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a b s t r a c t

In this paper, a distributed controller is presented that can stabilize nonlinear systems. A novel nonlinear
nonconvex optimizer is proposed that improves the objective function and is feasible at every iterate.
The optimization uses gradient projection and converges to stationary points. The proposed optimization
does not require a coordination layer, and hence the controller is truly distributed. Asymptotic stability
is established for the controlled system, and an illustrative example is presented.
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1. Introduction

Model predictive control has become a popular control strat-
egy for many industrial applications because it can handle hard
constraints, nonlinear models, and systems with a large number
of actuators and measurements [10]. At each sampling time, an
open-loop input sequence is obtained from an optimization and
the first input is injected into the plant [7]. Large-scale industrial
plants usually comprise many subsystems that each contribute to
the plantwide goal of converting raw materials into products. These
subsystems are connected through material, energy, and infor-
mation streams, and hence they dynamically interact with one
another and affect closed-loop controller performance. Therefore
any plantwide control strategy must account for these interactions.

Traditionally plantwide control has been accomplished through
decentralized strategies [13]. These methods seek to decompose
the plant into weakly interacting subsystems. Controllers are
designed for the chosen subsystems in a decentralized fashion,
i.e., by ignoring the inter-subsystem interactions. The decentralized
controllers may be deliberately tuned for slow, nominal closed-loop
performance to maintain closed-loop stability when the neglected
interactions are present in the plant operation [16]. It is well known,
however, that for plants with strong coupling, decentralized control
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may not provide good performance and may not even stabilize the
system [3]. Cooperative distributed control, on the other hand, has
been shown recently to be stabilizing for plants with even strong
coupling [17,6]. In cooperative distributed control, the decomposi-
tion of the plant into subsystems is not so critical; the strength of
the subsystem interactions may influence the closed-loop perfor-
mance, but not the closed-loop stability. In cooperative distributed
control, the subsystems solve optimizations of the plantwide objec-
tive independently and exchange information to coordinate their
actions as the sample time permits. In previous work, we have pro-
posed a distributed controller for linear plants that does not require
a coordinator or hierarchical decomposition [17,18,12].

Recent work in nonlinear distributed control has established
plantwide stabilizing properties by the addition of a hierarchy of
controllers or through a plantwide coordinator [14,2]. Liu et al.
[4] propose a two-tier distributed controller. A plantwide stabi-
lizing controller is assumed to exist a Lyapunov-based controller
that stabilizes the plant using only a subset of the plant’s inputs. A
second tier controller, which accounts for the closed-loop perfor-
mance of the first tier controller, is used to manipulate the other
plant inputs. In further work [5], the authors extend the controller
to had a finite number of weakly interacting subsystems and relax
the requirement that one controller can stabilize the plantwide
system. Necoara et al. [8] develop a nonlinear distributed con-
troller that linearizes the dynamics at each optimization iterate and
solves a sequential convex program to optimality. The optimization
algorithm uses dual decomposition, and relies upon a central dual
optimization to find approximate multipliers at each iteration and
does not achieve feasibility until convergence.

0959-1524/$ – see front matter. Published by Elsevier Ltd.
doi:10.1016/j.jprocont.2010.11.004



Author's personal copy

B.T. Stewart et al. / Journal of Process Control 21 (2011) 698–704 699

To have a fully distributed controller, we propose the following
two criteria for the optimization used to determine the plantwide
control action: (i) the optimizers should not rely on a central coordi-
nator and (ii) the exchange of information between the subsystems
and the iteration of the subsystem optimizations should be able
to terminate before convergence without compromising closed-
loop properties. The first criterion is motivated by the practicality
of industrial distributed control. Distributed control strategies are
used for plants in which centralized control is often impractical
or undesirable to implement, and a plantwide coordination layer
is likely as difficult to implement as centralized control. The sec-
ond criterion is motivated by the implementation of distributed
control. A plantwide control strategy should be robust to com-
munication disruptions and algorithm failures. Therefore these
strategies cannot rely on iteration convergence in order to have an
implementable input. In the absence of either of these properties,
the alternative is usually centralized control.

In this paper, we extend our previous work to nonlinear plants.
The main difference is that the plantwide objective function is non-
convex and therefore we propose a novel distributed nonconvex
optimization that converges to stationary points without the use
of a central coordinating optimization. The statement of this opti-
mization follows in the next section. In Section 3, we present a
distributed model predictive controller that uses the nonconvex
optimization and show that this controller is asymptotically sta-
bilizing. We then present an illustrative example and follow with
conclusions.

1.1. Notation

Given a vector x∈Rn the symbol |x | denotes the Euclidean 2-
norm; given a positive scalar r the symbol Br denotes a closed ball
of radius r centered at the origin, i.e.,Br = {x∈Rn, |x| ≤ r}. Given two
integers, l≤m, we define the set Il:m = {l, l + 1, . . . , m− 1, m}. The
set of all positive integers is denoted I≥0. The set of positive reals
is denoted R+. Given an initial state x(0) and an input sequence u,
the open-loop response at time k is x(k) = �(k;x(0), u).

2. Distributed nonconvex optimization

Consider the optimization

min
u

V(u), s.t. u∈U (1)

in which u∈Rm and V(·) : Rm → R+ is twice continuously differ-
entiable. We assume U is closed, convex, and can be separated
into M orthogonal subspaces such thatU = U1 × · · · × UM , for which
Ui ∈Rmi for all i∈ I1:M . We require approximate solutions to the
following suboptimizations at iterate p≥0 for all i∈ I1:M

min
ui ∈Ui

V(ui, up
−i

)

in which u−i = (u1, . . ., ui−1, ui+1, . . ., uM). Let the approximate solu-
tion to these optimizations be ūp

i
. In the proposed algorithm, we

compute the approximate solutions via line search with gradient
projection. At iterate p≥0

ūp
i
= Pi(u

p
i
−∇ iV(up)) (2)

in which ∇ iV(up) is the i th component of ∇V(up) and the function
Pi(·) denotes the projection onto the set Ui. Define the step �p

i
=

ūp
i
− up

i
. To choose the stepsize ˛p

i
, each suboptimizer initializes the

stepsize with ¯̨ i and then uses backtracking with a factor of ˇ∈ (0,
1) until ˛p

i
satisfies the Armijo rule ([1], p. 230)

V(up)− V(up
i
+ ˛p

i
�p

i
, up
−i

) ≥ −�˛p
i
∇ iV(up)′�p

i
(3)

in which � ∈ (0, 1). After all suboptimizers finish the backtracking
process, they exchange steps. Each suboptimizer forms a candidate
step

up+1
i
= up

i
+wi˛

p
i
�p

i
, ∀i∈ I1:M (4)

and checks the following inequality, which tests if V(up) is convex-
like

V(up+1) ≤
∑

i∈ I1:M

wiV(up
i
+ ˛p

i
�p

i
, up
−i

) (5)

in which
∑

i∈ I1:M
wi = 1 and wi > 0 for all i∈ I1:M . If condition

(5) is not satisfied, then we find the direction with the worst
cost improvement imax = argmaxi{V(up

i
+ ˛p

i
�p

i
, up
−i

)}, and elimi-
nate this direction by setting wimax to zero and repartitioning the
remaining wi so that they sum to 1. We then reform the candidate
step (4) and check condition (5) again. We repeat until (5) is satis-
fied. At worst, condition (5) is satisfied with one direction only. The
steps are formalized in Algorithm 1.

Algorithm 1. Distributed gradient projection

Given finite p̄, 0 < � < 1, and w̄i > 0 for all i∈ I1:M such that∑
i∈ I1:M

w̄i = 1.
for p = 0, 1, . . . , p̄do

fori∈ I1:Mdo
Compute ūp

i
using (2);

Find ˛p
i

satisfying (3);
Vp

i
← V(up

i
+ ˛p

i
�p

i
, up
−i

);
end for

�p ← (�p
1, . . . , �p

M);
k←1, Igood ← I1:M , wi ← w̄i

while k < Mdo
for i∈ I1:Mdo

up+1
i
← up

i
+wi˛

p
i
�p

i
;

end for
ifup+1 satisfies (5)then

break;
else

imax ∈ argmaxi∈ I1:M
{Vp

i
};

Igood ← Igood \ imax;
wimax ← 0;
w̄←

∑
j∈ Igood

wj;

fori∈ I1:Mdo
wi ← wi/w̄;

end for
end if

k← k + 1;
end while

end for

Remark 1. In previous work, we proposed a similar distributed
algorithm for a convex optimization [17]. The main difference in the
nonconvex case is that poor suboptimizer steps must be eliminated
to ensure the objective function decreases at each iterate.

Lemma 1 (Feasibility). Given a feasible initial condition, the iterates
up are feasible for all p≥0.

Lemma 2 (Objective decrease). The objective function decreases at
every iterate, that is, V(up+1)≤V(up).

Lemma 3 (Convergence). Every accumulation point of the sequence
{up} is stationary.

The proofs of Lemmas 1 and 2 follow by construction of the
algorithm. A proof of Lemma 3 is provided in Appendix A.
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Fig. 1. Nonconvex function presented in [11] optimized with Algorithm 1.

Remark 2 (Distributed). The test of inequality (5) does not need a
coordinator. At each optimization iterate the subsystems exchange
the solutions of the gradient projection. Each subsystem has a copy
of the plantwide model and can evaluate the objection function
independently. Therefore the while-loop in Algorithm 1, which is a
series of conditional statements without optimization, can be run
on each controller. This computation is likely a smaller overhead
than a coordinating optimization.

2.1. Example from Rawlings and Mayne

Consider the nonconvex function

V(u1, u2) = e−2u1 − 2e−u1 + e−2u2 − 2e−u2 + a exp(−ˇ((u1 + 0.2)2

+ (u2 + 0.2)2))

in which a = 1.1 and ˇ = 0.4 ([11], p.462). There are two global mini-
mum located at (0.007, 2.28) and (2.28, 0,007) and a local minimum
at (0.23, 0.23). The inputs are constrained such that 0.1≤ui ≤4 for
i∈ I1:2. We start the algorithm at three initial conditions (0.5, 0.5),
(3.9, 3.6) and (3.5, 3.9). As shown in Fig. 1, each of these points
converges to a different local minimum.

3. Distributed nonlinear cooperative control

In this section, we propose a controller that uses the distributed
optimization described in the previous section. To facilitate the
exposition, we assume the plant comprises only two subsystems.

3.1. Model

We assuming the following models exist

x+1 = f1(x1, x2, u1, u2), x+2 = f2(x1, x2, u1, u2) (6)

in which xi ∈Rni , ui ∈Rmi , and fi : Rn1 × Rn2 × Rm1 × Rm2 → Rni is
continuous such that fi(0) = 0 for all i∈ I1:2. We collect these models
to form the plantwide model

x+ = f (x1, x2, u1, u2) = f (x, u)

in which

x =
[

x1
x2

]
, u =

[
u1
u2

]
, f (x, u) =

[
f1(x1, x2, u1, u2)
f2(x1, x2, u1, u2)

]
for which x∈Rn, u∈Rm, and f : Rn × Rm → Rn.

3.2. Constraints

At each time step k, we require the inputs to satisfy

u1(k)∈U1, u2(k)∈U2, k∈ I0:N−1

in which each Ui ∈Rmi is compact, convex, and contains the origin
in its interior.

3.3. Objective functions

Usually in distributed control implementations an objective
function is defined for each subsystem. We construct the plantwide
objective function from these objectives. For each subsystem i∈ I1:2,
we denote the positive definite function �i(xi, ui) as the stage
cost such that �i(0, 0) = 0 and Vif(x) as the terminal cost such
that Vif(0) = 0. The objective function for each subsystem i∈ I1:2 is
defined

Vi(x(0), u1, u2) =
N−1∑
k=0

�i(xi(k), ui(k))+ Vif (x(N))

in which ui = {ui(0), . . . , ui(N − 1)} ∈RNmi , xi(k) = �i(k;xi, u1, u2),
and N≥1. Because xi is a function of both u1 and u2, Vi is implicitly
a function of both u1 and u2. We define the plantwide objective

V(x1(0), x2(0), u1, u2) = �1V1(x(0), u1, u2)+ �2V2(x(0), u1, u2)

in which �1, �2 > 0 are weighting factors. To simplify notation we
use V(x, u) for the plantwide objective.

Remark 3. Alternatively, the plantwide objective function can be
defined without reference to subsystem objective functions.

Assumption 1. For each i∈ I1:2, there exists a K∞ function ˛i( · )
such that

�i(xi, ui) ≥ ˛i(|xi|), ∀(xi, ui)∈Rni × Ui (7)

3.4. Terminal controller

Denote the plantwide terminal penalty
Vf(x) = �1V1f(x) + �2V2f(x). We define the terminal region Xf to
be a sublevel set of Vf. For a > 0, define

Xf = {x|Vf (x) ≤ a}

Assumption 2. The plantwide terminal penalty Vf( · ) satisfies

˛f (|x|) ≤ Vf (x) ≤ �f (|x|), ∀x∈Xf

in which ˛f( · ) and � f( · ) are K∞ functions.

Defining �(x, u) = �1�1(x1, u1) + �2�2(x2, u2), we require the fol-
lowing stability assumption.

Assumption 3. The terminal cost Vf( · ) satisfies

min
(u1,u2)∈U1×U2

{
Vf (f (x, u1, u2))+ �(x, u), s.t. f (x, u1, u2)∈Xf

}
≤ Vf (x), ∀x∈Xf

This assumption implies that there exists a �if (x)∈Ui for all
i∈ I1:2 such that

Vf (f (x, �1f (x), �2f (x)))+ �(x, �1f (x), �2f (x)) ≤ Vf (x),

s.t. f (x, �1f (x), �2f (x))∈Xf (8)

Each terminal controller �if( · ) may be found via a centralized cal-
culation offline. We next provide an example of such a terminal
control law.
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3.4.1. Distributed terminal control example
In this example, we make a linear approximation of the non-

linear model around the origin and find a stabilizing linear control
law. Let f( · ) and �( · ) be Lipschitz continuous in a neighborhood
of the origin. Define A =∇xf(0, 0), B =∇uf(0, 0), Q = ∇2

xx�(0, 0), R =
∇2

uu�(0, 0), and S = ∇2
xu�(0, 0). Denote Pf as the solution to the cen-

tralized discrete time Riccati equation

Pf = A′Pf A+ Q − (A′Pf B+ S)(R+ B′Pf B)−1(B′Pf A+ S′)

and terminal controller gain K as

K = −(R+ B′Pf B)−1(B′Pf A+ S′)

In the terminal region, the unconstrained control law u = Kx is used.
Defining the stable matrix AK = (A + BK) and Q∗ = (Q + K′RK), let the
matrix P satisfy the Lyapunov equation A′K PAK + 2Q ∗ = P. Following
([11], pp. 135–137), there exists an a∈ (0, ∞ ) such that

Vf (f (x, �1f (x), �2f (x)))+ 1
2

x′Q ∗x − Vf (x) ≤ 0, ∀x∈W(a)

in which W(a) = {x | Vf(x)≤ a}

�1f (x1, x2) = K11x1 + K12x2
�2f (x1, x2) = K21x1 + K22x2

V1f (x1, x2) = 1
2

x′1P11x1 +
1
2

x′1P12f x2 (9a)

V2f (x1, x2) = 1
2

x′2P21x2 +
1
2

x′2P22x2 (9b)

and

P =
[

P11 P12
P21 P22

]
, K =

[
K11 K12
K21 K22

]
We then define the terminal set Xf =W(a).

Remark 4. For systems in which it is undesirable or impossible to
calculate the centralized K and P matrices, a decentralized terminal
controller can be used with the trade-off that Xf is smaller.

3.5. Removing the terminal constraint in suboptimal MPC

To show stability, we must ensure that �(N; x, u)∈Xf . Impos-
ing a terminal constraint on the state, however, requires the use
of coupled input constraints in each suboptimization of coop-
erative MPC. Such a constraint, in general, does not allow the
distributed algorithm to converge to the optimal plantwide con-
trol feedback without a coordinator [17]. This terminal constraint
can be removed from the control problem by modifying the termi-
nal penalty, however. In the following, we show this feature for the
general suboptimal MPC case ([11], pp. 155–158), and note that the
proposed distributed controller is of this class.

For some ˇ≥1, let the objective function be defined

Vˇ(x, u) =
N−1∑
k=0

�(x(k), u(k))+ ˇVf (x(N)) (10)

Define the set of admissible initial (x, u) pairs as

Z0 = {(x, u)∈X× UN |Vˇ(x, u) ≤ V̄ , �(N; x, u)∈Xf } (11)

in which V̄ > 0 is an arbitrary constant and X = Rn. Then the set of
initial states X0 is the projection of Z0 onto X

X0 = {x∈X|∃u such that (x, u)∈Z0}

Proposition 1 (Terminal constraint satisfaction). Let
{(x(k), u(k))|k∈ I≥0} denote the set of states and control sequences
generated by the suboptimal system. There exists a ¯̌ > 1 such

that for all ˇ ≥ ¯̌ , if (x(0), u(0))∈Z0, then (x(k), u(k))∈Z0 with
�(N; x(k), u(k))∈Xf for all k∈ I≥0.

Proof. The proof is by induction. We show that there is a finite
value ¯̌ such that the following property holds for all ˇ ≥ ¯̌ : For any
state and input sequence (x, u)∈Z0, the successor state and input
sequence (x+, u+)∈Z0. The successor state is x+ = f(x, u(0)) and the
warm start is

ũ+ = {u(1), u(2), . . . , u(N − 1), �f (x(N))}

We know that ũ+ ∈UN because �(x(N))∈U for x(N)∈Xf . We
also have from the properties of �f( · ) that �(N; x+, ũ+)∈Xf and
Vˇ(x+, ũ+) ≤ V̄ by (8). Next consider any control sequence � ∈UN

meeting the suboptimal MPC cost requirement

Vˇ(x+, �) ≤ Vˇ(x+, ũ+)

Expanding the cost function on the left and using the bound on the
right gives

N−1∑
i=0

�(z(i), �(i))+ ˇVf (z(N)) ≤ V̄

in which z(i) = �(i;x+, �). This inequality implies

ˇVf (z(N)) ≤ V̄

and if we choose

ˇ ≥ ¯̌ =max(1, V̄/a)

we obtain Vf(z(N))≤ a, which implies that z(N)∈Xf . We have found
a finite value of ¯̌ such that the terminal state corresponding to
any admissible u+ from state x+ lies in Xf for ˇ ≥ ¯̌ . By induction,
since (x(0), u(0))∈Z0, (x(k), u(k))∈Z0 for all k∈ I≥0, and the result
is established. �

For the remainder of the paper, we replace the plantwide
objective with the modified objective V(·)← V

¯̌ (·) and hence the
terminal constraint is satisfied.

3.6. Cooperative control algorithm

Let ũ∈U be the initial condition for the cooperative MPC algo-
rithm such that �(N; x(0), ũ)∈Xf . At each iterate p, an approximate
solution of the following optimization problem is found

min
u

V(x1(0), x2(0), u1, u2) (12a)

s.t. x+1 = f1(x1, x2, u1, u2) (12b)

x+2 = f2(x1, x2, u1, u2) (12c)

ui ∈UN
i , ∀i∈ I1:2 (12d)

|ui| ≤ ıi(|xi(0)|) if x(0)∈Br , ∀i∈ I1:2 (12e)

in which ıi( · ) is a K∞ function and r > 0 can be chosen as small as
required. Constraint (12e) is needed for stability and is motivated in
the sequel. We can write (12) in the form of (1) by substituting the
model equations (12b) and (12c) into the objective function (12a).
To achieve distributed control, we use Algorithm 1 to solve (12).

Let the input sequence returned by Algorithm 1 be up̄(x, ũ). The
first input of this sequence �p̄(x(0)) = up̄(0; x(0), ũ) is injected into
the plant and the state is moved forward. To reinitialize the algo-
rithm at the next sampling time, we define the warm start

ũ+1 = {u1(1), u1(2), . . . , u1(N − 1), �1f (x(N))}
ũ+2 = {u2(1), u2(2), . . . , u2(N − 1), �2f (x(N))}
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Fig. 2. Controller performance with (x1(0), x2(0)) = (3, −3). Setting p̄ = 10 approximates a centralized controller solution. (a) State trajectory (p̄ = 3); (b) centralized state
trajectory (p̄ = 10); (c) input trajectory (p̄ = 3); (d) centralized input trajectory (p̄ = 10).

in which x(N) = �(N;x(0), u1, u2). In general, it is not possible to
solve optimization (12) to optimality because of the limited time
available between samples. The distributed controller is therefore
suboptimal, and the stability of the controller can be established by
suboptimal MPC theory.

3.7. Stability of distributed nonlinear cooperative control

To establish stability of the control algorithm, we show that the
plantwide objective cost decreases between sampling times. With-
out loss of generality, assume k = 0 and the input u(0) is injected into
the plant. Using the warm start as the initial condition at the next
sampling time, we have

V(x+, ũ+) = V(x, u)− �1�1(x1, u1)− �2�2(x2, u2)− �1V1f (x(N))

−�2V2f (x(N))+ �1�1(x1(N), �1f (x(N)))

+�2�2(x2(N), �2f (x(N)))

+�1V1f (f1(x1(N), x2(N), �1f (x(N)), �2f (x(N))))

+�2V2f (f2(x1(N), x2(N), �1f (x(N)), �2f (x(N))))

Using (8), the last six terms above are cumulatively nonpositive,
giving

V(x+, ũ+) ≤ V(x, u)− �1�1(x1, u1)− �2�2(x2, u2)

By Lemma 2, the objective function cost decreases from this warm
start, so that

V(x+, u+) ≤ V(x, u)− �1�1(x1, u1)− �2�2(x2, u2)

Hence

V(x+, u+)− V(x, u) ≤ −˛(|(x, u)|) (13)

in which ˛( | (x, u) |)= �1˛1( | (x1, u1) |)+ �2˛2( | (x2, u2) | ).

We now give the main result of the paper. LetXN be the forward
invariant set of all initial states for which the control optimization
(12) is feasible.

Theorem 1 (Asymptotic stability). Let Assumptions 1–3hold and
let V(·)← V

¯̌ (·) b y Proposition 1. Then for every x(0)∈XN , the origin
is asymptotically stable for the closed-loop system x+ = f (x, �p̄(x)).

Proof. The proof follows from the stability of suboptimal MPC
([15], Theorem 1), which requires satisfaction of three proper-
ties to prove asymptotic stability. (1) There exists a lower bound
˛( | x |)≤V(x, u) by satisfaction of Assumptions 1 and 2. (2) The
descent property has been shown above in (13). (3) The Lyapunov
constraint (12e) is explicitly added to the optimization. We have
accounted for each required property and the result is established.
�
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Fig. 3. Open-loop cost to go versus time on the closed-loop trajectory for different
numbers of iterations.
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Fig. 4. Contours of V with N = 1 for k = 0 with (x1(0), x2(0)) = (3, −3). Iterations of the
subsystem controllers with initial condition (u0

1, u0
2) = (0, 0).

Remark 5 (M subsystems). The arguments for the controller have
been given for the case of two subsystems only, but same arguments
apply for any finite M > 0 number of subsystems.

4. Illustrative example

For this example, we use the stage cost

�1(x1, u1) = 1
2

(x′1Q1x1 + u′1R1u1)

�2(x2, u2) = 1
2

(x′2Q2x2 + u′2R2u2)

in which Q1, Q2 > 0 and R1, R2 > 0. This stage cost gives the objective
function

V(x, u) = 1
2

N−1∑
k=0

x(k)′Qx(k)+ u(k)′Ru(k)+ Vf (x(N))

in which Q = diag(Q1, Q2), R = diag(R1, R2) and Vf( ·)= V1f( ·)+ V2f( · ) is
defined by (9). The terminal region is defined as in Section 3.4.1.

4.1. Simulation

Consider the unstable nonlinear system

x+1 = x2
1 + x2 + u3

1 + u2
x+2 = x1 + x2

2 + u1 + u3
2

with initial condition (x1, x2) = (3, −3). The control objective is
to stabilize the system and drive the states to the origin. For the
simulation we choose the parameters

Q = I, R = I, N = 2, p̄ = 3, Ui = [−2.5, 2.5], ∀i∈ I1:2

As shown in Fig. 2, the control scheme is stabilizing. Increasing the
maximum number of iterations significantly improves the perfor-
mance. In Fig. 2, we also show the performance for p̄ = 10. The cost
difference is given in Fig. 3. To elucidate the difficulty in optimiz-
ing the nonconvex objective function, the iterations of the zeroth
stage control optimization are shown in Fig. 4 for the N = 1 case. The
terminal region, calculated as in Section 3.4.1, is shown in Fig. 5.

5. Conclusions

In this paper, we present a novel nonlinear controller that solves
the control optimization via a distributed optimization. This opti-
mization uses parallel optimizations that correspond to subsystems
in a plant. Each iterate is feasible and decreases the objective func-
tion, and the iterates converge to stationary points of the plantwide
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Fig. 5. Terminal region. Xt are the points in which the terminal controller is stabi-
lizing and Xf = {x | Vf (x) ≤ 0.485} ⊆ Xt is the terminal region.

objective function. A unique feature of the optimization is that no
coordinating optimization is required. We also show how to design
the controller and the terminal controller. Asymptotic stability is
established, and an illustrative example is presented showing the
stabilizing properties of the controller.
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Appendix A. Proof of convergence

We begin with preliminary propositions, and then give the main
proof.

Proposition 2. Given a closed, convex set U with any y∈U and any
z ∈Rm, for the projection P(·) onto U

(y− z)′(y− P(z)) ≥ 0

with equality if and only if y = P(z).

Proposition 3. If û is nonstationary

∇ iV(û)′[ûi − Pi(ûi −∇ iV(û))] ≥ 0, i∈ I1:M

with strict inequality for at least one i∈ I1:M .

Proof. Set y = ûi and z = ûi−∇ iV(û) in Proposition 2 to prove the
first claim. To show the second claim, observe that if equality holds
for all i∈ I1:M , then from Proposition 2 we would have

ûi = Pi(ûi −∇ iV(û)), ∀i∈ I1:M

and therefore û = P(û−∇V(û)), and û would be stationary. �

Proposition 4. Suppose û is a nonstationary point. Then there are
positive constants � and 	 and an index i∈ I1:M such that for all u with
| u−û|≤�, the ith suboptimizer chooses stepsize ˛i for which

V(ui, u−i)− V(ui + ˛i�i, u−i) ≥ 	

Proof. Let i be an index such that strict inequality holds in
Proposition 3. Using the continuity of ∇ iV( · ) and Pi(·), define � > 0
and 	i > 0 such that

−∇ iV(u)′�i = ∇ iV(u)′[ui − Pi(ui −∇ iV(u))] ≥ 	i
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for all u with | u−û|≤�. From Taylor’s theorem ([9], p. 14), and using
continuity of ∇ iV( · ), there is an ˆ̨ i > 0 such that for all ˛i ∈ [0, ˆ̨ i]

V(ui, u−i)− V(ui + ˛i�i, u−i)

= −˛i∇ iV(ui, u−i)
′�i − ˛i[∇ iV(ui + t˛i�i, u−i)−∇ iV(ui, u−i)]

′�i

= −˛i∇ iV(ui, u−i)
′�i + o(˛i) ≥ −�˛i∇ iV(ui, u−i)

′�i (14)

in which ˆ̨ i is small enough to ensure that the remainder term sat-
isfies o(˛i)≤− (1−�)˛i∇ iV(ui, u−i)′�i, a strictly positive multiple of
˛i. Hence the backtracking process terminates at a value ˛i greater
than or equal to ˛i =min( ¯̨ i, ˇ ˆ̨ i) > 0. Hence, from (14), we have

V(ui, u−i)− V(ui + ˛i�i, u−i) ≥ −�˛i∇ iV(ui, u−i)
′�i ≥ �˛i	i > 0

Therefore the Proposition holds with 	 = �˛i	i. �

We now proceed with the proof of the convergence result.

Proof of Lemma 3. Toward a contradiction, suppose that û
is a nonstationary point, and let K be a subsequence such that
{up}p∈K → û. By taking a further subsequence if necessary, we have
from Proposition 4 that there is an index i and a positive constant
	 such that

V(up
i
, up
−i

)− V(up
i
+ ˛p

i
�p

i
, up
−i

) ≥ 	

for all p∈K. Let jp be the index in I1:M that attains the best decrease
on V at iterate p. Since there are only finitely many possible values
for jp, at least one of them must recur infinitely often. By taking a
further subsequence we can assure jp≡ j for some j∈ I1:M . We thus
have

V(up)− V(up
j
+ ˛p

j
�p

j
, up
−j

) ≥ V(up)− V(ui + ˛p
i
�p

i
, up
−i

) ≥ 	 (15)

for all p∈K. Moreover, the index j remains in the set Igood for all
inner iterations, at each major iteration p∈K. Since all terms in the
summation on the right-hand side of (5) are nonnegative and wj ≥
w̄j > 0, using (15), the right-hand side is bounded below by w̄j	 >
0. Therefore

V(up)− V(up+1) ≥ w̄j	 > 0, ∀p∈K

for which w̄j	 does not depend on p. This inequality implies that
V(up)→−∞ over the entire sequence {up}, since V(up) decreases at

every iteration. This contradicts lim p∈KV(up) = V(û), and the proof
is complete. �
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