, namely, the possibility that may
increase on some iterations. Nevertheless, in our problems,
it appeared to improve performance over the more standard
nonmonotone variant, which sets . We also tried
other variants of the Barzilai–Borwein approach, including one
proposed in [15], which alternates between two definitions of

. The difference in performance were very small, so we
focus our presentation on the method described above.

In earlier testing, we experimented with other variants of GP,
including the GPCG approach of [43] and the proximal-point
approach of [59]. The GPCG approach runs into difficulties be-
cause the projection of the Hessian onto most faces of the
positive orthant defined by is singular, so the inner CG
loop in this algorithm tends to fail.

C. Termination

The decision about when an approximate solution is of suffi-
ciently high quality to terminate the algorithms is a difficult one.
We wish for the approximate solution to be reasonably close
to a solution and/or that the function value be reason-
ably close to , but at the same time we wish to avoid the
excessive computation involved in finding an overly accurate so-
lution. For the problem (7), given that variable selection is the
main motivation of the formulation (1) and that a debiasing step
may be carried out in a postprocessing phase (see Section III-E),
we wish the nonzero components of the approximate solution
to be close to the nonzeros of a true solution .

These considerations motivate a number of possible termina-
tion criteria. One simple criterion is

(16)

where is a small parameter and is a positive constant.
This criterion is motivated by the fact that the left-hand side is
continuous in and zero if and only if is optimal. A second,
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similar criterion is motivated by perturbation results for linear
complementarity problems (LCP). There is a constant
such that

where denotes the solution set of (8), is the distance
operator, and the on the right-hand side is taken component-
wise [14]. With this bound in mind, we can define a convergence
criterion as follows:

(17)

A third criterion proposed recently in [36] is based on duality
theory for the original formulation (1). It can be shown that the
dual of (1) is

(18)

If is feasible for (18), then

(19)

with equality attained if and only if is a solution of (1) and is
a solution of (18). To define a termination criterion, we invert the
transformation in (6) to obtain a candidate , and then construct
a feasible as follows:

(see [36]). Substituting these values into the left-hand side of
(19), we can declare termination when this quantity falls below
a threshold . Note that this quantity is an upper bound on
the gap between and the optimal objective value .

None of the criteria discussed so far take account of the
nonzero indices of or of how these have changed in recent
iterations. In our fourth criterion, termination is declared when
the set of nonzero indices of an iterate changes by a relative
amount of less than a specified threshold . Specifically,
we define

and terminate if

(20)

This criterion is well suited to the class of problems addressed in
this paper (where we expect the cardinality of , in later stages
of the algorithm, to be much less than the dimension of ), and
to algorithms of the gradient projection type, which generate
iterates on the boundary of the feasible set. However, it does
not work for general BCQPs (e.g., in which all the components
of are nonzero at the solution) or for algorithms that generate
iterates in the interior of the feasible set.

It is difficult to choose a termination criterion from among
these options that performs well on all data sets and in all
contexts. In the tests described in Section IV, unless otherwise
noted, we use (17), with , which appeared to yield

fairly consistent results. We may also impose some large upper
limit maxiter on the number of iterations.

D. Debiasing

Once an approximate solution has been obtained using one of
the algorithms above, we optionally perform a debiasing step.
The computed solution is converted to an ap-
proximate solution . The zero components of
are fixed at zero, and the least-squares objective is
then minimized subject to this restriction using a CG algorithm
(see for example [44, ch. 5]). In our code, the CG iteration is
terminated when

(21)

where is a small positive parameter. We also restrict the
number of CG steps in the debiasing phase to maxiterD.

Essentially, the problem (1) is being used to select the “ex-
planatory” variables (components of ), while the debiasing
step chooses the optimal values for these components according
to a least-squares criterion (without the regularization term

). Similar techniques have been used in other -based
algorithms, e.g., [42]. It is also worth pointing out that debiasing
is not always desirable. Shrinking the selected coefficients can
mitigate unusually large noise deviations [19], a desirable effect
that may be undone by debiasing.

E. Warm Starting and Continuation

The gradient projection approach benefits from a good
starting point. This suggests that we can use the solution of (1),
for a given value of , to initialize GPSR in solving (1) for a
nearby value of . The second solve will typically take fewer
iterations than the first one; the number of iterations depends
on the closeness of the values of and the closeness of the
solutions. Using this warm-start technique, we can efficiently
solve for a sequence of values of . We note that it is important
to use the non-debiased solution as starting point; debiasing
may move the iterates away from the true minimizer of (1).

One motivation for solving for a range of values is that we
often wish to obtain solutions for a range of values of , possibly
using some test based on the solution sparsity and the goodness
of least-squares fit to choose the “best” solution from among
these possibilities.

Another important application of warm-starting is continua-
tion, as recently suggested in [31]. It has been noted recently that
the speed of GPSR may degrade considerably for smaller values
of the regularization parameter . However, if we use GPSR to
minimize (1) for a larger value of , then decrease in steps to-
ward its desired value, running GPSR with warm-start for each
successive value of , we are often able to identify the solution
much more efficiently than if we just ran GPSR once for the de-
sired value of from a cold start. We illustrate this claim with
a computational example in Section IV-D.

F. Analysis of Computational Cost

It is not possible to accurately predict the number of GPSR-
Basic and GPSR-BB iterations required to find an approximate
solution. We can however analyze the cost of each iteration of
these algorithms. The main computational cost per iteration is
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a small number of inner products, vector-scalar multiplications,
and vector additions, each requiring or floating-point oper-
ations, plus a modest number of multiplications by and .
When , these operations entail a small number of
multiplications by , , , and . The cost of each CG
iteration in the debiasing phase is similar but lower; just one
multiplication by each of , , , and plus a number
of vector operations. We next analyze the cost of multiplica-
tions by , , , and for various typical problems; let
us begin by recalling that is a matrix, and that

, . Thus, if has dimensions , then
must be a matrix.

If contains an orthogonal wavelet basis , ma-
trix-vector products involving or can be implemented
using fast wavelet transform algorithms with cost [40],
instead of the cost of a direct matrix-vector product.
Thus, the cost of a product by or is plus that of
multiplying by or which, with a direct implementation,
is . When using redundant translation-invariant wavelet
systems, is , but the corresponding ma-
trix-vector products can be done with cost, using fast
undecimated wavelet transform algorithms [40].

As mentioned above, direct implementations of products by
and have cost. However, in some cases, these

products can be carried out with significantly lower cost. For
example, in image deconvolution problems [25], is a

block-Toeplitz matrix with Toeplitz blocks (repre-
senting 2-D convolutions) and these products can be performed
in the discrete Fourier domain using the FFT, with
cost, instead of the cost of a direct implementation. If
the blur kernel support is very small (say pixels) these prod-
ucts can be done with even lower cost, , by implementing
the corresponding convolution. Also, in certain applications of
CS, such as MR image reconstruction [38], is formed from
a subset of the discrete Fourier transform basis, so the cost is

using the FFT.

IV. EXPERIMENTS

This section describes some experiments testifying to the very
good performance of the proposed algorithms in several types
of problems of the form (1). These experiments include compar-
isons with state-of-the-art approaches, namely IST [16], [25],
and the recent package, which was shown in [36] to out-
perform all previous methods, including the -magic toolbox
and the homotopy method from [21]. The algorithms discussed
in Section III are written in MATLAB and are freely available
for download from http://www.lx.it.pt/~mtf/GPSR/.

For the GPSR-BB algorithm, we set ,
; the performance is insensitive to these choices, similar

results are obtained for other small settings of and large
values of . We discuss results also for a nonmonotone ver-
sion of the GPSR-BB algorithm, in which . In GPSR-
Basic, we used and .

A. Compressed Sensing (CS)

In our first experiment, we consider a typical CS scenario
(similar to the one in [36]), where the goal is to reconstruct a

Fig. 1. From top to bottom: original signal, reconstruction via the minimization
of (1) obtained by GPSR-BB, and reconstruction after debiasing, the minimum
norm solution given by A (AA ) y.

length- sparse signal (in the canonical basis) from observa-
tions, where . In this case, the matrix is ob-
tained by first filling it with independent samples of a standard
Gaussian distribution and then orthonormalizing the rows. In
this example, , , the original signal con-
tains 160 randomly placed 1 spikes, and the observation is
generated according to (2), with . Parameter is
chosen as suggested in [36]

(22)

Notice that for the unique minimum of (1) is the
zero vector [29], [36].

The original signal and the estimate obtained by solving (1)
using the monotone version of the GPSR-BB (which is essen-
tially the same as that produced by the nonmonotone GPSR-BB
and GPSR-Basic) are shown in Fig. 1. Also shown in Fig. 1
is the reconstruction obtained after the debiasing procedure de-
scribed in Section III-E; although GPSR-BB does an excellent
job at locating the spikes, the debiased reconstruction exhibits a
much lower mean squared error3 (MSE) with respect to the orig-
inal signal. Finally, Fig. 1 also depicts the solution of minimal

-norm to the undetermined system , which is equal
to .

In Fig. 2, we plot the evolution of the objective function
(without debiasing) versus iteration number and CPU time, for
GPSR-Basic and both versions of GPSR-BB. The GPSR-BB
variants are slightly faster, but the performance of all three
codes is quite similar on this problem. Fig. 3 shows how the
objective function (1) and the MSE evolve in the debiasing
phase. Notice that the objective function (1) increases during
the debiasing phase, since we are minimizing a different func-
tion in this phase.

Table I reports average CPU times (over ten experiments) re-
quired by the three GPSR algorithms as well as by and

3MSE = (1=n)kx� xk , where x is an estimate of x.
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Fig. 2. Objective function plotted against iteration number and CPU time, for
GPSR-Basic and the monotone and nonmonotone versions of the GPSR-BB,
corresponding to the experiment illustrated in Fig. 1.

IST. To perform this comparison, we first run the algo-
rithm and then each of the other algorithms until each reaches
the same value of the objective function reached by . The
results in this table show that, for this problem, all GPSR vari-
ants are about one order of magnitude faster than and five
times faster than IST.

An indirect performance comparison with other codes on this
problem can be made by referring to [36, Table 1], which shows
that outperforms the homotopy method from [21] (6.9 s
versus 11.3 s). It also outperforms -magic by about two or-
ders of magnitude and the pdco algorithms from SparseLab by
about one order of magnitude.

B. Comparison With OMP

Next, we compare the computational efficiency of GPSR
algorithms against OMP, often regarded as a highly efficient
method that is especially well-suited to very sparse cases. We
use two efficient MATLAB implementations of OMP: the

Fig. 3. Evolution of the objective function and reconstruction MSE, versus
CPU time, including the debiasing phase, corresponding to the experiment il-
lustrated in Fig. 1.

TABLE I
CPU TIMES (AVERAGE OVER TEN RUNS) OF SEVERAL ALGORITHMS

ON THE EXPERIMENT OF FIG. 1

greed_omp_qr function of the Sparsify toolbox (available at
http://www.see.ed.ac.uk/~tblumens/sparsify), which is based
on QR factorization [5], [17], and the function SolveOMP
of the SparseLab toolbox, which is based on the Cholesky
factorization. Because greed_omp_qr requires each column
of the matrix to have unit norm, we use matrices with this
property in all our comparisons.

Since OMP is not an optimization algorithm for minimizing
(1) (or any other objective function), it is not obvious how to
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Fig. 4. Average MSE and CPU times for GPSR and two implementations of
OMP, as a function of the number of nonzero components of x.

compare it with GPSR. In our experiments, we fix the matrix
size (1024 4096) and consider a range of degrees of sparse-
ness: the number of nonzeros spikes in (randomly located
values of 1) ranges from 5 to 250. For each value of we gen-
erate ten random data sets, i.e., triplets . For each data
set, we first run GPSR-BB (the monotone version) and store the
final value of the residual; we then run greed_omp_qr and
SolveOMP until they reach the same residual norm. Finally,
we compute average MSE (with respect to the true ) and av-
erage CPU time, over the ten runs.

Fig. 4 plots the average reconstruction MSE and the average
CPU times, as a function of the number of nonzero components
in . We observe that all methods basically obtain exact re-
constructions for up to almost 200, with the OMP solutions
(which are equal up to some numerical fluctuations) starting
to degrade earlier and faster than those produced by solving
(1). Concerning computational efficiency, our main focus in this
experiment, we can observed that GPSR-BB is clearly faster

Fig. 5. Assessment of the empirical growth exponent of the computational
complexity of several algorithms.

than both OMP implementations, except in the case of extreme
sparseness ( nonzero elements in the 4096-vector ).

C. Scalability Assessment

To assess how the computational cost of the GPSR algorithms
grows with the size of matrix , we have performed an experi-
ment similar to the one in [36, Sec. 5.3]. The idea is to assume
that the computational cost is and obtain empirical esti-
mates of the exponent . We consider random sparse matrices
(with the nonzero entries normally distributed) of dimensions

, with ranging from to . Each matrix is gen-
erated with about nonzero elements and the original signal
with randomly placed nonzero components. For each value
of , we generate ten random matrices and original signals and
observed data according to (2), with noise variance .
For each data set (i.e., each pair , ), is chosen as in (22). The
results in Fig. 5 (which are average for ten data sets of each size)
show that all GPSR algorithms have empirical exponents below
0.9, thus much better than (for which we found ,
in agreement with the value 1.2 reported in [36]); IST has an
exponent very close to that of GPSR algorithms, but a worse
constant, thus its computational complexity is approximately a
constant factor above GPSR. Finally, notice that, according to
[36], -magic has an exponent close to 1.3, while all the other
methods considered in that paper have exponents no less than 2.

D. Warm Starting and Continuation

As mentioned in Section III-F, GPSR algorithms can benefit
from being warm-started, that is, initialized at a point close to
the solution. This property can be exploited to find minima (1)
for a sequence of values of , at a modest multiple of the cost of
solving only for one value of . We illustrate this possibility in
a problem with , , which we wish to solve
for nine different values of
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Fig. 6. CPU times for a sequence of values of � with warm starting and without
warm starting (cold starting).

As shown in Fig. 6, warm starting does indeed significantly re-
duce the CPU time required by GPSR. The total CPU time of
the nine runs was about 6.5 s, less than twice that of the first run,
which is about 3.7 s. The total time required using a cold-start
for each value of was about 17.5 s.

It has been pointed out recently that the speed of GPSR can
degrade as the value of becomes small [31]. (This observa-
tion is confirmed by the CPU times of the cold-started runs of
GPSR shown in Fig. 6.) The GPSR approaches can be improved
by adding a continuation heuristic, as suggested in [31] and ex-
plained in Section III-F. Our simple heuristic starts by setting

, then decreases in by a constant factor in
five steps until the desired value of is obtained. GPSR is run
from a “cold start” at the first (largest) value of , then run from
a warm start for each of the other five values in the sequence.

We illustrate the performance of this heuristic by using the
same test problem as in Section IV-A, but with . In this
noiseless case, CS theory states that it is possible to reconstruct

accurately by solving (5). Since the solution of (1) approaches
that of (5), as goes to zero, it makes sense for this problem to
work with small values of .

Fig. 7 shows the average (over ten runs) of the CPU times
required by GPSR-BB and GPSR-Basic with and without con-
tinuation, as well as , for several values of , where we
define . Although the original versions of the
GPSR algorithms are slower than , for sufficiently large
( sufficiently small), the continuation schemes are faster than

for the whole range of values.

E. Image Deconvolution Experiments

In this subsection, we illustrate the use of the GPSR-BB al-
gorithm in image deconvolution. Recall that (see Section I-A)
wavelet-based image deconvolution, under a Laplacian prior on
the wavelet coefficients, can be formulated as (1). We stress that
the goal of these experiments is not to assess the performance
(e.g., in terms of SNR improvement) of the criterion form (1).
Such an assessment has been comprehensively carried out in

Fig. 7. CPU times of the GPSR-BB and GPSR-Basic algorithms, with and
without continuation, as a function of � = kA yk =� .

TABLE II
IMAGE DECONVOLUTION EXPERIMENTS

TABLE III
CPU TIMES (IN SECONDS) FOR THE IMAGE DECONVOLUTION EXPERIMENTS

[25], [26], and several other recent works on this topic. Rather,
our goal is to compare the speed of the proposed GPSR algo-
rithms against the competing IST.

We consider three standard benchmark problems summarized
in Table II, all based on the well-known Cameraman image;
these problems have been studied in [25], [26] (and other pa-
pers). In this experiments, represents the inverse orthogonal
wavelet transform, with Haar wavelets, and is a matrix rep-
resentation of the blur operation; we have , and
the difficulty comes not form the indeterminacy of the associ-
ated system, but from the very ill-conditioned nature of matrix

. Parameter is hand-tuned for the best SNR improvement.
In each case, we first run IST and then run the GPSR algorithms
until they reach the same final value of the objective function;
the final values of MSE are essentially the same. Table III lists
the CPU times required by GPSR-BB algorithms and IST, in
each of these experiments, showing that GPSR-BB is two to
three times faster than IST.

V. CONCLUSIONS

We have proposed gradient projection algorithms for solving
a quadratic programming reformulation of a class of convex
nonsmooth unconstrained optimization problems arising in
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compressed sensing and other inverse problems in signal
processing and statistics. In experimental comparisons to
state-of-the-art algorithms, the proposed methods are signifi-
cantly faster (in some cases by orders of magnitude), especially
in large-scale settings. Instances of poor performance have
been observed when the regularization parameter is small,
but in such cases the gradient projection methods can be
embedded in a simple continuation heuristic to recover their
efficient practical performance. The new algorithms are easy
to implement, work well across a large range of applications,
and do not appear to require application-specific tuning. Our
experiments also evidenced the importance of a debiasing
phase, in which we use a linear CG method to minimize the
least squares cost of the inverse problem, under the constraint
that the zero components of the sparse estimate produced by
the GP algorithm remain at zero.

MATLAB implementations of the algorithms discussed in
this paper are available at http://www.lx.it.pt/~mtf/GPSR.
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