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Abstract

Partial enumeration (PE) is presented as a method for treating large, linear model predictive control applications that are out of reach with
available MPC methods. PE uses both a table storage method and online optimization to achieve this goal. Versions of PE are shown to
be closed-loop stable. PE is applied to an industrial example with more than 250 states, 30 inputs, and a 25-sample control horizon. The
performance is less than 0.01% suboptimal, with average speedup factors in the range of 80-220, and worst case speedups in the rang
of 4.9-39.2, compared to an existing MPC method. Small tables with only 25—-200 entries were used to obtain this performance, while
full enumeration is intractable for this example.
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1 Introduction as the problem size increases, eventually neither online nor

As reviewed by Mayne, Rawlings, Rao & Scokaert (2000), ©ffline MPC computational approaches can deliver the con-
most of the early industrial implementations of MPC traded trol decision m_the available sample time. Practitioners al-
the offline complexity of solving and storing the entire op- ready are starting to address problems of this size.
timal feedback control law(x) for the online complexity This paper addresses the class of large problems that can-
of solving the open-loop optimal control problem given the not be treated with current methods by proposing the partial
particularx initial condition of interest at any given sample €numeration (PE) technique. PE eschews optimal control for
time. For linear models, the online problem is a quadratic Something that may be slightly suboptimal, but which re-
program (QP), and efficient QP solvers allowed practitioners Mmains tractable for real-time implementation on large prob-
to tackle processes with small to moderate model dimensionlems. The approach combines online optimization and stor-
and control horizon (Rao, Wright & Rawlings, 1998; Chisci age methods to achieve this end. The following features of
& Zappa, 1999; Cannon, Kouvaritakis & Rossiter, 2001; the control problem must be present for this approach to be
Bartlett, Biegler, Backstrom & Gopal, 2002; Lie, Diez & €ffective: (i) The large magnitude deterministic disturbances
Hauge, 2005). Recently, researchers have developed interand setpoints signals change reasonably slowly with time.
esting methods for solving and storing the closed-loop feed- (i) The stochastic disturbances, which change quickly with
back law for linearconstrainedmodels that work well for ~ time, have reasonably small magnitude. As the name “partial
pr0b|ems of low dimension (Bemporad' Morari, Dua & Pis- enumeration” suggests, the active constraint sets that appear
tikopoulos, 2002; Seron, Goodwin & De Dan2003). The  With hi_ghest fr_equency are determined, given a reasonabl_e
information to be stored for looking up the optimal solution collection of disturbances and setpoint changes. The opti-
grows exponentially in the dimension of the process model mal solution for these frequently occurring active constraint
and the control horizon, however. Practitioners face the fol- Sets are computed offline and stored in a table. This table is
lowing obstacle to further progress. Small problems are well searched online for the best control. During online operation
addressed by both online methods and offline methods. But,the optimal solution is expected to be missing from the table
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at many sample times because the number of entries in thethe following “hard” input constraints:

table is small compared to the number of possible optimal

active sets. However, the table is adapted online to incorpo- Dug <d, (2)

rate new active sets as the need for them arises. When the

optimal solution is not found at a sample time, a simpler, in which D € R2™ andd e RY are specified by the user.

suboptimal strategy is used for the current control, but the Other types of constraints can be readily included but are

optimal solution is also found and inserted in the table. At omitted for simplicity of presentation.

most sample points, the solution is found in the table (giving Assuming that a linear transformatiar= H,y (usually a

an optimal control), but by not enforcing strict optimality at  subvector) of the measured output vectdrave known set-

every sample, the control can be computed quickly even for points z, a target calculation module is used at each sam-

large problems. pling time to compute the state and input steady state that
Under the category of methods that approximate the so-drives the controlled variables to their setpoints while re-

lution of the MPC QP, Kouvaritakis, Rossiter & Schuur- specting the constraints (2). First, a solution of the following

mans (2000) proposed a method for fast computation of quadratic program is attempted:

a suboptimal input sequence by means of an inner ellip-

soidal approximation to the polyhedral constraint set, and o1 R

developed heuristic methods to search outside the ellipsoid [TE'X—rklé(Uk— u)'Rs(Uk — U) (3a)

for a less conservative solution (Kouvaritakis, Cannon & '

Rossiter, 2002). A current limitation of this method is that it

does not allow the origin of the system to be shifted without

solving a large semidefinite program (SDP). This method

subject to:

is therefore not applicable to the problem considered here, Xic = A%+ Bl + By gk (3b)

because the system is augmented with an integrating distur- Z= Hy(C%¢+ Cadi) (3¢)

bance model to achieve offset-free control (see section 2.1). DI < d | (3d)
k<d,

The estimate of the integrating disturbance shifts the origin
of the system agverysample time. Rojas, Goodwin, $er ) ) . . o o
& Feuer (2004) described a technique for approximately in Which Rs is a positive definite matrixy represents the
solving the MPC QP by performing an offline SVD of the desired setpoint for the ||_1puts,_azdepresents the des_|red
Hessian of the objective function, and using it for an online output setpoints. If (3) is |nfea3|ble, the contro_lled variables
change of coordinates. Basis vectors of the SVD are addedZ cannot be moved to the given setpoint veataithout off-

until the next addition violates an input constraint. This ap- Set for the current integrating state estimate. For this case,
proach assumes that the origin (steady state) is strictly in-@ Second quadratic program aimed at minimizing the off-
side the feasible region. This method is not well suited for Set (Muske & Rawlings, 1993; Pannocchia et al., 2006) is
the applications considered here because the steady state g0lved.

often constrained, so the origin is usually on the boundary Having calculated the targets, the following MPC sub-
of the feasible region (see section 4.2). problem is solved at each decision timepoint. First define

deviation variablesv; andv; as follows:

2 Model Predictive Coptrol Wj = Rierjik— Xk Vj = Uiy jjk — Uk (4)
2.1 Controller formulation

Consider a linear time-invariant system model, augmented The MPC optimization problem is then
with integrating states to remove offset (Pannocchia & Rawl-

ings, 2003): _ N-1q {WQ . } 1\,\/ ; oo
min 5 1WjQW; +VjRY, ; + swyPwy a
Xkr1 = AXc+ Buc + Bgdk {W}’j\‘:r{v 3\1;01 £ 2 I J [ 2 N
Or1 = (1)
Yk = Cx+ Cq , subject to:
in which x € R" is the state%k.g RMis the input,yy Rp Wis1 = Aw + By, =0 N-1 (5b)
is the measured output, < RP is the additional integrating Dv; < d— Db, 0. N1 (50)

state, and the matrices, B, C, By, Cq are fixed matrices
with appropriate dimensions. At each sampling time, given
the current measured outpyy, estimates of the augmented  in which Ds is defined aPs = [D O}, bs is defined adbs =
state are assumed available. Denote these estimatgg by ~
anddy, respectively, which can be computed e.g. by means
of a steady-state Kalman filter (Pannocchia, Rawlings & positive semidefinite, antA, QY/2) is detectable.

Wright, 2006). Denote by i} and{&kﬂ‘k} (with j > 0) Remark 1 In the nominal case, i.e. when the initial state is
the corresponding predicted sequences obtained using th&nown and the actual plant satisfigl with d¢ = 0 for all k,
model (1) for a given input sequen¢e jx}, and stipulate it follows thatdy = O for all k. Hence, the targetdremains

/!
[ﬁ’k Yk} , R is positive definite, the matrice® and P are



constant at each decision timepoint (unless the setpoisit
changed).
One can use (5b) to eliminate the state variables-

!/
[v\/1 v\/N} from the formulation. Doing so produces the
following strictly convex quadratic program:

1 ,
mvlné\/Hergv (6a)
subject to
Av>Db, (6b)
!
in whichv= {\/0 \/Nfl} ; H (positive definite) and\ are

constant matrices (Pannocchia et al., 2006). The vegtors
andb depend on the parametdssandwg as follows:

g:C_;WWO
b = b+Bsbs

(7a)
(7b)

in which b is a constant vector whil&,, and Bg are con-

stant matrices (Pannocchia et al., 2006). Given the optimal

solutionv*, (4) is used to recover the first input, that is,
U = Ui +Vp, 8

anduy is injected into the plant.
2.2 Solving the MPC Subproblem

and/or removing an element fromat each iteration. If the
inequalities (9¢) and (9d) are satisfied by the solutioand

A4 corresponding to the curreat the algorithm terminates
with a solution. Otherwise, the violations of these conditions
provide guidance as to which indices should be added to
or dropped froma. Milman & Davison (2003; 2003) de-
scribe an active-set approach based on (6) in which changes
to a are made in “blocks,” feasibility is not enforced at ev-
ery iterate, and active set changes are made preferentially in
the early part of the time interval.

Details of approach (ii) are described in Rao et al. (1998).
In this technique, the highly structured nature of problem (5)
is exploited by using a stagewise ordering of the primal and
dual variables. A banded Gaussian elimination algorithm is
applied to the systems of linear equations that are solved to
obtain the primal-dual step at each iteration.

In approach (iii) (Bemporad et al., 2002), the dependence
of the problem on the parametdrs andwg is used to ex-
press the solution explicitly in terms of these parameters,
and to partition the space occupied (g, wo) into polyhe-
dral regions within which these expressions are valid. Since
the partial enumeration scheme is related to this approach,
it is summarized here.

Equations (9) and (7) give

v 0 0
=|_|+
a;] H lBas

in which Ea andBgs represent the row subvector/submatrix
corresponding to the active setAssuming for the present

H —A,
Aa 0

bS+

GW] Wo, (10)
0 07

Each MPC subproblem differs from the ones that precede it a, has full row rank, it is clear that the solution of (10)

and follow it only in the parameteitss andwp. The unique
solution to (6) must satisfy the following optimality (KKT)
conditions:

HV +g— ALl = (9a)
AVt =Dy (9b)

Aiv* > b (9¢)

Ai >0, (9d)

for some choice of active constraint indicgswhose com-
plementi denotes the inactive constraint indices.
The options for solving this problem are of three basic
types.
(i) Solution of the formulation (6) using active-set tech-
niques for quadratic programming suchcssol .
(ii) Solution of the (larger but more structured) problem (5)
using an interior point quadratic programming solver.
(iii) The multi-parametric quadratic programming (mp-QP)
approach.

depends linearly omg andbs:

(11a)
(11b)

V" = Kaghs + KawWo + Gy,
Ay = Ladhs+Lawwo+Cy,

in which Kgs, Kaw, Las, Law, Cv, andc, are quantities that
depend on the active satand the problem data but not
on the parametens; andwp. The region of validity of the
solutions in (11) is determined by the remaining optimality
conditions (9¢) and (9d). By substituting from (11), one can
obtain explicit tests involving the parameters as follows:

Lashs+LawwWo+cy >0,
AiK adbs+ AiK awwWo + (Ajcy — by) > 0.

(12a)
(12b)

These formulae motivate a scheme for solving the
parametrized quadratic programs that moves most of the
computation “offline.” In the offline part of the computa-

Approach (i) has the advantage of compactness of the for-tion, the coefficient matrices and vectors in formulae (11)
mulation; the elimination of the states can reduce the dimen-and (12) are calculated and stored for all setthat are
sions of the matrices considerably. Howevdrand A are valid active sets for some choice of parametérgwo).

in general not sparse, and since their dimension is propor-In the online computation, the active sefor which (12)
tional toN, the time to solve (6) is usual@(N?). Active- holds is identified, for a given particular value @fs, wo).

set methods such agpsol essentially search for the cor- Having found the appropriate, the optimalv* andA; are
rect active sed by making a sequence of guesses, adding then computed from (11).



For the offline computation, Bemporad et al. (2002) de- lowing are some practical options to define the control

scribe a scheme for traversing the space occupidtdwi) input.

to determine all possible active setsTondel, Johansen & (a) Solve a simplified subproblem (the same problem

Bemporad (2003) describe a more efficient scheme for find- with a shorter control horizon).

ing all active setsa for which the set of(bs,wp) satisfying (b) Look for the “least suboptimal& from the table

(12) is nonempty and has full dimension. They also show among all feasible ones.

how degeneracies and redundancies can be removed from (c) Fall back on a control decision computed at an

the description (12). Johansen & Grancharova (2003) con- earlier decision point.

struct a partition of the space occupied (g, wp) into hy- (iv) Independently of the controller’s calculation, the MPC

percubes (with faces orthogonal to the principal axes) and problem (5) is solved to obtain the data for the (11a) and

devise a feedback law for each hypercube that is optimal to (12) corresponding to the optimal active sednd add

within a specified tolerance. The nature of the tree allows it to the table. If the table thereby exceeds its maximum

it to be traversed efficiently during the online computation. size, the entry that was correct least recently is deleted.

Given the large number of possible active sets (potentially (v) The table is initialized by simulating the control proce-

exponential in the number of inequality constraints), the on- dure for a given number of decision stages (a “training

line part of the computation may be slow if many evalua- period”), adding random disturbances in such a way as

tions of the form (12) must be performed before the correct to force the system into regions s, wp) space that

a is identified. are likely to be encountered during actual operation of
. . the system.

3 Partial Enumeration The table should be large enough to fit the range of optimal

3.1 Introduction active sets encountered during the current range of operation

From a purely theoretical viewpoint, the complete enu- of the system, that is, to keep the number of “misses” at
meration strategy described above is unappealing, as it re-a reasonable level. When the system transitions to a new
places a polynomial-time method for solving each MPC operating region, some of the current entries in the table may
subproblem (i.e. an interior-point method) by a method that become irrelevant. There will be a spike in the proportion of
is obviously not polynomial. Practically speaking, the of- misses. Once there has been sufficient turnover in the table,
fline computation—identification of all regions in tlig, wp) however, one can expect the fraction of misses to stabilize
space—may be tractable for SISO problems with relatively at a lower value.
short control horizorN, but it quickly becomes intractable 3.2 Implementation

as the dimensions{ n) and control horizorN grow. In order to give a proper description of how the partial
The goal of the partial enumeration strategy is to make the gnymeration MPC solver is implemented, consider the fol-

online computations rapid, producing an input that is (close |5y ing two alternatives that are used to compute the con-

to) optimal, within the decision time allowed by the system. o] input when the optimal active set is not in the current

The goal is to expand the size and complexity of systems tap|e The first one is the “restricted” or “reserve” control
for which MPC may be viable, by restricting the possible sequence:

active setsa that are evaluated in the online computation to

those that have arisen most often at recent decision points. \fes — (yies \fes €S ) VIS ) = (VA V5, ... Vi1, KWE,),

Essentially, the history of the system is used to improve the N (13)

practical efficiency of the control computation. Observations i which, in this definition {v:} andwy, are the optimal in-

on numerous large-size practical problems indicate that the 15 and terminal state computed at the previous decision
parametergbs, wo) encountered at the decision points dur-  imenoint. The second alternative is the “short control hori-
ing a “time window” fall within a relatively small number of ;o optimal control sequence defined as the optimal solu-
regions defined by the inequalities (12) over all possible ac- {j5 of (5) for a short horizoi < N, chosen so that the time
tive setsa. Hence, it would appear that the offline computa- eqyired to solve this problem is much shorter than that re-

tions performed by complete enumeration, which involve a jireq to solve the problem with control horizdh Denote
comprehensive partitioning of thes, wo) space, are largely s control sequence as:

wasted.
The partial enumeratiorapproach has the following key h_ (ysh sh
features: V=0 i) (14)
(i) The matrices and vectors in (11a) and (12) are stored a formal definition of the proposed partial enumeration
for only a small subset of possible active sats a MPC algorithm can now be given.
_ lable of fixed length. _ Algorithm 1 (Partial enumeration MPC)
(i) The count of how frequently each active sein the Data at time k: a table with £ < Lmax entries (each en-

table was optimal during the last decision points is  {y contains the matrices/vectors in the systdfisay(12),
stored. Given the currerfbs,wo), the entries in the  5time stamp of the last time the entry was optimal, a
table are searched in order of decreasing frequency of .o, ,nier of how many times the entry was optimal), “re-

(iii) gggsg;gesgw that none of the active sats the table stricted” sequence v (cc/)mputed at time k1), previous
passes the tests (12) for the givém,wo). The fol- target " = [Uf(_l f’k_l} , current target g and deviation



state vg.

Repeat the following steps:
1. Search the table entries in the decreasing order of op-
timality rate. If an entry satisfie€l2), compute the op-
timal control sequence frorfil1la) define the current
control input as in(8), and go to Step 5. Otherwise,

. If the following condition holds:

_ lIbs—bE™l2

§=10"0 2 5
Tifby = ome

(15)

for a user-specified (small) positive scaldyay, define
the current control input as:
Uk = Vo o+ Uk 1, (16)
and go to Step 4. Otherwise,
. Solve the “short control horizon” MPC problem and
define the current control input as:
Uy = V& + U (17)
. Solve(5) (or (6)) and compute the matrices/vectors in
(11a}(12)for the optimal active set. Add the new entry
(possibly deleting the oldest entry if the £ Lnay).
Update time stamp and frequency for the optimal entry.
Define V¢S for the next decision timepoint as {&3).

6. Increase k— k+ 1 and go to Step 1.

Remark 2 In Step 4, for systems with a large number of
states the solution f6) is to be preferred, while for systems
with moderate state dimension and large control horizon the
solution of (5) is expected to be more convenient (Rao et
al., 1998).

Remark 3 Notice that(16) and (13) imply that the current
(fall-back) control input is defined as the corresponding op-
timal one computed at the previous decision timepoint, i.e.
Uk = Ujk—1-

If, for the current(bs,wp), the optimal active set is not
found in the table, then Step 4 is executed: the optimal input
sequence is calculated for thiiss, wp) and the correspond-
ing information is added to the table, in time (if possible)
for the next stag&+ 1. When these computations are not
completed prior to the next sampling time, as may happen in
practice, several modifications to the algorithm are needed.
Since the reserve sequeng€ in Step 5 must be adjusted
without knowing the results of Step 4, this sequence is left
unchanged, except to shift it forward one interval, as in (13).
When, at some future time point, the computations for the
given pair(bs,wp) are completed, the corresponding infor-
mation is added to the table. The variadf€ also is updated
with the newly available optimal sequence (with the obso-

5.

lete entries for the earlier stages removed) provided that the

reserve sequence was not updated in the interim as a resu
of finding an optimal sequence in the table. Moreover, it
is important to notice that, in (15p&"" denotes the target
around which the reserve sequence was computedjand
in (16) is the corresponding input target. Section 4 provides
some experiments in which there are delays in performing
the computations in Step 4.

3.3 Properties

The main theoretical properties of the proposed partial
enumeration MPC algorithm are now presented. In particu-
lar, Theorem 4 states that the proposed partial enumeration
MPC algorithm retains the nominal constrained closed-loop
stability of the corresponding “optimal” MPC algorithm. To
save space, the proofs are omitted here, but can be found
in (Pannocchia et al., 2006).

The penaltyP in (5) is chosen as the optimal cost-to-
go matrix of the following “unconstrained” linear quadratic
infinite horizon problem:

A §
33 {WiQw; +ViRy } (18a)

subject to:

wjr1=Aw;+Bvj, j=0,1,2,.... (18b)
With such a choice oP and given the corresponding stabi-
lizing gain matrix

K = —(R+B'PB)"'B'PA (19)

the unconstrained “deviation” input and state evolves as:
Vj= KWJ', WHl:AWj—l—BVj ZAKWJ', j=0,1,2,..., (20)

in which Ax = A+ BK is a strictly Hurwitz matrix, and the
optimal objective value i%wngo. Define O, to be the
set of target/initial state pairs such that the unconstrained
solution (20) satisfies the constraints (5c) at all stages, i.e.

O = {(bs,w) | Dvj < d —Dsbs

for all vj, w; satisfying (20) withwp =w}. (21)
The setO., is said to have dinite representatiorif this
infinite set of inequalities can be reduced to a finite set.
Remark 4 The formulag20) can be used to eliminate the
vj and w; from this definition and write @ as an infinite
system of inequalities involving only w angl bs follows:

Ow = {(bs,W) | DyALW < d —Debs for all j =1,2,...1,
(22)
in which Oy = DK. Notice that Q is non-empty since
(bs,0) € O, for any “feasible” target h, i.e. such tha(3d)

Now define the following “parametrized” sets:

W(bs) = {w/| (bs,W) € Oc}, (23)
W (bs) = {w|w; andvj, optimal solution to (5) with
Wo = W, satisfywy € W(bs)}. (24)

It

Notice thatWy (bs) is the set of initial states such that the

optimal state trajectory entevg(bs) in at mostN timesteps.
Our first result defines conditions under whidkibs) has

a nonempty interior and a finite representation.



Lemma 1 Assume that bsatisfies Qbs < d, thatW(bs) = 4.1 Example #1

{w|Dww < d — Dshs} is bounded, and thatidhas all eigen- The first example is a stable system with= 3 inputs,p =

values inside the open unit circle. Then(by) is non-empty 2 outputs andh = 12 states, in which the sampling time is

with the origin in its interior and has a finite representation. 1 sec and the normalized inputs must satisfy the constraints:
Our next result describes a key property of the Bé{tbs) —1<u < 1. The MPC regulator is designed with the follow-

and the relationship between these sets\afls). ing parameters\ = 100,Q = C'C, R= 0.01l;,, and thus the

Lemma 2 Suppose the assumptions of Lemma 1 hold and possible different active sets aré"8= 2.656 x 10%. Sev-

that P in(5) is chosen as the solution of the Riccati equation eral partial enumeration solvers are compared: PE1, PE25,

associated witl{18). Then PE50, PE100 and PE200 use an active-set tableNuita 1,
25, 50, 100 and 200 entries, respectively. As a comparison
W (bs) € Wi (bs) CWh(bs) C - (25) another solver is also considered: SH always computes and
injects the optimal solution of (6) with a short control hori-
zon of N = 3.

Moreover, W(bs) is positively invariant for the system
Wj+1 = Aw; + Bv; with v; defined as the first component of
the control sequence solution ¢5).

We now describe conditions under which the initial devi-
ation stateng lies inWy (bs), for all N sufficiently large.
Theorem 3 Suppose the assumptions of Lemma 1 hold. As-
sume that for the current deviation statg there are state
and input infinite sequencdsv; } and {v;} that satisfy(5b)
and (5¢) (in which these constraints hold fafl j) and such
that the corresponding objective function ([(h8) is finite.
Then, there exists a finite integef {vhich depends ongy

The different solvers are compared in a 20,000 decision
timepoints simulation featuring 20 random step disturbances
acting on the states, 20 random setpoint changes and nor-
mally distributed output noise. Table 1 provides the perfor-
mance indices achieved by each solver. From this table it is
evident that the use of a short control horizon can cause se-
vere performance degradation while partial enumeration al-
lows a fast computation of the optimal solution most of the
times, with a small overall performance degradation. Fig-
ure 1 presents the cumulative frequency versus the number
of entries scanned in the table by each partial enumeration

such that , solver. Figure 2 describes of the evolution of the active-set
Wo € W(bs) for all N > N'. (26) table for PE25 during the simulation, quantified by the fol-
Finally, we describe a nominal stability property for Al- lowing indices:Ry(k,0) = %éo), Ry(k,k—Ng) = %;N‘?),
gorithm 1. in whichD(k, j) is the number of table entries at tirkehat

Theorem 4 The control input | computed from Algo-  are not in the table at timg while Ne is the number of all
rithm 1 is feasible with respect {@) for any current devia-  entries in the table. Figure 2 shows that the active-set table

tion state v and target . Moreover, under the assumptions  changes over time to adjust to new disturbances and operat-
of Lemma 2, the outlined procedure is closed-loop nomi- ing conditions.

nally stabilizing, that is(w;,vj) — 0 for any wy € W (bs). The effect of the delay in solving the MPC problem in Step
o 4 was investigated first by introducing an integer parameter
4 Application examples tiag Which inflates the time required for solution of the full

Two examples are examined to evaluate the proposedMPC problem. Specifically, if it is necessary to perform Step
partial enumeration algorithm and compare it with a com- 4 at timek, the solution is assumed to become available for
mercial active-set solvegpsol . All simulations are per-  insertion in the table at timiey,i defined bykayail = K+ tiag.
formed using Octave on a 1.2 GHz PC, and time is measuredFigure 3 presents the results of this study for Example #1,
with the functioncputime [more details can be found in  in the case in which the table contains 25 entries. Note that,
(Pannocchia et al., 2006)]. Partial enumeration solvers areeven for the small number of table entries, the suboptimality
implemented, for backup calculation of a suboptimal input, indexS§ remains close to its optimal value of O fipyy up to

with dmax = 0.0001 and short control horizon &f = 3. 50 and within a factor of one 8y = 200. Fottj,g = 5000, the
The following performance indices are considered. performance is as poor as the short-horizon backup strategy.
e Optimality rate:Og := M, in which Nopt is the number In a second x-axis at the top of Figure 3, we quantify

the effect of a computational delay differently. Consider the
ratio of the the time it takes to solve the full MPC problem
to the sample time. We define a parametewith which we
inflate this ratio, so a solution computed at tikis available
for insertion in the table at timkuyaj = k+ aTop(k) /Ts. As
: displayed in Figure 3, the control performance loss is not
timal one. e significant until the full MPC calculation runs about 1000
* Average speed factohsr := £, in which To e andTaver times slower (or the sample time is 1000 times faster).
are the average times required to compute the optimal andy » Example # 2: Crude Distillation Unit
the (sub)optimal input.

of decision timepoints in which the optimal solution was
found in the table andll; is the overall number of deci-
sion timepoints.

« Suboptimality index:S := 221 in which @ is the
achieved closed-loop objective function abtlis the op-

T ) . The second example is a crude distillation unit model
o Worst-case speed factosr := 2, in which o, and  yith m =32 inputs,p = 90 outputs andh = 252 states. In-

Tmax are the maximum times required to compute the puyts and outputs are normalized, and the inputs must satisfy
optimal and the (sub)optimal input. bound constraints. Only four outputs, representing the qual-



ity of the crude distillation unit side products, have desired of all disturbance scenarios expected in normal plant oper-

setpoints, and the MPC regulator is designed with the fol- ation. In this work two backup strategies are presented for

lowing parametersN = 25, Q = C'C, R= 20l,,. The num- use when the optimal control is not in the current table: a

ber of possible different active sets i8°8= 4.977x 10°8%, restriction of the previous, optimal trajectory, or a short con-

Response of the “true” plant is simulated by adding, to the trol horizon solution. One can readily imagine other backup

nominal model response, unmeasured random step disturstrategies that may prove useful in practice.

bances on the crude composition, on the fuel gas quality Of course, a complete solution for large-scale problems

and on the steam header pressure, and normally distributedemains a challenge. The PE method pushes back the cur-

output noise. rent boundary between what size application is and is not
Five partial enumeration solvers are compared: PEL, tractable using MPC.
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Table 1

Performance indices for the examples.

Example #1 Example #2
Or S Ase Wer | Or S Asp Wsr

SH - 6.083 523 240

PE1 | 0.888 0.0580 302 23Q 0.654 69-10°° 610 399
PE25 | 0.890 0.0537 225 46.0 0.752 68-107° 220 39.2
PE50 | 0.891 0.0537 181 20.90.762 68-10° 162 20.1
PE100| 0.892 0.0537 135 17.80.770 68-107° 121 10.1
PE200| 0.894 0.0537 89.6 14.40.786 68-10° 83.3 4.79

0.894

0.893

0.892

0.891

0.89 —

0.889

Cumulative frequency

0.888 !

0.887 — T T
50 100
Number of entries scanned

200

Fig. 1. Example # 1: cumulative frequency of finding an optimal
entry versus number of entries scanned. Most of the benefit is
achieved with small tables, and then optimality increases only
slowly with table size.
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Fig. 2. Example #1: table relative differences for PE25. The top
figure shows that the original table is completely replaced as plant
operation evolves. The bottom figure shows that the table turns over
quickly during some periods and remains fairly constant during
other periods.

short horizon

optimal

Fig. 3. Example #1: suboptimality versus computational delay.
For a wide range of the computational delay, partial enumeration
provides almost optimal performance.



