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Abstract

Partial enumeration (PE) is presented as a method for treating large, linear model predictive control applications that are out of reach with
available MPC methods. PE uses both a table storage method and online optimization to achieve this goal. Versions of PE are shown to
be closed-loop stable. PE is applied to an industrial example with more than 250 states, 30 inputs, and a 25-sample control horizon. The
performance is less than 0.01% suboptimal, with average speedup factors in the range of 80–220, and worst case speedups in the range
of 4.9–39.2, compared to an existing MPC method. Small tables with only 25–200 entries were used to obtain this performance, while
full enumeration is intractable for this example.
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1 Introduction
As reviewed by Mayne, Rawlings, Rao & Scokaert (2000),

most of the early industrial implementations of MPC traded
the offline complexity of solving and storing the entire op-
timal feedback control lawu(x) for the online complexity
of solving the open-loop optimal control problem given the
particularx initial condition of interest at any given sample
time. For linear models, the online problem is a quadratic
program (QP), and efficient QP solvers allowed practitioners
to tackle processes with small to moderate model dimension
and control horizon (Rao, Wright & Rawlings, 1998; Chisci
& Zappa, 1999; Cannon, Kouvaritakis & Rossiter, 2001;
Bartlett, Biegler, Backstrom & Gopal, 2002; Lie, Diez &
Hauge, 2005). Recently, researchers have developed inter-
esting methods for solving and storing the closed-loop feed-
back law for linear,constrainedmodels that work well for
problems of low dimension (Bemporad, Morari, Dua & Pis-
tikopoulos, 2002; Seron, Goodwin & De Doná, 2003). The
information to be stored for looking up the optimal solution
grows exponentially in the dimension of the process model
and the control horizon, however. Practitioners face the fol-
lowing obstacle to further progress. Small problems are well
addressed by both online methods and offline methods. But,

as the problem size increases, eventually neither online nor
offline MPC computational approaches can deliver the con-
trol decision in the available sample time. Practitioners al-
ready are starting to address problems of this size.

This paper addresses the class of large problems that can-
not be treated with current methods by proposing the partial
enumeration (PE) technique. PE eschews optimal control for
something that may be slightly suboptimal, but which re-
mains tractable for real-time implementation on large prob-
lems. The approach combines online optimization and stor-
age methods to achieve this end. The following features of
the control problem must be present for this approach to be
effective: (i) The large magnitude deterministic disturbances
and setpoints signals change reasonably slowly with time.
(ii) The stochastic disturbances, which change quickly with
time, have reasonably small magnitude. As the name “partial
enumeration” suggests, the active constraint sets that appear
with highest frequency are determined, given a reasonable
collection of disturbances and setpoint changes. The opti-
mal solution for these frequently occurring active constraint
sets are computed offline and stored in a table. This table is
searched online for the best control. During online operation
the optimal solution is expected to be missing from the table
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at many sample times because the number of entries in the
table is small compared to the number of possible optimal
active sets. However, the table is adapted online to incorpo-
rate new active sets as the need for them arises. When the
optimal solution is not found at a sample time, a simpler,
suboptimal strategy is used for the current control, but the
optimal solution is also found and inserted in the table. At
most sample points, the solution is found in the table (giving
an optimal control), but by not enforcing strict optimality at
every sample, the control can be computed quickly even for
large problems.

Under the category of methods that approximate the so-
lution of the MPC QP, Kouvaritakis, Rossiter & Schuur-
mans (2000) proposed a method for fast computation of
a suboptimal input sequence by means of an inner ellip-
soidal approximation to the polyhedral constraint set, and
developed heuristic methods to search outside the ellipsoid
for a less conservative solution (Kouvaritakis, Cannon &
Rossiter, 2002). A current limitation of this method is that it
does not allow the origin of the system to be shifted without
solving a large semidefinite program (SDP). This method
is therefore not applicable to the problem considered here,
because the system is augmented with an integrating distur-
bance model to achieve offset-free control (see section 2.1).
The estimate of the integrating disturbance shifts the origin
of the system ateverysample time. Rojas, Goodwin, Serón
& Feuer (2004) described a technique for approximately
solving the MPC QP by performing an offline SVD of the
Hessian of the objective function, and using it for an online
change of coordinates. Basis vectors of the SVD are added
until the next addition violates an input constraint. This ap-
proach assumes that the origin (steady state) is strictly in-
side the feasible region. This method is not well suited for
the applications considered here because the steady state is
often constrained, so the origin is usually on the boundary
of the feasible region (see section 4.2).

2 Model Predictive Control
2.1 Controller formulation

Consider a linear time-invariant system model, augmented
with integrating states to remove offset (Pannocchia & Rawl-
ings, 2003):

xk+1 = Axk +Buk +Bddk

dk+1 = dk

yk = Cxk +Cddk ,

(1)

in which xk ∈ Rn is the state,uk ∈ Rm is the input,yk ∈ Rp

is the measured output,dk ∈Rp is the additional integrating
state, and the matricesA, B, C, Bd, Cd are fixed matrices
with appropriate dimensions. At each sampling time, given
the current measured outputyk, estimates of the augmented
state are assumed available. Denote these estimates by ˆxk|k
andd̂k|k, respectively, which can be computed e.g. by means
of a steady-state Kalman filter (Pannocchia, Rawlings &
Wright, 2006). Denote by{x̂k+ j|k} and{d̂k+ j|k} (with j > 0)
the corresponding predicted sequences obtained using the
model (1) for a given input sequence{uk+ j|k}, and stipulate

the following “hard” input constraints:

Duk ≤ d , (2)

in which D ∈ Rq×m and d ∈ Rq are specified by the user.
Other types of constraints can be readily included but are
omitted for simplicity of presentation.

Assuming that a linear transformationz= Hzy (usually a
subvector) of the measured output vectory have known set-
points z̄, a target calculation module is used at each sam-
pling time to compute the state and input steady state that
drives the controlled variables to their setpoints while re-
specting the constraints (2). First, a solution of the following
quadratic program is attempted:

min
ūk,x̄k

1
2
(ūk− ū)′Rs(ūk− ū) (3a)

subject to:

x̄k = Ax̄k +Būk +Bdd̂k|k (3b)

z̄= Hz(Cx̄k +Cdd̂k|k) (3c)

Dūk ≤ d, (3d)

in which Rs is a positive definite matrix, ¯u represents the
desired setpoint for the inputs, and ¯z represents the desired
output setpoints. If (3) is infeasible, the controlled variables
zcannot be moved to the given setpoint vector ¯zwithout off-
set for the current integrating state estimate. For this case,
a second quadratic program aimed at minimizing the off-
set (Muske & Rawlings, 1993; Pannocchia et al., 2006) is
solved.

Having calculated the targets, the following MPC sub-
problem is solved at each decision timepoint. First define
deviation variablesw j andv j as follows:

w j = x̂k+ j|k− x̄k, v j = uk+ j|k− ūk . (4)

The MPC optimization problem is then

min
{w}Nj=1,{v}N−1

j=0

N−1

∑
j=0

1
2

{
w′jQwj +v′jRvj

}
+

1
2

w′NPwN (5a)

subject to:

w j+1 = Awj +Bvj , j = 0, . . . ,N−1, (5b)
Dv j ≤ d−Dsbs, j = 0, . . . ,N−1, (5c)

in which Ds is defined asDs =
[
D 0

]
, bs is defined asbs =[

ū′k x̄′k

]′
, R is positive definite, the matricesQ and P are

positive semidefinite, and(A,Q1/2) is detectable.
Remark 1 In the nominal case, i.e. when the initial state is
known and the actual plant satisfies(1) with dk = 0 for all k,
it follows thatd̂k|k = 0 for all k. Hence, the target bs remains

2



constant at each decision timepoint (unless the setpointz̄ is
changed).
One can use (5b) to eliminate the state variablesw =[
w′1 · · · w′N

]′
from the formulation. Doing so produces the

following strictly convex quadratic program:

min
v

1
2

v′Hv+g′v (6a)

subject to

Av≥ b, (6b)

in whichv=
[
v′0 · · · v′N−1

]′
; H (positive definite) andA are

constant matrices (Pannocchia et al., 2006). The vectorsg
andb depend on the parametersbs andw0 as follows:

g = Gww0 (7a)

b = b̄+Bsbs (7b)

in which b̄ is a constant vector whileGw andBs are con-
stant matrices (Pannocchia et al., 2006). Given the optimal
solutionv∗, (4) is used to recover the first inputuk, that is,

uk = ūk +v∗0, (8)

anduk is injected into the plant.
2.2 Solving the MPC Subproblem

Each MPC subproblem differs from the ones that precede
and follow it only in the parametersbs andw0. The unique
solution to (6) must satisfy the following optimality (KKT)
conditions:

Hv∗+g−A′aλ
∗
a = 0 (9a)

Aav∗ = ba (9b)
A iv
∗ ≥ bi (9c)

λ
∗
a ≥ 0, (9d)

for some choice of active constraint indicesa, whose com-
plementi denotes the inactive constraint indices.

The options for solving this problem are of three basic
types.

(i) Solution of the formulation (6) using active-set tech-
niques for quadratic programming such asqpsol .

(ii) Solution of the (larger but more structured) problem (5)
using an interior point quadratic programming solver.

(iii) The multi-parametric quadratic programming (mp-QP)
approach.

Approach (i) has the advantage of compactness of the for-
mulation; the elimination of the states can reduce the dimen-
sions of the matrices considerably. However,H andA are
in general not sparse, and since their dimension is propor-
tional to N, the time to solve (6) is usuallyO(N3). Active-
set methods such asqpsol essentially search for the cor-
rect active seta by making a sequence of guesses, adding

and/or removing an element froma at each iteration. If the
inequalities (9c) and (9d) are satisfied by the solutionv∗ and
λ ∗a corresponding to the currenta, the algorithm terminates
with a solution. Otherwise, the violations of these conditions
provide guidance as to which indices should be added to
or dropped froma. Milman & Davison (2003a; 2003b) de-
scribe an active-set approach based on (6) in which changes
to a are made in “blocks,” feasibility is not enforced at ev-
ery iterate, and active set changes are made preferentially in
the early part of the time interval.

Details of approach (ii) are described in Rao et al. (1998).
In this technique, the highly structured nature of problem (5)
is exploited by using a stagewise ordering of the primal and
dual variables. A banded Gaussian elimination algorithm is
applied to the systems of linear equations that are solved to
obtain the primal-dual step at each iteration.

In approach (iii) (Bemporad et al., 2002), the dependence
of the problem on the parametersbs andw0 is used to ex-
press the solution explicitly in terms of these parameters,
and to partition the space occupied by(bs,w0) into polyhe-
dral regions within which these expressions are valid. Since
the partial enumeration scheme is related to this approach,
it is summarized here.
Equations (9) and (7) give

[
H −A′a
Aa 0

][
v∗

λ ∗a

]
=

[
0

b̄a

]
+

[
0

Bas

]
bs+

[
−Gw

0

]
w0, (10)

in which b̄a andBas represent the row subvector/submatrix
corresponding to the active seta. Assuming for the present
thatAa has full row rank, it is clear that the solution of (10)
depends linearly onw0 andbs:

v∗ = Kasbs+Kaww0 +cv, (11a)
λ
∗
a = Lasbs+Laww0 +cλ , (11b)

in which Kas, Kaw, Las, Law, cv, andcλ are quantities that
depend on the active seta and the problem data but not
on the parametersbs andw0. The region of validity of the
solutions in (11) is determined by the remaining optimality
conditions (9c) and (9d). By substituting from (11), one can
obtain explicit tests involving the parameters as follows:

Lasbs+Laww0 +cλ ≥ 0, (12a)
A iKasbs+A iKaww0 +(A icv−bi)≥ 0. (12b)

These formulae motivate a scheme for solving the
parametrized quadratic programs that moves most of the
computation “offline.” In the offline part of the computa-
tion, the coefficient matrices and vectors in formulae (11)
and (12) are calculated and stored for all setsa that are
valid active sets for some choice of parameters(bs,w0).
In the online computation, the active seta for which (12)
holds is identified, for a given particular value of(bs,w0).
Having found the appropriatea, the optimalv∗ andλ ∗a are
then computed from (11).
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For the offline computation, Bemporad et al. (2002) de-
scribe a scheme for traversing the space occupied by(bs,w0)
to determine all possible active setsa. Tondel, Johansen &
Bemporad (2003) describe a more efficient scheme for find-
ing all active setsa for which the set of(bs,w0) satisfying
(12) is nonempty and has full dimension. They also show
how degeneracies and redundancies can be removed from
the description (12). Johansen & Grancharova (2003) con-
struct a partition of the space occupied by(bs,w0) into hy-
percubes (with faces orthogonal to the principal axes) and
devise a feedback law for each hypercube that is optimal to
within a specified tolerance. The nature of the tree allows
it to be traversed efficiently during the online computation.
Given the large number of possible active sets (potentially
exponential in the number of inequality constraints), the on-
line part of the computation may be slow if many evalua-
tions of the form (12) must be performed before the correct
a is identified.

3 Partial Enumeration
3.1 Introduction

From a purely theoretical viewpoint, the complete enu-
meration strategy described above is unappealing, as it re-
places a polynomial-time method for solving each MPC
subproblem (i.e. an interior-point method) by a method that
is obviously not polynomial. Practically speaking, the of-
fline computation–identification of all regions in the(bs,w0)
space–may be tractable for SISO problems with relatively
short control horizonN, but it quickly becomes intractable
as the dimensions (m, n) and control horizonN grow.

The goal of the partial enumeration strategy is to make the
online computations rapid, producing an input that is (close
to) optimal, within the decision time allowed by the system.
The goal is to expand the size and complexity of systems
for which MPC may be viable, by restricting the possible
active setsa that are evaluated in the online computation to
those that have arisen most often at recent decision points.
Essentially, the history of the system is used to improve the
practical efficiency of the control computation. Observations
on numerous large-size practical problems indicate that the
parameters(bs,w0) encountered at the decision points dur-
ing a “time window” fall within a relatively small number of
regions defined by the inequalities (12) over all possible ac-
tive setsa. Hence, it would appear that the offline computa-
tions performed by complete enumeration, which involve a
comprehensive partitioning of the(bs,w0) space, are largely
wasted.

The partial enumerationapproach has the following key
features:

(i) The matrices and vectors in (11a) and (12) are stored
for only a small subset of possible active setsa in a
table of fixed length.

(ii) The count of how frequently each active seta in the
table was optimal during the lastT decision points is
stored. Given the current(bs,w0), the entries in the
table are searched in order of decreasing frequency of
correctness.

(iii) Suppose now that none of the active setsa in the table
passes the tests (12) for the given(bs,w0). The fol-

lowing are some practical options to define the control
input.
(a) Solve a simplified subproblem (the same problem

with a shorter control horizon).
(b) Look for the “least suboptimal”a from the table

among all feasible ones.
(c) Fall back on a control decision computed at an

earlier decision point.
(iv) Independently of the controller’s calculation, the MPC

problem (5) is solved to obtain the data for the (11a) and
(12) corresponding to the optimal active seta and add
it to the table. If the table thereby exceeds its maximum
size, the entry that was correct least recently is deleted.

(v) The table is initialized by simulating the control proce-
dure for a given number of decision stages (a “training
period”), adding random disturbances in such a way as
to force the system into regions of(bs,w0) space that
are likely to be encountered during actual operation of
the system.

The table should be large enough to fit the range of optimal
active sets encountered during the current range of operation
of the system, that is, to keep the number of “misses” at
a reasonable level. When the system transitions to a new
operating region, some of the current entries in the table may
become irrelevant. There will be a spike in the proportion of
misses. Once there has been sufficient turnover in the table,
however, one can expect the fraction of misses to stabilize
at a lower value.
3.2 Implementation

In order to give a proper description of how the partial
enumeration MPC solver is implemented, consider the fol-
lowing two alternatives that are used to compute the con-
trol input when the optimal active set is not in the current
table. The first one is the “restricted” or “reserve” control
sequence:

vres= (vres
0 ,vres

1 , . . . ,vres
N−2,v

res
N−1) = (v∗1,v

∗
2, . . . ,v

∗
N−1,Kw∗N),

(13)
in which, in this definition,{v∗j} andw∗N are the optimal in-
puts and terminal state computed at the previous decision
timepoint. The second alternative is the “short control hori-
zon” optimal control sequence defined as the optimal solu-
tion of (5) for a short horizon̄N < N, chosen so that the time
required to solve this problem is much shorter than that re-
quired to solve the problem with control horizonN. Denote
this control sequence as:

vsh = (vsh
0 , . . . ,vsh

N̄−1). (14)

A formal definition of the proposed partial enumeration
MPC algorithm can now be given.
Algorithm 1 (Partial enumeration MPC)
Data at time k: a table with Lk ≤ Lmax entries (each en-
try contains the matrices/vectors in the systems(11a)-(12),
a time stamp of the last time the entry was optimal, a
counter of how many times the entry was optimal), “re-
stricted” sequence vres (computed at time k−1), previous

target bprev
s =

[
ū′k−1 x̄′k−1

]′
, current target bs and deviation
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state w0.
Repeat the following steps:

1. Search the table entries in the decreasing order of op-
timality rate. If an entry satisfies(12), compute the op-
timal control sequence from(11a), define the current
control input as in(8), and go to Step 5. Otherwise,

2. If the following condition holds:

δ =
‖bs−bprev

s ‖2
1+‖bs‖2

≤ δmax, (15)

for a user-specified (small) positive scalarδmax, define
the current control input as:

uk = vres
0 + ūk−1, (16)

and go to Step 4. Otherwise,
3. Solve the “short control horizon” MPC problem and

define the current control input as:

uk = vsh
0 + ūk. (17)

4. Solve(5) (or (6)) and compute the matrices/vectors in
(11a)-(12) for the optimal active set. Add the new entry
(possibly deleting the oldest entry if the Lk = Lmax).

5. Update time stamp and frequency for the optimal entry.
Define vres for the next decision timepoint as in(13).

6. Increase k← k+1 and go to Step 1.
Remark 2 In Step 4, for systems with a large number of
states the solution of(6) is to be preferred, while for systems
with moderate state dimension and large control horizon the
solution of (5) is expected to be more convenient (Rao et
al., 1998).
Remark 3 Notice that(16) and (13) imply that the current
(fall-back) control input is defined as the corresponding op-
timal one computed at the previous decision timepoint, i.e.
uk = uk|k−1.

If, for the current(bs,w0), the optimal active set is not
found in the table, then Step 4 is executed: the optimal input
sequence is calculated for this(bs,w0) and the correspond-
ing information is added to the table, in time (if possible)
for the next stagek+ 1. When these computations are not
completed prior to the next sampling time, as may happen in
practice, several modifications to the algorithm are needed.
Since the reserve sequencevres in Step 5 must be adjusted
without knowing the results of Step 4, this sequence is left
unchanged, except to shift it forward one interval, as in (13).
When, at some future time point, the computations for the
given pair(bs,w0) are completed, the corresponding infor-
mation is added to the table. The variablevresalso is updated
with the newly available optimal sequence (with the obso-
lete entries for the earlier stages removed) provided that the
reserve sequence was not updated in the interim as a result
of finding an optimal sequence in the table. Moreover, it
is important to notice that, in (15),bprev

s denotes the target
around which the reserve sequence was computed, and ¯uk−1
in (16) is the corresponding input target. Section 4 provides
some experiments in which there are delays in performing
the computations in Step 4.

3.3 Properties
The main theoretical properties of the proposed partial

enumeration MPC algorithm are now presented. In particu-
lar, Theorem 4 states that the proposed partial enumeration
MPC algorithm retains the nominal constrained closed-loop
stability of the corresponding “optimal” MPC algorithm. To
save space, the proofs are omitted here, but can be found
in (Pannocchia et al., 2006).

The penaltyP in (5) is chosen as the optimal cost-to-
go matrix of the following “unconstrained” linear quadratic
infinite horizon problem:

min
w,v

∞

∑
j=0

1
2

{
w′jQwj +v′jRvj

}
(18a)

subject to:

w j+1 = Awj +Bvj , j = 0,1,2, . . . . (18b)

With such a choice ofP and given the corresponding stabi-
lizing gain matrix

K =−(R+B′PB)−1B′PA, (19)

the unconstrained “deviation” input and state evolves as:

v j = Kw j , w j+1 = Awj +Bvj = AKw j , j = 0,1,2, . . . , (20)

in which AK = A+BK is a strictly Hurwitz matrix, and the
optimal objective value is12wT

0 Pw0. Define O∞ to be the
set of target/initial state pairs such that the unconstrained
solution (20) satisfies the constraints (5c) at all stages, i.e.

O∞ = {(bs,w) |Dv j ≤ d−Dsbs

for all v j , w j satisfying (20) withw0 = w}. (21)

The setO∞ is said to have afinite representationif this
infinite set of inequalities can be reduced to a finite set.
Remark 4 The formulae(20) can be used to eliminate the
v j and wj from this definition and write O∞ as an infinite
system of inequalities involving only w and bs, as follows:

O∞ = {(bs,w) |DwA j
Kw≤ d−Dsbs for all j = 1,2, . . .},

(22)
in which Dw = DK. Notice that O∞ is non-empty since
(bs,0) ∈O∞ for any “feasible” target bs, i.e. such that(3d)
holds.
Now define the following “parametrized” sets:

W(bs) = {w|(bs,w) ∈O∞}, (23)
WN(bs) = {w|w j andv j , optimal solution to (5) with

w0 = w, satisfywN ∈W(bs)}. (24)

Notice thatWN(bs) is the set of initial states such that the
optimal state trajectory entersW(bs) in at mostN timesteps.

Our first result defines conditions under whichW(bs) has
a nonempty interior and a finite representation.
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Lemma 1 Assume that bs satisfies Dsbs < d, thatW̃(bs) =
{w|Dww≤ d−Dsbs} is bounded, and that AK has all eigen-
values inside the open unit circle. Then, W(bs) is non-empty
with the origin in its interior and has a finite representation.

Our next result describes a key property of the setsWN(bs)
and the relationship between these sets andW(bs).
Lemma 2 Suppose the assumptions of Lemma 1 hold and
that P in(5) is chosen as the solution of the Riccati equation
associated with(18). Then

W(bs)⊆W1(bs)⊆W2(bs)⊆ ·· · . (25)

Moreover, WN(bs) is positively invariant for the system
w̄ j+1 = Aw̄ j +Bv̄ j with v̄ j defined as the first component of
the control sequence solution of(5).

We now describe conditions under which the initial devi-
ation statew0 lies inWN(bs), for all N sufficiently large.
Theorem 3 Suppose the assumptions of Lemma 1 hold. As-
sume that for the current deviation state w0 there are state
and input infinite sequences{w j} and{v j} that satisfy(5b)
and (5c) (in which these constraints hold forall j) and such
that the corresponding objective function in(18) is finite.
Then, there exists a finite integer N′ (which depends on w0)
such that

w0 ∈WN(bs) for all N ≥ N′. (26)

Finally, we describe a nominal stability property for Al-
gorithm 1.
Theorem 4 The control input uk computed from Algo-
rithm 1 is feasible with respect to(2) for any current devia-
tion state w0 and target bs. Moreover, under the assumptions
of Lemma 2, the outlined procedure is closed-loop nomi-
nally stabilizing, that is,(w j ,v j)→ 0 for any w0 ∈WN(bs).

4 Application examples
Two examples are examined to evaluate the proposed

partial enumeration algorithm and compare it with a com-
mercial active-set solver,qpsol . All simulations are per-
formed using Octave on a 1.2 GHz PC, and time is measured
with the functioncputime [more details can be found in
(Pannocchia et al., 2006)]. Partial enumeration solvers are
implemented, for backup calculation of a suboptimal input,
with δmax = 0.0001 and short control horizon of̄N = 3.

The following performance indices are considered.
• Optimality rate:OR := Nopt

Ntot
, in which Nopt is the number

of decision timepoints in which the optimal solution was
found in the table andNtot is the overall number of deci-
sion timepoints.
• Suboptimality index:SI := |Φ−Φ∗|

Φ∗ , in which Φ is the
achieved closed-loop objective function andΦ∗ is the op-
timal one.
• Average speed factor:ASF := T∗aver

Taver
, in whichT∗averandTaver

are the average times required to compute the optimal and
the (sub)optimal input.
• Worst-case speed factor:WSF := T∗max

Tmax
, in which T∗max and

Tmax are the maximum times required to compute the
optimal and the (sub)optimal input.

4.1 Example #1
The first example is a stable system withm= 3 inputs,p=

2 outputs andn = 12 states, in which the sampling time is
1 sec and the normalized inputs must satisfy the constraints:
−1≤uk≤1. The MPC regulator is designed with the follow-
ing parameters:N = 100,Q=C′C, R= 0.01Im, and thus the
possible different active sets are 3200 = 2.656×1095. Sev-
eral partial enumeration solvers are compared: PE1, PE25,
PE50, PE100 and PE200 use an active-set table withNe = 1,
25, 50, 100 and 200 entries, respectively. As a comparison
another solver is also considered: SH always computes and
injects the optimal solution of (6) with a short control hori-
zon of N̄ = 3.

The different solvers are compared in a 20,000 decision
timepoints simulation featuring 20 random step disturbances
acting on the states, 20 random setpoint changes and nor-
mally distributed output noise. Table 1 provides the perfor-
mance indices achieved by each solver. From this table it is
evident that the use of a short control horizon can cause se-
vere performance degradation while partial enumeration al-
lows a fast computation of the optimal solution most of the
times, with a small overall performance degradation. Fig-
ure 1 presents the cumulative frequency versus the number
of entries scanned in the table by each partial enumeration
solver. Figure 2 describes of the evolution of the active-set
table for PE25 during the simulation, quantified by the fol-
lowing indices:Rd(k,0) = D(k,0)

Ne
, Rd(k,k−Ne) = D(k,k−Ne)

Ne
,

in which D(k, j) is the number of table entries at timek that
are not in the table at timej, while Ne is the number of all
entries in the table. Figure 2 shows that the active-set table
changes over time to adjust to new disturbances and operat-
ing conditions.

The effect of the delay in solving the MPC problem in Step
4 was investigated first by introducing an integer parameter
tlag which inflates the time required for solution of the full
MPC problem. Specifically, if it is necessary to perform Step
4 at timek, the solution is assumed to become available for
insertion in the table at timekavail defined bykavail = k+ tlag.
Figure 3 presents the results of this study for Example #1,
in the case in which the table contains 25 entries. Note that,
even for the small number of table entries, the suboptimality
indexSI remains close to its optimal value of 0 fortlag up to
50 and within a factor of one attlag= 200. Fortlag= 5000, the
performance is as poor as the short-horizon backup strategy.

In a second x-axis at the top of Figure 3, we quantify
the effect of a computational delay differently. Consider the
ratio of the the time it takes to solve the full MPC problem
to the sample time. We define a parameterα, with which we
inflate this ratio, so a solution computed at timek is available
for insertion in the table at timekavail = k+αTQP(k)/TS. As
displayed in Figure 3, the control performance loss is not
significant until the full MPC calculation runs about 1000
times slower (or the sample time is 1000 times faster).
4.2 Example # 2: Crude Distillation Unit

The second example is a crude distillation unit model
with m= 32 inputs,p = 90 outputs andn = 252 states. In-
puts and outputs are normalized, and the inputs must satisfy
bound constraints. Only four outputs, representing the qual-

6



ity of the crude distillation unit side products, have desired
setpoints, and the MPC regulator is designed with the fol-
lowing parameters:N = 25, Q = C′C, R= 20Im. The num-
ber of possible different active sets is 3800 = 4.977×10381.
Response of the “true” plant is simulated by adding, to the
nominal model response, unmeasured random step distur-
bances on the crude composition, on the fuel gas quality
and on the steam header pressure, and normally distributed
output noise.

Five partial enumeration solvers are compared: PE1,
PE25, PE50, PE100, PE200 use an active-set table of 1, 25,
50, 100 and 200 entries, respectively. The different solvers
are compared on a 5 day (7201 decision timepoints) simu-
lation with 10 random disturbances and 5 setpoint changes.
Table 1 provides the performance indices obtained with
each solver. Table 1 shows that the partial enumeration
solvers provide low suboptimality with remarkable speed
factors, especially when small tables are used. This large-
scale example is particularly challenging since on average
qpsol takes about 26 seconds to compute the optimal in-
put with a worst-case of about 53 seconds. In comparison,
PE25 requires in the worst-case about 1.3 seconds, and is
therefore definitely applicable for real-time implementation
with sampling time of 1 minute. Active constraints are the
rule in this example. On average, about 9 inputs (out of
32) are saturated at their (lower or upper) bound at each
sample. The fully unconstrained solution (LQ regulator) is
not feasible atanysample time in the simulation. The crude
distillation unit operation under MPC control is always on
the boundary of the feasible region, which is expected to be
typical of large-scale, multivariable plants.

5 Conclusions
Partial enumeration (PE) has been presented as a method

for addressing large-scale, linear MPC applications that can-
not be treated with current MPC methods. Depending on the
problem size and sampling time, online QP methods may
be too slow, and offline feedback storage methods cannot
even store the full feedback control law. The PE method
was shown to have reasonable nominal theoretical proper-
ties, such as closed-loop stability. But the important feature
of the method is its ability to handle large applications. The
industrial distillation large example presented demonstrates
suboptimality of less than 0.01%, with average speedup fac-
tors in the range of 83–220, and worst case speedups in the
range of 4.8–39.2. Small tables with only 25–200 entries
were used to obtain this performance. These small tables
contain the optimal solution at least 75% of the time given
an industrially relevant set of disturbances, noise, and set-
point changes.

Many extensions of these basic ideas are possible. If one
has access to several processors, the storage table can be
larger and hashed so that different CPUs search different
parts of the table. Several CPUs also enable one to calculate
more quickly the optimal controls missing from the current
table. One can envision a host of strategies for populating the
initial table depending on the user’s background and experi-
ence, ranging from an empty table in which all table entries
come from online operation, to more exhaustive simulation

of all disturbance scenarios expected in normal plant oper-
ation. In this work two backup strategies are presented for
use when the optimal control is not in the current table: a
restriction of the previous, optimal trajectory, or a short con-
trol horizon solution. One can readily imagine other backup
strategies that may prove useful in practice.

Of course, a complete solution for large-scale problems
remains a challenge. The PE method pushes back the cur-
rent boundary between what size application is and is not
tractable using MPC.
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Table 1
Performance indices for the examples.

Example #1 Example #2

OR SI ASF WSF OR SI ASF WSF

SH – 6.083 523 240

PE1 0.888 0.0580 302 230 0.654 6.9·10−5 610 399

PE25 0.890 0.0537 225 46.0 0.752 6.8·10−5 220 39.2

PE50 0.891 0.0537 181 20.9 0.762 6.8·10−5 162 20.1

PE100 0.892 0.0537 135 17.8 0.770 6.8·10−5 121 10.1

PE200 0.894 0.0537 89.6 14.4 0.786 6.8·10−5 83.3 4.79
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Fig. 1. Example # 1: cumulative frequency of finding an optimal
entry versus number of entries scanned. Most of the benefit is
achieved with small tables, and then optimality increases only
slowly with table size.
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Fig. 2. Example #1: table relative differences for PE25. The top
figure shows that the original table is completely replaced as plant
operation evolves. The bottom figure shows that the table turns over
quickly during some periods and remains fairly constant during
other periods.
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Fig. 3. Example #1: suboptimality versus computational delay.
For a wide range of the computational delay, partial enumeration
provides almost optimal performance.
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