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Abstract. We investigate a modi�ed Cholesky algorithm typical of those used in most interior-
point codes for linear programming. Cholesky-based interior-point codes are popular for three rea-
sons: their implementation requires only minimal changes to standard sparse Cholesky algorithms
(allowing us to take full advantage of software written by specialists in that area); they tend to be
more e�cient than competing approaches that use alternative factorizations; and they perform ro-
bustly on most practical problems, yielding good interior-point steps even when the coe�cient matrix
of the main linear system to be solved for the step components is ill-conditioned. We investigate this
surprisingly robust performance by using analytical tools from matrix perturbation theory and error
analysis, illustrating our results with computational experiments. Finally, we point out the potential
limitations of this approach.
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1. Introduction. Most interior-point codes for linear programming share a com-
mon feature: their major computational operation at each iteration|solution of a
large system of linear equations with a symmetric positive de�nite coe�cient matrix|
is performed by a direct sparse Cholesky algorithm. In this algorithm, row and column
orderings are determined a priori by well-known heuristics (minimum degree, mini-
mum local �ll, nested dissection) that are based solely on the sparsity pattern and
not on the numerical values of the nonzero elements. The ordering phase is followed
by a symbolic factorization phase, in which the nonzero structure of the Cholesky
factor is determined and storage is allocated. Finally, a numerical factorization phase
�lls in the numerical values of the lower triangular Cholesky factor. In interior-point
codes, the �rst two phases usually are performed just once, during either the �rst
interior-point iteration or computation of a starting point.

In the interior-point context, the unadorned Cholesky algorithm can run into
di�culties because of extreme ill-conditioning. Some diagonal pivots encountered
during the numerical factorization phase can be zero or negative, causing the stan-
dard Cholesky procedure to break down. Instead of crashing, most codes modify the
Cholesky procedure so that it skips the unacceptable pivots or replaces them with
workable values. For instance, the o�ending pivot element is sometimes replaced by
a huge number, as in LIPSOL [20] and PCx [3]. In other codes such as IPMOS [19],
the pivot is replaced by a moderate number, but the corresponding right-hand side
element is set to zero, as are the o�-diagonal elements in the corresponding column
of the Cholesky factor. The net e�ects of these approaches, and the approaches used
in other Cholesky-based codes such as OB1 [9], HOPDM [6] and the APOS code of
XPRESS-MP [1], are all quite similar to those of the algorithm modchol that we
analyze in this paper: Each small or negative pivot causes the Cholesky procedure
to skip one stage, and the solution component corresponding to this pivot is set to
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zero (or to a very small number). To date, there has been little investigation of these
pivot-skipping strategies from a numerical analysis viewpoint.

In the context of Cholesky factorization of general symmetric positive semide�-
nite matrices, Lawson and Hanson [8, p. 125] advocate the use of pivot skipping when
negative pivots are encountered. They also suggest the alternative remedy of diagonal
pivoting, in which a \large" diagonal element is selected from the unreduced portion
of the matrix at each stage, and moved to the pivot position by a symmetric row and
column exchange. The procedure terminates when none of the remaining diagonal ele-
ments is large enough to qualify as a pivot, and an approximate solution is computed
with the partial factors. Higham [7, Chapter 10] presents an error analysis of this
approach, and M. Wright [15] has considered its use in factoring the Hessian matri-
ces that arise in the Newton/logarithmic-barrier method for nonlinear programming.
This strategy is not practical in the context of interior-point linear programming codes
because the matrices in question are too large to allow row and column exchanges to
be performed e�ciently. On the other hand, pivot-skipping strategies have the ad-
vantage that they can be implemented by changing just a few lines of a general sparse
Cholesky code, so it is possible to take advantage of the long-term development ef-
fort that has gone into designing such codes and their underlying algorithms. (The
recent codes LIPSOL [20] and PCx [3] make explicit use of the sparse Cholesky code
of Ng and Peyton [10].) Moreover, the good practical performance of pivot-skipping
strategies made the search for alternatives less urgent.

In this paper, we investigate the good performance of pivot-skipping strategies on
the majority of practical problems. In Section 3, we specify our representative pivot-
skipping strategy, which we term modchol for convenience, and analyze the e�ects
of the skipped pivots on the computed triangular factor and computed solution. In
Section 4, we incorporate the e�ects of �nite-precision arithmetic into the analysis.
Both sections are general in that they apply to general symmetric positive semide�nite
matrices, not just the speci�c matrices that arise in the interior-point application. In
Section 5, however, we apply the results of Sections 3 and 4 to the equations for
calculating the interior-point step, showing how the errors in the computed steps
a�ect the progress of the interior-point algorithm, suggesting a suitable termination
criterion, and indicating possible shortcomings in the pivot-skipping approach. Our
analysis in this section applies to primal- and dual-degenerate linear programs. We
conclude with some computational results in Section 6.

A number of other theoretical papers on linear algebra operations in barrier and
interior-point methods have appeared in recent years. We mentioned above the paper
of M. Wright [15], in which a Cholesky procedure with diagonal pivoting is used as
the basis of an algorithm to construct steps that are accurate both in the subspace
spanned by the active constraint Jacobian and its complement. Our focus in the
current paper is on (possibly degenerate) linear programs rather than nondegenerate
nonlinear programs. Moreover, we do not allow diagonal pivoting and, since our
problem is a linear program, the issue of resolving the component of the step in the
near-null space of the active constraint matrix is not as relevant.

In an earlier paper [18], the author considered the stability of algorithms for the
symmetric inde�nite formulation of the step equations at each iteration of an interior-
point method for linear programming. Ill conditioning of the coe�cient matrix is the
key issue in this formulation as well, but we showed that, in general, the calculated
steps are good search directions for the interior-point method. Forsgren, Gill, and
Shinnerl [5] perform a similar analysis in the context of logarithmic barrier methods
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for nonlinear problems, but they assume a certain ordering of the rows and columns
of the coe�cient matrix.

Notation. We summarize here the notation used in the remainder of the paper.
The ith singular value of a matrix B is denoted by �i(B). We use �i alone to

denote the ith singular value of the exact Cholesky factor L in Section 3.
For any matrixM and index sets I and K,MIK denotes the submatrix formed by

the elements Mij, for i 2 I and j 2 K. The jth column of M is denoted by M�j, the
column submatrix consisting of columns j 2 K is denoted by M�K, and the submatrix
of elements Mij for j 2 K is noted by Mi;K. The submatrix consisting of rows and
columns i through j is denoted by Mi:j;i:j .

Unit roundo� error, which we denote by u, can be de�ned implicitly by the
following statement (see, for example, Higham [7]). When � and � are any two
oating-point numbers, op denotes +, �, �, and =, and (�) denotes the oating-
point representation of a real number, we have

(� op �) = (� op �)(1 + �) for some � satisfying j�j � u.

We use comp(�) to denote the calculated version of the quantity in question, taking
into account the e�ects of roundo� error.

In estimating the sizes of various quantities that arise in the analysis, we use �1
to denote a constant whose magnitude depends at most cubically on the dimension
m of the linear system. We often use �u as a shorthand for �1u. Order notation O(�)
and �(�) is used as follows: If v (vector or scalar) and � (nonnegative scalar) are two
quantities that share a dependence on other variables, we write v = O(�) if there is a
moderate constant �1 such that kvk � �1� for all values of � that are either su�ciently
close to zero or su�ciently large, depending on the context. We write v = �(�) if
there are constants �1 and �0 such that �0� � kvk � �1� for � in the ranges speci�ed
above.

The notation k � k denotes the Euclidean vector norm k � k2 and also its induced
matrix norm, unless otherwise noted. For any matrix A, the matrix consisting of the
absolute values of each element is denoted by jAj. We use 1 to denote the vector
(1; 1; : : : ; 1)T .

Finally, we mention the parameter � that de�nes the pivot threshold in the mod-
i�ed Cholesky algorithm. A scaled quantity �� de�ned by

��
def
= 2m2�(1.1)

appears frequently in the analysis, because the incorporation of the scaling term 2m2

saves some clutter.

2. Primal-Dual Algorithms for Linear Programming. We consider the
linear programming problem in standard form:

min cTx subject to Ax = b; x � 0;(2.1)

where x 2 IR
n, c 2 IR

n, A 2 IR
m�n, and b 2 IR

m. The dual of (2.1) is

max bT� subject to AT� + s = c; s � 0;(2.2)

where s 2 IR
n and � 2 IR

m. We assume throughout the paper that A has full row
rank (which can be guaranteed be preprocessing the data), so that m � n. The
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Karush-Kuhn-Tucker (KKT) conditions, which identify a vector triple (x; �; s) as a
primal-dual solution for (2.1), (2.2), can be stated as follows:

AT� + s = c;(2.3a)

Ax = b;(2.3b)

xisi = 0; i = 1; 2; : : : ; n;(2.3c)

(x; s) � 0:(2.3d)

We assume throughout the paper that a primal-dual solution exists, but we make
no assumptions about uniqueness or nondegeneracy. It is well known that the index
set f1; 2; : : :; ng can be partitioned into two sets B and N such that for all primal-dual
solutions (x�; ��; s�) we have

x�i = 0 for all i 2 N ; s�i = 0 for all i 2 B:(2.4)

Primal-dual interior-point algorithms generate a sequence of iterates (x; �; s) that
satisfy the strict inequality (x; s) > 0. They �nd search directions by applying a mod-
i�cation of Newton's method to the system of nonlinear equations that is equivalent
to the �rst three KKT conditions (2.3a), (2.3b), (2.3c), namely,

Ax� b = 0; AT� + s � c = 0; XS1 = 0;(2.5)

where X = diag(x1; x2; : : : ; xn) and S = diag(s1; s2; : : : ; sn). In general, the search
direction (�x;��;�s) satis�es the following linear system:24 0 AT I

A 0 0
S 0 X

3524 �x
��
�s

35 =

24 �rc�rb
�rxs

35 ;(2.6)

where the coe�cient matrix is the Jacobian of (2.5) and the right-hand side compo-
nents rb and rc are de�ned by

rb = Ax� b; rc = AT� + s� c:(2.7)

In a pure Newton (a�ne-scaling) method, the remaining right-hand side component
rxs is de�ned by

rxs = XS1;(2.8)

and, in this case, we denote the solution of (2.6) by (�xa�;��a�;�sa�). In a path-
following method, we have

rxs = XS1 � ��1;(2.9)

where � is the duality gap de�ned by

� = xT s=n;(2.10)

and � 2 [0; 1] is a centering parameter. In the \Mehrotra predictor-corrector" al-
gorithm, which is used as the basis of many practical codes, the search direction is
calculated by setting

rxs = XS1 +�Xa��Sa�1� ��1;(2.11)
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where �Xa� and �Sa� are the diagonal matrices formed from the a�ne-scaling step
components �xa� and �sa� , and the value of � is determined by a heuristic based
on the e�ectiveness of the a�ne scaling direction. Mehrotra's method requires the
solution of two linear systems at each iteration|the a�ne scaling system (2.6), (2.7),
(2.8), and the search direction system (2.6), (2.7), (2.11)|though the coe�cient ma-
trix is the same for both systems. Gondzio's [6] higher-order corrector method re�nes
the step by solving additional linear systems, all with the same coe�cient matrix as
in (2.6).

Once a search direction has been determined, the primal-dual algorithm takes a
step of the form

(x; �; s) + �(�x;��;�s);

where � is chosen to maintain strict positivity of the x and s components; that is,

(x; s) + �(�x;�s) > 0:(2.12)

In most codes, � is chosen to be some fraction of the step-to-boundary �max de�ned
as

�max = sup
�2[0;1]

f� j (x; s) + �(�x;�s) � 0g:(2.13)

A typical strategy is to set

� = ��max;

where � 2 [:9; 1:0) approaches 1 as the iterates approach the solution set.
By applying block elimination to (2.6) and using the notation

D2 = S�1X;(2.14)

we obtain the following equivalent system:

AD2AT�� = �rb � AD2(rc �X�1rxs);(2.15a)

�s = �rc �AT��;(2.15b)

�x = �S�1(rxs +X�s):(2.15c)

In many codes, the solution is obtained from just this formulation. A sparse Cholesky
factorization, modi�ed to handle small or negative pivots, is applied to the symmetric
positive de�nite coe�cient matrix AD2AT in (2.15a) and the solution �� is obtained
by triangular substitution with the computed factor. The remaining direction com-
ponents are recovered from (2.15b) and (2.15c). Computational experience shows
that this technique yields steps that are useful search directions for the interior-point
algorithm, even when AD2AT is ill-conditioned and when the computed version of
�� has few digits in common with the exact version. This observation is somewhat
surprising, since a naive application of error analysis results would suggest that the
combination of ill conditioning and roundo� would corrupt the direction hopelessly.

In Section 5, we investigate this phenomenon by applying the error analysis de-
veloped in Sections 3 and 4 to the solution of the system (2.15), assuming that our
algorithmmodchol is used to solve (2.15a) and that all computations are performed
in �nite precision oating-point arithmetic. We examine the e�ects of the errors in
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the computed step on properties such as the value of �max (2.13) and on the updated
values of the residuals rb and rc|properties that indicate whether the step is a useful
one for the interior-point method.

We start by specifying modchol and analyzing its properties as they pertain to
a general linear system Mz = r, where M is symmetric positive de�nite.

3. A Modi�ed Cholesky Algorithm. In this section, we describe and analyze
modchol, a modi�ed Cholesky algorithm designed to handle ill-conditioned matrices
for which small or negative pivots may arise during the factorization.

Algorithm modchol accepts an m � m symmetric positive de�nite matrix M
as input, together with a small positive user-de�ned parameter �, which de�nes a
threshold of acceptability for the pivot elements. If a candidate pivot element is
smaller than this threshold, the algorithm simply skips a step of factorization. The
output of modchol is an approximate lower triangular factor ~L and an index set
J � f1; 2; : : : ;mg containing the indices of the skipped pivots. In the following
speci�cation, we use M (i) to denote the unfactored part of M that remains after i
steps of the algorithm.

Algorithmmodchol
Given � with 0 < �� 1;

Set M (0)  M ; ~L 0; J  ;; � = maxi=1;2;:::;m Mii;
for i = 1; 2; : : : ;m

if M
(i�1)
ii � ��

(* skip this elimination step *)
Set J  J [ fig and

E(i) =

266666664

0 0 � � � � � � 0

0 M
(i�1)
ii � � � � � � M

(i�1)
im

...
... 0 0

...
...

. . .
...

0 M
(i�1)
mi 0 � � � 0

377777775
; M (i) = M (i�1) �E(i);(3.1)

else
(* perform the usual Cholesky elimination step *)

~Lii  
q
M

(i�1)
ii ; M (i)  0

for j = i + 1; i+ 2; : : : ;m
~Lji =M

(i�1)
ij =~Lii ;

for j = i + 1; i+ 2; : : : ;m
for k = i + 1; i+ 2; : : : ;m

M
(i)
jk  M

(i�1)
jk � ~Lji

~Lki.

The ith column of ~L is zero for each i 2 J ; that is, ~L�J = 0. If we denote

E =
X
i2J

E(i)(3.2)

and denote the complement of J in f1; 2; : : : ;mg by �J , it follows from (3.1) that

E �J �J = 0:(3.3)
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That is, the row or column index of each nonzero element in E must lie in J . It follows
from the algorithm that ~L is the exact Cholesky factor of the perturbed matrixM�E,
which we denote for convenience by ~M . That is, we have

~L~LT = ~M = M �E:(3.4)

By partitioning this equation into its J and �J components and using ~L�J = 0 and
(3.3), we obtain

M �J �J = ~L �J �
~LT

�J � +E �J �J = ~L �J �J
~LT

�J �J(3.5a)

M �JJ = ~L �J �
~LT
J � +E �JJ = ~L �J �J

~LT
J �J +E �JJ :(3.5b)

The exact Cholesky factor L (whose existence is guaranteed by the assumed positive
de�niteness of M ) satis�es

LLT = M:(3.6)

Given the linear system

Mz = r;(3.7)

where M is the matrix factored by modchol, the exact solution obviously satis�es

z = M�1r = L�TL�1r:(3.8)

The approximate solution ~z is chosen so that the partial vector ~z �J solves the re-
duced system M �J �J ~z �J = r �J , while the complementary subvector ~zJ is set to zero.
From (3.5a), we see that ~z �J can be calculated by performing a pair of triangular
substitutions; that is,

~z �J = ~L�T�J �J
~L�1�J �J

r �J ; ~zJ = 0:(3.9)

Note that z = ~z when J = ;. When J 6= 0, on the other hand, the di�erence between
~z and z can be large in a relative sense. We have

kz � ~zk =
� zJ � 0

z �J � ~z �J

� � kzJ k;
and there is no reason to expect zJ to be small with respect to the full vector z.
However, in the main result of this section (Theorem 3.4), we show that the di�erence
between ~LT z and ~LT ~z is small. As we see in Section 5, this di�erence determines the
usefulness of the computed solution of (2.15) as a search direction for the interior-point
algorithm.

To simplify the analysis, we assume throughout the paper that

� = 1:(3.10)

A trivial scaling, which a�ects neither the algorithm nor its analysis, can always be
applied to the symmetric positive de�nite matrix M to yield (3.10).

We start with a simple result about the intermediate matrices M (i) that arise
during modchol.

Lemma 3.1. If (3.10) holds, then the submatrix formed by the last m�i rows and
columns of M (i) is symmetric positive de�nite, for all i = 0; 1; : : : ;m� 1. Moreover,
the diagonal elements of all these submatrices are bounded by 1.
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Proof. This observation follows by a simple inductive argument. By assumption,
the starting matrixM (0) = M is positive de�nite. Suppose that the desired property
holds for M (i�1). If i 2 J , then the lower right (m� i)� (m� i) submatrix of M (i) is
identical to the same submatrix of M (i�1), which is positive de�nite by assumption.
Otherwise, if i =2 J , then M (i) is obtained by applying one step of Cholesky reduction
to M (i�1), so its lower right (m � i) � (m � i) submatrix is positive de�nite in this
case too.

The second claim follows immediately from the fact that Mii � � = 1, i =
1; 2; : : : ;m and the fact that the diagonal elements cannot increase during the execu-
tion of modchol.

The next result bounds the remainder matrix E.
Lemma 3.2. Assume that (3.10) holds. We then have that

kEk2 � kEkF � ��1=2;(3.11)

where �� = 2m2�.
Proof. From Lemma 3.1, we have (M

(i�1)
i;l )2 � M

(i�1)
i;i M

(i�1)
l;l for each l = i +

1; : : : ;m. Suppose i 2 J , so that M
(i�1)
i;i � �. Since the diagonals of each submatrix

M (i�1) are bounded by 1, we have M (i�1)
l;l � 1 and therefore

���M (i�1)
i;l

��� � �M (i�1)
i;i M

(i�1)
l;l

�1=2
� �1=2; l = i+ 1; : : : ;m:

Hence, we have

kE(i)k22 � kE(i)k2F � (M
(i�1)
i;i )2 + 2

mX
l=i+1

(M
(i�1)
i;l )2 � �2 + 2(m � i)� � 2m�:

By using (3.2) and the fact that the nonzero elements of each E(i) occur in di�erent
locations, we have

kEk2F =
X
i2J

kE(i)k2F � jJ j2m� � 2m2�;

thereby proving (3.11).
The bound (3.11) suggests that the matrix ~L�1�J �J

E �JJ , which proves to be critical
in our analysis, can be estimated by

k~L�1�J �J
E �JJ k � k~L�1�J �J

kkE �JJ k � ��1=2k~L�1�J �J
k:

The following theorem shows that in fact the factor k~L�1�J �J
k can be omitted from the

right-hand side. The resulting bound is much stronger, because the omitted factor is
potentially quite large.

Theorem 3.3. Assume that (3.10) holds. We then have

k~L�1�J �J
E �JJ k � (m�)1=2:(3.12)

Proof. We start by choosing some arbitrary index i 2 J , and examine the struc-
ture of E�i. We note from (3.1) and (3.2) that
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Eji 6= 0 for j < i only if j 2 J ;
Eii = M

(i�1)
ii ;

Eji = M
(i�1)
ji 6= 0 in general for all j > i.

Therefore, we observe that the subvector

E �J ;i = [Eji]j2 �J

has nonzeros only in locations indexed by j with j > i. If we de�ne the index subsets
�Ji and Ji by

�Ji def
= �J \ fi+ 1; i+ 2; : : : ;mg; Ji def

= J \ fi+ 1; i+ 2; : : : ;mg;(3.13)

it follows that

E �J ;i =

�
0

E �Ji;i

�
:(3.14)

It follows from this property and and lower triangularity of ~L �J �J that

~L�1�J �J
E �J i =

�
0

~L�1�Ji
�Ji

E �Jii

�
:(3.15)

From Lemma 3.1, we have that M
(i�1)
i:m;i:m is symmetric positive de�nite. We per-

form symmetric permutations on this matrix to group the components in Ji and �Ji,
and obtain2664

M
(i�1)
ii M

(i�1)

i; �Ji

M
(i�1)
i;Ji

M
(i�1)
�Ji;i

M
(i�1)
�Ji; �Ji

M
(i�1)
�Ji;Ji

M
(i�1)
Ji;i

M
(i�1)

Ji; �Ji

M
(i�1)
Ji;Ji

3775 =

2664
M

(i�1)
ii ET

�Ji;i
ET
Ji;i

E �Ji;i M
(i�1)
�Ji; �Ji

M
(i�1)
�Ji;Ji

EJi;i M
(i�1)

Ji; �Ji

M
(i�1)
Ji;Ji

3775 ;(3.16)

which is still symmetric positive de�nite. The principal submatrix"
M

(i�1)
ii ET

�Ji;i

E �Ji;i M
(i�1)
�Ji; �Ji

#
(3.17)

is also symmetric positive de�nite. It is easy to see that steps i + 1; i + 2; : : : ;m of
modchol yield a modi�ed Cholesky factorization of the form

M
(i�1)
i+1:m;i+1:m = ~Li+1:m;i+1:m

~LT
i+1:m;i+1:m +Ei+1:m;i+1:m:

As in (3.5a), we have that E �Ji; �Ji
= 0, so that by reordering and partitioning as in

(3.16), and using ~L �Ji;Ji
= 0, we obtain

M
(i�1)
�Ji; �Ji

= ~L �Ji; �Ji

~LT
�Ji; �Ji

:(3.18)

By the positive de�nite property of the matrix in (3.17), The Schur complement of

M
(i�1)
ii in this matrix must be positive, so we have from (3.18) that

0 < M
(i�1)
ii �ET

�Ji;i
(M (i�1)

�Ji; �Ji

)�1E �Ji;i = M
(i�1)
ii � k~L�1�Ji; �Ji

E �Ji;ik2:
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Because i 2 J , we have M (i�1)
ii � �, and therefore from (3.15) we have

k~L�1�J �J
E �J ;ik = k~L�1�Ji; �Ji

E �Ji;ik < �1=2:

Since this bound holds for all i 2 J , we have
k~L�1�J �J

E �JJ k � jJ j1=2�1=2 � (m�)1=2;

as required.
We are now able to derive an estimate of the di�erence between ~LT z and ~LT ~z.
Theorem 3.4. Suppose that (3.10) holds. For the exact solution z and approxi-

mate solution ~z de�ned in (3.8) and (3.9), respectively, we have that

k~LT [z � ~z]k = k~L�1�J �J
E �JJ zJ k � (m�)1=2kzJ k:(3.19)

Proof. From (3.8) together with (3.5), we have

r �J = M �J �J z �J +M �JJ zJ

= ~L �J �J
~LT

�J �J z �J +
h
~L �J �J

~LT
J �J + E �JJ

i
zJ

= ~L �J �J
~LT
� �J z + E �JJ zJ ;

while from (3.9), we have

r �J = ~L �J �J
~LT

�J �J ~z �J = ~L �J �J

h
~LT

�J �J ~z �J + ~LT
J �J ~zJ

i
= ~L �J �J

~LT
� �J ~z:

By combining these two relations, we obtain

~LT
� �J [z � ~z] = �~L�1�J �J

E �JJ zJ :(3.20)

Since ~L�J = 0, the result follows immediately.
The remaining analysis of this section requires some additional assumptions on

the distribution of the singular values of M and on the parameter �. Accordingly,
we introduce a little more notation. The eigenvalues of M are denoted by �2i , i =
1; 2; : : : ;m, where

�21 � �22 � � � � � �2m > 0:(3.21)

We de�ne the diagonal matrix � by

� = diag(�1; �2; : : : ; �m):(3.22)

It follows that there exists an orthogonal matrix Q such that

M = Q�2QT :(3.23)

Because the largest diagonal in M is 1 by assumption (3.10), we have by elementary
analysis that

1 � �21 � m:(3.24)

In the subsequent analysis, we assume that there is an integer p with 1 � p � m
such that
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- � is somewhat smaller than �2p; and
- if p < m, there is a signi�cant gap in the spectrum of M between �2p and
�2p+1.

(We will be more speci�c about these two assumptions presently. In particular, we
show in Lemma 3.5 that they imply that j �J j � p.) By partitioning the spectrum at
the gap, we obtain

�1 = diag(�1; �2; : : : ; �p); �2 = diag(�p+1; �p+2; : : : ; �m):(3.25)

From (3.23), Q can be partitioned accordingly to obtain

Q = [Q1 jQ2]; M = Q1�
2
1Q

T
1 + Q2�

2
2Q

T
2 :

Since M = LLT , it follows that �i, i = 1; 2; : : : ;m are the singular values of L. In
fact, we must have

LT = U�QT = U1�1Q
T
1 + U2�2Q

T
2(3.26)

for some m�m orthogonal matrix U = [U1 jU2], where � and Q are de�ned as above.
We use ~�2i , i = 1; 2; : : : ;m to denote the eigenvalues of the perturbed matrix ~M .

It follows immediately from (3.4) that the singular values of ~L are ~�i, i = 1; 2; : : : ;m.
The rank of ~L is j �J j, because ~L �J �J is lower triangular with nonzero diagonals while
~L�J = 0. Therefore, we have

~�j �J j > ~�j �J j+1 = � � � = ~�m = 0:(3.27)

As in (3.26), there are orthogonal m �m matrices ~U and ~Q such that

~M = ~Q~�2 ~QT = ~Q1
~�2
1
~QT
1 + ~Q2

~�2
2
~QT
2 ;(3.28a)

~LT = ~U ~� ~QT = ~U1
~�1

~QT
1 + ~U2

~�2
~QT
2 ;(3.28b)

where

~�1 = diag(~�1; ~�2; : : : ; ~�p); ~�2 = diag(~�p+1; : : : ; ~�m);(3.29)

with a corresponding partitioning for ~U = [~U1 j ~U2] and ~Q = [ ~Q1 j ~Q2]. It is an
immediate consequence of an eigenvalue perturbation result of Stewart and Sun [12,
Corollary IV.4.13] and Lemma 3.2 that

mX
i=1

[�2i � ~�2i ]
2 � kEk2F = ��:(3.30)

The following result shows that if � is su�ciently small relative to the pth eigen-
value of M , then at least p pivots are accepted during modchol.

Lemma 3.5. If ��1=2 < �2p, we have j �J j � p.

Proof. If j �J j < p, we have from (3.27) and (3.30) that

�2p � �2j �J j+1 =
����2j �J j+1 � ~�2j �J j+1

��� � ��1=2;

contradicting our assumption that ��1=2 < �2p.
Our next result concerns the di�erences between the subspaces spanned by Q1

and ~Q1, the spaces of \large" eigenvalues of M and ~M , respectively.
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Lemma 3.6. Suppose that j �J j < m and that the values �p and �p+1 from (3.21)
and � from modchol satisfy the conditions

�2p � �2p+1 > 5��1=2:(3.31)

Then there are matrices

~�1p� p symmetric positive de�nite;
~�2(m � p)� (m � p) symmetric positive semide�nite;
�Q1m � p orthonormal;
�Q2m � (m� p) orthonormal;

such that

~M = �Q~� �QT = �Q1
~�1

�QT
1 + �Q2

~�2
�QT
2(3.32)

k �Q1 �Q1k � 2��1=2

�2p � �2p+1 � 2��1=2
;(3.33)

k~�1 � �2
1k � 2��1=2;(3.34)

k~�2 � �2
2k � 2��1=2;(3.35)

where

�Q = [ �Q1 j �Q2]; ~� =

�
~�1 0

0 ~�2

�
:

Moreover, there are matrices

V1p� p orthogonal;

V2(m � p)� (m � p) orthogonal;

such that

~�2
1 = V T

1
~�1V1; ~Q1 = �Q1V1;(3.36a)

~�2
2 = V T

2
~�2V2; ~Q2 = �Q2V2;(3.36b)

where ~� and ~Q are de�ned as in (3.28).
Proof. Note �rst that p � j �J j by (3.31) and Lemma 3.5. The result is a

straightforward consequence of Theorem V.2.8 of Stewart and Sun [12, p. 238]. Since
~M = M � E, we use (3.23) and partition as in (3.25) to obtain

QT ~MQ = QTMQ�QTEQ =

�
�2
1 0
0 �2

2

�
�
�
F11 F12

FT
12 F22

�
:

We now make the following identi�cations with the quantities in the cited result:

~ = kFT
12k � kFk = kEk � ��1=2; ~� = kF12k � ��1=2;

~� = sep(�2
1;�

2
2)� kF11k � kF22k � �2p � �2p+1 � 2��1=2 > 2��1=2;

where sep(�; �) denotes the minimum distance between the spectra of the two argu-
ments. From the given result, there is a matrix P of dimension (m� p)� p such that
the matrix �Q1 de�ned by

�Q1 = Q1 +Q2P(3.37)
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is an invariant subspace for ~M , where

kPk � ~
~�
� 2��1=2

�2p � �2p+1 � 2��1=2
< 1:(3.38)

Moreover, the representation of ~M with respect to �Q1 is

�QT
1
~M �Q1 = ~�1 = �2

1 + F11 + F12P:(3.39)

The bound (3.33) follows from (3.37), (3.38), and kQ2k = 1. It follows immediately
from the �rst equality in (3.39) that ~�1 is symmetric, and we have

k~�1 � �2
1k � kF11k+ kF12kkPk � 2��1=2;(3.40)

verifying the inequality (3.34). This inequality implies that the smallest singular value
of ~� is no smaller than �2p � 2��1=2, which by (3.31) is positive, so ~�1 is symmetric
positive de�nite.

The cited result states further that the matrix �Q2 = Q2�Q1P
T is orthogonal to

�Q1 and also de�nes an invariant subspace for ~M , with

�QT
2
~M �Q2 = ~�2:

Symmetric positive semide�niteness of ~�2 follows immediately. By using the invariant
subspace property, we obtain

[ �Q1 j �Q2]
T ~M [ �Q1 j �Q2] =

�
~�1 0

0 ~�2

�
;

from which (3.32) follows immediately.
Similarly to (3.40), we have that

k~�2 ��2
2k � 2��1=2;

so the largest eigenvalue of ~�2 is no larger than �
2
p+1+2��

1=2. Because of (3.31) and our

earlier observation that the smallest eigenvalue of ~�1 is no smaller than �2p � 2��1=2,

we conclude that the eigenvalues of ~�1 are the p largest eigenvalues ~�21; ~�
2
2; : : : ; ~�

2
p,

while those of ~�2 are the (m � p) smallest eigenvalues. By our de�nition (3.29), we
conclude that there are orthogonal matrices V1 and V2 such that

V1~�
2
1V

T
1 = ~�1 and V2 ~�

2
2V

T
2 = ~�2:

By substituting these expressions into (3.32) and setting ~Q1 = �Q1V1 and ~Q2 = �Q2V2,
we recover (3.28a).

Lemma 3.6 suggests a few other estimates and assumptions that will be useful in
subsequent sections. When (3.31) holds, we have from (3.30) that

~�21 � �21 + ��1=2 < �21 + :2�2p < 1:2�21 � 1:2m;(3.41)

(where the last inequality follows from (3.24)), and also that

~�2p � �2p � ��1=2 � :8�2p ) ~��1p � 1:2��1p :(3.42)
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When we make the additional assumption that

�2p+1

�2p
� 1

10
:(3.43)

(indicating that the gap in the spectrum actually separates the small and large eigen-
values), we derive that

k �Q1 � Q1k � 2��1=2

�2p � �2p+1 � 2��1=2

=
2��1=2

�2p

"
1� �2p+1

�2p
� 2

��1=2

�2p

#�1

� 2��1=2

�2p
[1� :1� :4]�1 � 4��1=2

�2p
:(3.44)

Another useful quantity that enters into our error bounds is the norm of ~L�1�J �J
,

which we denote by � ; that is,

�
def
= k~L�1�J �J

k = �j �J j(~L �J �J )
�1;(3.45)

where �j �J j(~L �J �J ) denotes the j �J jth singular value of ~L �J �J . Because of (3.5a) and the
fact that all diagonals ofM �J �J are bounded by 1 (by our assumption (3.10)), we have

that �j �J j(~L �J �J ) � 1 and therefore that

� � 1:(3.46)

Using (3.5a) again, we have that

kM�1
�J �J
k = k~L�1�J �J

k2 = �2:(3.47)

Since kM �J �J k � kMk � �21, we have from (3.24) and (3.47) that

�(M �J �J ) � �21�
2 � m�2:(3.48)

4. The E�ect of Finite Precision Computations. In the analysis of the
preceding section, we assumed for simplicity that all arithmetic was exact. In this
section, we take account of the roundo� errors that are introduced when the approx-
imate solution ~z is calculated in a �nite-precision environment.

Our analysis above focused on the approximate solution ~z obtained from (3.9),
where the subvector ~z �J satis�es the following system:

M �J �J ~z �J = ~L �J �J
~LT

�J �J ~z �J = r �J ;(4.1)

while the subvector ~zJ is �xed at zero. In this section, we use ẑ to denote the �nite
precision analog of ~z. We examine errors in ẑ due to

- roundo� error in modchol,
- error arising during the triangular substitutions in (4.1), and
- error in the evaluation of the matrix M and the right-hand side r.
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Since modchol amounts to a standard Cholesky factorization/triangular-solve pro-
cedure on the matrix M �J �J , roundo� error in modchol and errors arising during
the triangular substitutions can all be accounted for by adding a term Eu

�J �J to the
coe�cient matrix M �J �J in (4.1), where

kEu

�J �J k � �ukM �J �J k � �u;(4.2)

see, for example, Higham [7, Theorem 10.4]. (Recall from Section 1 that �u denotes
a modest multiple of u and that kM �J �J k �

p
n because of (3.10).) We assume that

the error in evaluating M can also be incorporated into Eu

�J �J
; this is certainly true in

Section 5, for instance. As we see in this section, the remaining source of error|the
error that arises in evaluation of the right-hand side|plays a signi�cant role in the
interior-point application. Our results are strengthened if we account for some of this
error by placing it explicitly in the range space of L; that is, we write it as Lf + e,
for some vectors f and e. (We refer to e as the \unstructured error.") The computed
solution ẑ �J of the system (4.1) therefore satis�es

(M �J �J + Eu

�J �J )ẑ �J = (r + Lf + e) �J :(4.3)

The following result shows that we can re-partition the right-hand side error
according to the approximate Cholesky factor ~L, a fact that is useful in the main
error results of this section.

Lemma 4.1. Suppose that (3.10), (3.31), and (3.43) hold. Given vectors e; f 2
IR
m, we have

Lf + e = ~L ~f + ~e;(4.4)

where

k ~fk � �1�
�1
p kfk; k~ek � �1

�
��1=2��3p + �p+1

�
kfk+ kek:(4.5)

Proof. From (3.26), we have

Lf + e = Q1�1U
T
1 f +Q2�2U

T
2 f + e = Q1�

2
1f1 + e1;

where the vectors f1 and e1 de�ned by

f1 = ��11 UT
1 f; e1 = Q2�2U

T
2 f + e

satisfy the bounds

kf1k � ��1p kfk; ke1k � �p+1kfk + kek;(4.6)

see (3.25). Using the notation of (3.28), (3.29), and (3.32), we de�ne the vector ~e by

~e = (Q1 � �Q1)~�1f1 + Q1(�
2
1 � ~�1)f1 + e1;

and note that

Lf + e = Q1�
2
1f1 + e1 = �Q1

~�1f1 + ~e:(4.7)

By using (3.34), (3.41), (3.44), and (4.6), we can bound the terms of ~e to obtain

k~ek � kQ1 � �Q1k k~�1k kf1k+ k�2
1 � ~�1kkf1k+ ke1k

� 4
��1=2

�2p
(1:2�21)�

�1
p kfk + 2��1=2��1p kfk+ �p+1kfk+ kek;
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from which the bound in (4.5) follows if we use the inequality (3.24). For the com-
panion term on the right-hand side of (4.7), we have from (3.36) that

�Q1
~�1f1 = �Q1V1(V

T
1
~�1V1)(V

T
1 f1) = ~Q1

~�1(~�1V
T
1 f1):

Using ~U de�ned in (3.28b), we set

~f = [~U1 j ~U2]

�
~�1V

T
1 f1
0

�
;

so from (3.28b) and (3.36a), we obtain that

~L ~f = ~Q1
~�1

~UT
1
~f + ~Q2

~�2
~UT
2
~f = ~Q1

~�1(~�1V
T
1 f1) = �Q1

~�1f1:

Hence, by substituting in (4.7), we obtain Lf + e = ~L ~f + ~e. To obtain the bound on
k ~fk, we simply use its de�nition above together with (3.41), (4.6) and orthonormality
of ~U1 and V1.

Before stating our main result, we introduce two additional assumptions. The
�rst is that �nite precision does not a�ect cuto� decisions in modchol. That is,
the presence of roundo� error in each submatrix M (i�1) does not a�ect whether the

threshold criterion M
(i�1)
ii � �� passes or fails for each i. Provided that we have

� � 100u;(4.8)

say, the role of this assumption is to provide a convenient link between the results
of Sections 3 and 4. It is not really essential to the analysis, for reasons that we
now explain. We can show by a standard error analysis argument that the matrix
~L obtained in �nite-precision arithmetic is the same as the one we would obtain
by applying modchol in exact arithmetic to a perturbed matrix M + Êu, where
kÊuk � �ukMk � �u. Hence, �nite-precision arithmetic causes changes of size �u
in the diagonal elements that are tested against the threshold �� in modchol. If u
is signi�cantly less than �� (as in (4.8)), only a few of skipping decisions would be
a�ected by this perturbation. Moreover, we could generalize the analysis of Section 3
so that it applies to the slightly perturbed matrixM+Êu rather than the exact matrix
M , hence ensuring that the results of that section apply to the set J calculated in a
�nite-precision environment. We prefer to avoid the additional complication, however,
and simply assume that the sets J that we discuss in Sections 3 and 4 are one and
the same. In any case, we note that when �� falls in the gap between large and small
eigenvalues, the makeup of J is not a�ected at all.

The second assumption is that

���1=2 = �1:(4.9)

We can expect this estimate to hold in all but pathological cases, since the elements
of ~L �J �J are bounded by 1, and its diagonal elements lie in the range [��1=2; 1].

In the following result, we bound the di�erence LT (ẑ � z) in terms of kẑk, kzk
and the norms kfk and kek of the perturbation vectors. The explicit appearance of
the computed solution kẑk in the right-hand side bound is not standard practice in
error analysis, but we were motivated to include it by our numerical experience on
practical linear programming problems. We can derive a rigorous bound on kẑk in
terms of kzk, kfk, and kek, but numerical experience shows this bound appears to
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be too pessimistic, so it turns out to be more illuminating to leave kẑk in place and
work with a direct estimate of this quantity.

Theorem 4.2. Suppose that ẑ �J solves (4.3) where Eu

�J �J is bounded as in (4.2).
Suppose too that we set ẑJ = 0 (as in (3.9)), that (3.10), (3.31), (4.9), and (3.43)
hold, and that roundo� error does not a�ect the composition of J . We then have

kLT (ẑ � z)k � �1

h
��2p (�u+ ��1=2) + �p+1

i
kẑk+ �1

h
��2p ��1=2 + �p+1

i
kzk(4.10)

+�1
�
��4p + ��p+1�

�1
p

�kfk + �1��
�1
p kek:

where z is the exact solution from (3.7). In the special case of J = ;, we have

kLT (ẑ � z)k � ��u�1kẑk+ kfk+ �kek:(4.11)

Proof. From (3.26), we have

kLT (ẑ � z)k =
� �1Q

T
1 (ẑ � z)

�2Q
T
2 (ẑ � z)

�
� k�1k kQT

1 (ẑ � z)k+ k�2k kẑ � zk
� k�1k k �QT

1 (ẑ � z)k+ k�1k kQ1 � �Q1kkẑ � zk+ k�2k kẑ � zk:(4.12)

To bound the �rst term, we note from (3.28b) that

k~LT (ẑ � z)k =
� ~�1

~QT
1 (ẑ � z)

~�2
~QT
2 (ẑ � z)

� ;
and therefore from (3.36a) and (3.29), we have

k �QT
1 (ẑ � z)k = k ~QT

1 (ẑ � z)k � k~��11 k k~�1
~QT
1 (ẑ � z)k � ~��1p k~LT (ẑ � z)k:(4.13)

Since ~L�J = 0 and ẑJ = 0, we have too that

~LT (ẑ � z) = ~LT
�J �J (ẑ �J � z �J ) � ~LT

J �J zJ :(4.14)

By substituting (3.42) and (4.14) into (4.13), we obtain

k �QT
1 (ẑ � z)k � 1:2��1p k~LT

�J �J (ẑ �J � z �J )� ~LT
J �J zJ k:(4.15)

From (4.3) and (4.4), and using (3.5a) and ~L�J = 0, we have that

(~L �J �J
~LT

�J �J +Eu

�J �J )ẑ �J = r �J + ~L �J �J
~f �J + ~e �J :

Meanwhile from (3.5) and (3.7), we have

~L �J �J
~LT

�J �J z �J + ~L �J �J
~LT
J �J zJ +E �JJ zJ = r �J :

By combining these two equations and multiplying by ~L�1�J �J
, we obtain

~LT
�J �J (ẑ �J � z �J ) � ~LT

J �J zJ = �~L�1�J �J
Eu

�J �J ẑ �J + ~L�1�J �J
E �JJ zJ + ~f �J + ~L�1�J �J

~e �J :

By substituting into (4.15), and using the bounds (3.45), (3.12), and (4.2), we obtain

k �QT
1 (ẑ � z)k � ��u�

�1
p kẑ �J k+ �1��

1=2kzJ k+ k ~f �J k+ �k~e �J k:(4.16)
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Turning now to the second and third terms in (4.12), we have from (3.25) that

k�1k = �1 = �1; k�2k = �p+1:(4.17)

By substituting (4.15), (4.16), (4.17), and (3.44) into (4.12), and using

kẑ � zk � kẑk+ kzk; kẑ �J k � kẑk; kzJ k � kzk; 1 � �1�
�1
p ;

we obtain

kLT (ẑ � z)k
� �1�

�1
p

h
�ukẑk+ ��1=2kzk+ k ~fk+ �k~ek

i
+ �1

�
��2p ��1=2 + �p+1

�
(kẑk+ kzk)

� �1

h
��2p (�u+ ��1=2) + �p+1

i
kẑk+ �1

h
��2p ��1=2 + �p+1

i
kzk

+�1�
�1
p k ~fk+ �1��

�1
p k~ek:(4.18)

By substituting from (4.5) and using (4.9), we have

�1�
�1
p k ~fk+ �1��

�1
p k~ek � �1

�
��4p + ��p+1�

�1
p

� kfk+ �1��p
�1kek:

By substituting into (4.18), we obtain (4.10).
For the case of J = ;, we have

~L �J �J = ~L = L; ẑ �J = ẑ; z �J = z; zJ vacuous;

while from (4.4), we have ~f = f , ~e = e. By using these equivalences in (4.16), we
obtain the result (4.11) directly.

Note that in the case of J = ;, we have from (3.45)

� = kL�1k = ��1m ;

so it follows from (4.11) that

kẑ � zk � ��2m �ukẑk+ ��1m kfk + ��2m kek:

If we put all the right-hand side perturbation into the vector e, and set f = 0, we can
use the relation kM�1k = ��2m to obtain

kẑ � zk � kM�1k (�ukẑk+ kek) ;

which is a perturbation bound for (4.3) of the type that is usually found in the
numerical analysis literature.

5. Application to the Interior-Point Algorithm. We now return to the
motivating application: primal-dual interior-point algorithms for linear programming
and, in particular, the linear system (2.15) that is solved at each iteration. We apply
the main result|Theorem 4.2|and examine the e�ect of the parameter � and unit
roundo� u on the quality of the computed search direction (c�x; c��;c�s). Our focus
is on the later iterations of the interior-point method, during which � is small and
the ill conditioning of AD2AT can become acute. Our results show where errors arise
in (c�x; c��; c�s), what e�ect these errors have on the step length and the computed
residual vectors rb and rc, and the accuracy that can be attained by the interior-point
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algorithm in �nite precision. They also suggest a choice for the parameter � and for
the termination criterion.

Throughout this section, we use an informal style of analysis that combines the
use of �1 and order notation de�ned in Section 1. Speci�cally, we often replace the
estimate v = O(�) by v = �1� instead. This convention allows us to analyze the
dependence of certain quantities on the unit roundo� u and the duality measure �
jointly.

5.1. Size Estimate for a General Step. We start by estimating the sizes of
the various constituents of the equations (2.15)|the residuals rb and rc of (2.7), the
B and N components of x, s, and the diagonal matrix D. Each iterate (x; �; s) of
a typical primal-dual interior-point iterate satis�es the following estimates (see, for
example, Wright [17]):

krbk = O(�); krck = O(�);

xi = �(1) (i 2 B); xi = �(�) (i 2 N );(5.1)

si = �(�) (i 2 B); si = �(1) (i 2 N ):

In theoretical algorithms, these estimates follow from a requirement that all iter-
ates must belong to a certain neighborhood of the central trajectory. In practical
algorithms, the conditions for membership of the neighborhood are rarely checked
explicitly, but the estimates (5.1) are still observed to hold on the vast majority of
practical problems in which the primal-dual solution set is nonempty and bounded.
An immediate consequence of these estimates and the de�nition (2.14) is that

D2
ii = �(��1) (i 2 B); D2

ii = �(�) (i 2 N ):(5.2)

As mentioned in Section 2, we assume that A has full rank.
We analyze a general step (�x;��;�s) that satis�es the system (2.6), where rb

and rc are given by (2.7) while rxs has the form

rxs = XS1 + w; for some w satisfying w = O(�2).(5.3)

It is not di�cult to show that the resulting step satis�es the estimate

(�x;��;�s) = O(�)(5.4)

by using an argument based on splitting the step into an a�ne-scaling component
(�xa�;��a�;�sa�) of the step (obtained by setting w = 0; see (2.8)) and a \remain-
der" component (�xw;��w;�sw) that satis�es24 0 AT I

A 0 0
S 0 X

3524 �xw

��w

�sw

35 =

24 0
0
�w

35 :(5.5)

We have from [17, Theorem 7.5] that

k(�xa�;�sa�)k = O(�);(5.6)

while from (2.15b) and (5.1), we have

(AAT )��a� = A(�rc ��sa�) = O(�);
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and since A has full rank, we have ��a� = O(�) as well. By performing block
elimination on (5.5), we have that

AD2AT��w = AD2(X�1w):

A well-known result (see Stewart [11], Todd [13], Dikin [4], and Vanderbei and La-
garias [14]) states that the norm k(AD2AT )�1AD2k is bounded over the set of all
positive de�nite diagonal matrices D. Therefore, we have that

k��wk = O(kX�1wk):
From (5.1), we have kX�1k = O(��1), so fromw = O(�2) it follows that ��w = O(�).
Similar arguments based on the Stewart-Todd result can be used to show that

k�xwk = O(�); k�swk = O(�):

The general choice (5.3) of w encompasses the a�ne scaling method (2.8), for
which w = 0. It also includes as a special case the path-following choice (2.9) when
� = O(�), which can be assumed to hold on the late iterations of a superlinearly
convergent method. Finally, it usually includes the Mehrotra method (2.11), since
by (5.6) we have that k�Xa��Sa�1k = O(�2), while the heuristic choice of the
parameter � is usually chosen by a heuristic that ensures that � = O(�).

5.2. Step Length along the Exact Step. We have noted already in (5.4)
that (�x;��;�s) = O(�). We can be more speci�c about the sizes of the critical
components �xi, i 2 N and �si, i 2 B. If we multiply the third block row in (2.6)
by (XS)�1 use the de�nition (5.3), and note from (5.1) that (xisi)

�1 = �(��1) for
i = 1; 2; : : :; n, we obtain

�xi
xi

+
�si
si

= �1 + O(�); i = 1; 2; : : : ; n:

Therefore, from (5.1) and (5.4), we have for i 2 N that

�xi
xi

= �1 + O(�)

�(1)
= �1 +O(�);

and therefore, using (5.1) again, we have

�xi = �xi +O(�2); i 2 N :(5.7)

In a similar way, we obtain

�si = �si + O(�2); i 2 B:(5.8)

From the estimates (5.4), (5.7), and (5.8), we can show that a near-unit step can
be taken along the direction (�x;��;�s) without violating positivity of the x and s
components. By substituting in (2.13), we can show that

1� �max = O(�):(5.9)

To verify this estimate, suppose that si+��si = 0 for some index i 2 B. From (5.8),
we have

si(1� �) + O(�2) = 0;
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so it follows from (5.1) that

1� � = O(�2)=si = O(�):

For the corresponding component xi, we have from (5.1) and (5.4) that xi = �(1)
and �xi = O(�). Hence, for all � su�ciently small and all � 2 [0; 1], we have
xi + ��xi > 0. Similar logic can be applied to the remaining indices i 2 N , thereby
proving (5.9).

5.3. Scaling the System (2.15a). We can use (5.2) to analyze the eigenstruc-
ture of the coe�cient matrix AD2AT . We have

AD2AT = A�BD
2
BA

T
�B + A�ND

2
NA

T
�N ;

where the �rst term on the right-hand side is a matrix whose rank is rankA�B in which
all the nonzero eigenvalues are of size �(��1). By combining this observation with
the full-rank assumption on A, we obtain that

�i(AD
2AT ) = �(��1); i = 1; 2; : : :; rankA�B;(5.10a)

�i(AD
2AT ) = �(�); i = rankA�B + 1; : : : ;m:(5.10b)

To ensure (3.10), we work with a scaled version of the matrix AD2AT , in which the
scaling factor � is chosen as

� =

�
max

i=1;2;:::;m
(AD2AT )ii

��1
:(5.11)

Obviously, we have � = �(�), and by choosing p (see Section 3) as

p = rankA�B;(5.12)

we �nd that the eigenvalues �21; �
2
2; : : : ; �

2
m of �AD2AT satisfy

�2i = �(1); i = 1; 2; : : : ; p;(5.13a)

�2i = �(�2); i = p+ 1; : : : ;m:(5.13b)

The exact Cholesky factor L satis�es

LLT = �AD2AT :(5.14)

Suppose now that modchol is used to compute the solution of the scaled version
of the system (2.15a), namely,

�AD2AT�� = ��rb � �AD2(rc �X�1rxs);(5.15)

where rxs is de�ned as in (5.3). This process is carried out in �nite-precision arith-

metic, resulting in a computed solution c��. The remaining step components c�s andc�x are obtained by substituting into (2.15b) and (2.15c), respectively, where once
again we assume that �nite-precision arithmetic is used.
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5.4. Checking Assumptions and Estimates for Theorem 4.2. We now
prepare to apply Theorem 4.2 by checking that its various assumptions are satis�ed
for � su�ciently small. We assume that � is set to the following value:

� = 100u:(5.16)

This choice is motivated by a desire to keep � as small as possible, while trying to
ensure that the set J of skipped pivot indices is not greatly a�ected by the use of �nite-
precision arithmetic (see the discussion surrounding (4.8)). The assumption (3.10)
that the largest diagonal in �AD2AT is 1 is satis�ed by construction. From (5.13)
and (5.12), the assumptions (3.31) and (3.43) hold trivially. As noted in the discussion
following (4.9), this assumption too can be expected to hold in non-pathological cases.
It follows immediately from (4.9) that

� = �1��
�1=2;(5.17)

giving us a \worst-case" bound for � . When modchol correctly identi�es the nu-
merical rank of AD2AT|that is, when j �J j = p = rankA�B, as often happens in the
examples we present in the next section|we usually have that all the diagonals of
~L �J �J are of size �1, and hence that � = �1. Surprisingly, however, our favorable results

about the quality of the computed step (c�x; c��;c�s) hold even when the algorithm
admits some small diagonal elements into ~L �J �J , yielding a computed factor ~L �J �J for
which j �J j > p.

Having veri�ed that we can reasonably expect Theorem 4.2 to hold for the system
(5.15), we now estimate the quantities on the right-hand side of the bound (4.10).
From (5.13a), we have ��1p = �(1), while from (5.13b), we have �p+1 = �(�).

We need to account, too, for the errors incurred in �nite-precision evaluation of
the right-hand side of (5.15), and to apportion these errors between the error vectors
f and e in (4.3). For the purpose of this discussion, and the remainder of the paper,
we assume that

� � u:(5.18)

(As we see later, the algorithm is usually terminated|and for good reason|when �
is signi�cantly larger than u, so this assumption is not restrictive.) We examine the
contributions of the terms rxs, rb and rc to the right-hand side of (5.15) in turn.

In most codes, the contribution of rxs to (5.15) is calculated by forming the vector
rxs, multiplying by D2X�1 = S�1, and then multiplying by A. Floating-point error
in formation of rxs from (5.3) can be bounded by a term of size �u�. This error
is magni�ed to �u when we multiply by S�1, and further roundo� error introduced
in this operation result in an additional error of size �u. Multiplication by A yields
additional errors of size �u. Therefore the total contribution of this term to the error
in the right-hand side of (5.15), after scaling by �, has magnitude �u�. We denote
this error by exs; below, we include it in the unstructured error vector e in (4.3).

The vectors rb and rc both have size � (see (5.1)), but they are calculated by
summing and di�erencing real-number quantities of size �1, and hence incur cancel-
lation error of size �u. We denote the calculated versions by r̂b and r̂c, respectively,
so that

r̂b � rb = �u; r̂c � rc = �u:(5.19)
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The contribution of the error in r̂b to the right-hand side of (5.15) is small. After
scaling by �, it contributes an error of size ��u, which we denote by eb and incorporate
into e.

The term involving rc requires more careful consideration. Note from (5.1) and
(5.19) that r̂c = O(�) + �u. When we multiply r̂c by D2, some of whose diagonal
elements have size �(��1), we incur additional error of �u�

�1(� + �u), which is
equivalent to �u because of (5.18). Therefore, we have

comp(D2 r̂c) = D2(rc + �u) + �u = D2rc +D2(r̂c � rc) + �u;

which has size �1. Finally, on multiplying by A, we incur additional roundo� error of
�u, so in summary we have

comp(AD2 r̂c) = AD2rc + AD2(r̂c � rc) + �u:(5.20)

From (5.14), we have that

AD = ��1=2LQT ;(5.21)

for some orthogonal matrix Q, so by de�ning

f = �1=2QD(r̂c � rc) = O(�1=2)O(��1=2)�u = �u(5.22)

we have that

�AD2(r̂c � rc) = �1=2LQTD(r̂c � rc) = LT f:

Hence, from (5.20), we see that the computed version of the term �AD2rc on the
right-hand side of (5.15) di�ers from the exact quantity by Lf+ec, where f is de�ned
as in (5.22) and ec = ��u. By adding the unstructured error contributions from the
three right-hand side terms in (5.15), we �nd that

e = exs + eb + ec = ��u:(5.23)

We have pointed out already (see (5.4)) that �� = O(�). The one remaining

important quantity on the right-hand side of (4.10) is kc��k. By making further
assumptions on the relative sizes of � , u, and �, we can bound this term strictly in
terms of k��k, but the resulting estimate is observed to be too pessimistic. We found
the following estimate to hold in all computational tests we performed:

c�� = O(�);(5.24)

and we use this estimate in the results below.

5.5. Errors in the Computed Step and Their Consequences. We now
have all the estimates needed to apply Theorem 4.2 to (5.15). By substituting z = ��

and ẑ = c��, together with the estimates (5.13), (5.4), (5.24), (5.22), and (5.23) into
(4.10), we obtain

kLT (c�� ���)k � �1

h
(�u+ ��1=2) + �

i
�+ �1(��

1=2 + �)�+ (1 + ��)�u + ���u

= �1�
h
�u+ ��1=2 + �+ ��1u

i
;(5.25)
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and by substituting for � from (5.17), we obtain

kLT (c�� ���)k � �1�
h
���1=2u+ ��1=2 + �+ ��1u

i
(5.26)

From (5.21), and using orthogonality of Q, we can de�ne

v = DAT (c�� ���)(5.27)

and note from (5.26) that

kvk = ��1=2kLT (c�� ���)k � �1�
1=2

h
���1=2u+ ��1=2 + �+ ��1u

i
:(5.28)

From (1.1) and (5.16), we see that the right-hand side of this expression is minimized,
with a value of �1u

1=2, when � � ��1=2 = �1u
1=2. This observation suggests that a

termination criterion of

� � u1=2(5.29)

may be appropriate for the interior-pointmethod. We justify this choice further below,
after investigating the errors in the computed step and their e�ects on maximum
steplength and on the updating of the residuals rc and rb.

Next, we examine the e�ect of the error in c�� and the evaluation error in the
right-hand side of (2.15b) on the calculated step c�s. From (5.4) and (5.24), we have
that

k�� � c��k � k��k+ kc��k = O(�):(5.30)

The evaluation error of size �u in the rc term of (2.15b) (see (5.19)) is signi�cant; the
additional roundo� errors of size ��u incurred in forming the matrix vector product
and in performing the vector addition to evaluate the right-hand side of (2.15b) are

negligible. We conclude from (5.19) and (5.30) that the computed step c�s and exact
step �s di�er as follows:

�s � c�s = �rc + r̂c � AT (�� � c��) + ��u = �1(�+ u):(5.31)

This estimate is potentially troubling: Since the exact step �s has size O(�), it

indicates that the computed step c�s may not be correct to any digits at all! This
inaccuracy is not so important for the \large" components of s|namely, components
in the subvector sN|since eventually � is small in comparison to these components
and errors in �sN have little e�ect on the steplength � or on the updated value
of xTs. However, errors of the size indicated in (5.31) in the B components of �s
could be disastrous. The consequences could include that the maximum steplength
�max to the boundary could be much smaller than 1 (a similar argument to the one
following (5.9) indicates only that 1� �max = �1) and in fact we cannot even be sure
of decrease in xT s along this direction. Fortunately, a re�ned estimate of the error inc�sB is possible. By using (5.19) in (5.31), we have that

�s� c�s = �AT (�� � c��) + �u = D�1v + �u;(5.32)

where v is de�ned as in (5.27). From (5.2), we have that D�1
ii = �(�1=2) for i 2 B,

and therefore by using (5.28), we obtain

�si � c�si = �1�
h
���1=2u+ ��1=2 + � + ��1u

i
; i 2 B:(5.33)
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As in the discussion following (5.9), we �nd that si + �c�si = 0 is possible only if

1� � = �1

h
���1=2u+ ��1=2 + � + ��1u

i
:(5.34)

Finally, we estimate the errors in the computed step c�x obtained from (2.15c)
and estimate their e�ect on �max and on the updated value of rb. Again, we consider
the components i 2 B and i 2 N separately.

For i 2 B, the �u� evaluation error in (rxs)i is magni�ed by the term s�1i =

�(��1). Floating-point error in forming the product xic�si and in performing the
addition yield additional errors of size at most �u, so we obtain

�xi � c�xi = �s�1i xi(�si � c�si) + �u; i 2 B:(5.35)

From (5.33) and (5.1), this formula implies that

c�xi ��xi = �1

h
���1=2u+ ��1=2 + �+ ��1u

i
; i 2 B:(5.36)

By the usual reasoning, we �nd that xi + �c�xi = 0 is possible for i 2 B only for �
satisfying (5.34).

For i 2 N , the �u� evaluation error in (rxs)i is not magni�ed appreciably by the
term s�1i (which has size �(1)) and we obtain

�xi � c�xi = �s�1i xi(�si � c�si) + ��u; i 2 N :(5.37)

By substituting from (5.31) and (5.1), we obtain

c�xi ��xi = �1[�
2 + �u]; i 2 N :(5.38)

We deduce that xi + �c�xi = 0 for i 2 N only if

1� � = �1[�+ u]:(5.39)

From (5.34) and (5.39), we conclude that the value of �max de�ned by (2.13), with

the calculated direction (c�x; c��;c�s) replacing the exact search direction, satis�es the
estimate

1� �max = �1

h
���1=2u+ ��1=2 + �+ ��1u

i
:(5.40)

Note from (5.30), (5.31), and (5.38) that, in an absolute sense, the errors in c��,c�s, and c�xN , are small. By contrast, the ��1u term in (5.36) implies that the errors

in c�xB increase as � decreases below u1=2. These errors have consequences for the
updated values of the residuals rb and rc at the new point

(x; �; s) + �(c�x; c��; c�s);
where � 2 (0; �max) is the step length chosen by the algorithm. From (2.7), we see
that the computed value of rc at this new point is given by

comp(r̂+c ) = AT (� + �c��) + (s + �c�s) � c+ �u;
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where the �nal term accounts for both cancellation and roundo� errors. From (5.32),
we see that this quantity di�ers from the exact value of r+c by

�AT (c�� ���) + �(c�s��s) + �u = �u;

so we conclude that the e�ect of the errors in (c�x; c��;c�s) on the rc term is minimal
(that is, it is of the same order as the cancellation error that arises in any case when
this term is evaluated).

The computed version of rb at the new point is

comp(r̂+b ) = A(x+ �c�x)� b+ �u

which, di�ers from the exact version r+b as follows

comp(r̂+b )� r+b = �A(c�x��x) + �u:

By substituting from (5.35) and (5.37) and using (2.14), we obtain

comp(r̂+b )� r+b = �AD2(�s � c�s) + �u;

which, from (5.19) and (5.31) and the estimate kD2k = O(��1) , yields

comp(r̂+b )� r+b = �AD2AT (c�� ���) + ��1�u:(5.41)

From (5.21), (3.4), and (3.6), we have that

AD2AT = ��1LLT = ��1(~L~LT +E);

so by some elementary manipulation, we deduce that comp(r̂+b ) � r+b equals the ex-
pression

���1 ~L~LT ( ~�� ���) + ���1E(c�� ���) + ���1 ~L~LT (c�� � ~��) + ��1�u:(5.42)

We bound this expression one term at a time, using results from earlier sections and
identifying �� with z, c�� with ẑ, and ~�� with ~z. For the �rst term, we have from
(3.10) that k~Lk � �1, while from Theorem 3.4, (5.16), and (5.4), we have

k~LT (�� � ~��)k = �1=2
u
k��Jk = ��1=2

u
:(5.43)

For the second term in (5.42), we have from Lemma 3.2, (5.16), (5.30), and � = �(�)
that

��1kE(c�� ���)k � �1=2
u

:(5.44)

For the third term, recall that ~��J = c��J = 0 and ~L�J = 0, so that

k~L~LT ( ~�� � c��)k � k~Lkk~LT
�J �J (

~�� �J � c�� �J )k � �1k~LT
�J �J (

~�� �J � c�� �J )k:(5.45)

From (3.9), we have

~L �J �J
~LT

�J �J
~�� �J = r �J ;

and so from (3.5a), (4.3), and (4.4), we have

(~L �J �J
~LT

�J �J +Eu

�J �J )
c�� �J = ~L �J �J

~LT
�J �J

~�� �J + (~L ~f + ~e) �J :
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By rearranging, we obtain

~LT
�J �J (

c�� �J � ~�� �J ) = �~L�1�J �J

h
Eu

�J �J
c�� �J � ~L �J �J

~f �J � ~e �J

i
:

We now use the following estimates:

k~L�1�J �J
k = �

�1=2
u from (3.45), (5.16), and (5.17),

kEu

�J �J
k = �u from (4.2),

k ~fk = �u from (4.5), (5.13a), and (5.22),

k~ek = �
3=2
u + ��u from (4.5), (5.13), (5.22), and (5.23),

kc�� �J k = O(�) from (5.24),

to yield the following bound:

k~LT
�J �J (

c�� �J ��� �J )k � k~L�1�J �J
k kEu

�J �J k kc�� �J k+ k ~f �J k+ k~L�1�J �J
k k~e �J k

� ��1=2
u

�u�+ �u + ��1=2
u

[�3=2
u

+ ��u]

� ��1=2
u

+ �u:

Therefore for the the third term in (5.42) we have from (5.45) that

k~L~LT ( ~�� � c��)k � ��1=2
u

+ �u:(5.46)

By substituting (5.43), (5.44), (5.46), � = �(�), and j�j � 1 into (5.42), we have

comp(r̂+b ) � r+b = �1=2
u

+ ��1�u:(5.47)

This estimate suggests that the discrepancy between r̂+b and its approximation comp(r̂+b )

is no greater than �
1=2
u until � falls below approximately u1=2. This observation, to-

gether with (5.40), suggests strongly that the termination condition (5.29) is the
appropriate one. These observations too are illustrated in Section 6.

The convergence tolerances used by most interior-point codes|arrived at by prac-
tical experience rather than theoretical or analytical considerations|are generally
consistent with (5.29). For instance, the code PCx declares optimality if the following
three conditions are satis�ed:

krbk
1 + kbk � tol;

krck
1 + kck � tol;

��cTx� bT�
��

1 + jcTxj � tol;

where the default value of tol is 10�8. Note that 10�8 � u1=2 in double precision
arithmetic on most machines.

5.6. Comments and Observations. We conclude this section with a few com-
ments about the results above.

Note �rst that our conclusions can always be defeated by poor scaling of the
problem. Poor scaling may show up as imbalance in the size of the components of
xB or sN (some may be much smaller than others), or as imbalance in the sizes
of the nonzero components of the problem data A, b, and c. Di�culties such as
these may cause the many factors �1 that appear in the analysis to be actually much
larger than 1, thereby limiting the regime of applicability of our results and a�ecting
our conclusions about appropriate choices of �� and the termination criterion. Most
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interior-point codes try to avoid these potential di�culties by prescaling the matrix
A by some heuristic procedures, for example the one proposed by Curtis and Reid [2].

A second point concerns the matrix A�B, the basic part of the constraint matrix
A. Our analysis is quite general in that it allows A�B to be rank de�cient. However
when the nonzero singular values of this matrix are widely separated, the assumed
separation (5.13) between the p = rankA�B largest and m � p smallest eigenvalues
of AD2AT will not appear until � is very small. This may again limit the regime of
applicability of our analysis. Pre-scaling of the matrixA may help but, in some sense,
ill conditioning of this type is intrinsic to the problem. As in many other areas of
numerical linear algebra, it is not possible to design algorithms that produce accurate
results in �nite precision arithmetic regardless of the conditioning of the problem.

Third, we note that our analysis made no assumption to ensure that modchol
eventually determines the numerical rank of AD2AT . That is, none of our results
require that j �J j = p for all � su�ciently small. Although we observed that j �J j = p
in many numerical tests, the assumptions needed to guarantee this equality are not
satisfying in certain respects. (Such assumptions did appear in earlier version of this
paper, but they were discarded.) The advantage of j �J j = p in the analysis is that the
matrix ~L �J �J will have all its diagonal elements of size �(1), allowing us to use the
estimate � = �1 in place of the weaker estimate (5.17). This estimate in turn allows
us to bound the norm kẑk in (4.10) in terms of kzk, leading to a more rigorous bound
on kLT (ẑ � z)k.

A fourth, related point concerns our estimate (5.17) of the size of � , which is based
on the assumption that the norm of ~L�1�J �J

can be estimated accurately by observing
the sizes of its diagonal elements. While the resulting estimate appears to hold for the
vast majority of practical problems of the type in question, there are cases in which
it underestimates the value of k~L�1�J �J

k. See Lawson and Hanson [8, p. 31] for a classic
example.

Finally, we note that when all the skipped pivots occur in the lower right corner
of the matrix M (as happens on most of the smaller problems we tested), we can
replace the bound kEk � ��1=2 by the tighter bound kEk � ��. This tighter estimate
allows some of our results to be strengthened, but since we observed some large linear
programs in which the skipped pivots were not con�ned to the lower right corner, we
omit a detailed analysis of this case.

6. Implementation and Computational Results. The modchol approach
can be implemented by making minimal changes to a standard sparse Cholesky code.
We need to add a loop to calculate the largest diagonal element �, and a small
pivot check immediately before the point at which the computation Lii =

p
Mii

is performed. The pivot skipping itself can be performed explicitly (by inserting a
column of zeros in the Cholesky factor and maintaining a record of the set J ), or it
can be \simulated," as in LIPSOL [20] and PCx [3], by inserting a huge element in
the pivot position prior to the computation of the column of the Cholesky factor and
updating of the remainder of the matrix. In PCx [3], we needed to change fewer than
20 lines of the sparse Cholesky code of Ng and Peyton [10].

To test that the analysis of this paper was reected in computations, we coded
a simple primal-dual interior-point algorithm and applied it to test problems with
controlled degeneracy properties. At each iterate, we monitored various quantities,
compared them against the estimates of Section 5, and con�rmed that convergence
to a tolerance of approximately u1=2 could be attained even for di�cult problems.

Our test problems have the form (2.1), with m = 6 and n = 12. The matrix A
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is fully dense, with elements (�1� :5)106(�2�:5), where �1 and �2 are random variables
drawn from a uniform distribution on the interval [0; 1]. (Of course, the values of �1
and �2 are di�erent for each element of the matrix.) After �xing the number of indices
to appear in B, we set

jN j = n� jBj; N = f1; 2; � � �; jN jg; B = fjN j+ 1; � � � ; ng:

(Note that the problem is degenerate whenever jBj 6= 6.) A primal solution x� is
constructed with

x�i = 0 (i = 1; 2; � � � ; jN j); x�i = 103��1 (i = jN j+ 1; � � � ; n);

where � is again randomly drawn from the uniform distribution on [0; 1]. We choose
the dual solution �� to be the vector (1; 1; � � � ; 1)T , and �x an optimal dual slack
vector s� to be

s�i = 104��2 (i = 1; 2; � � � ; jN j); s�i = 0 (i = jN j+ 1; � � � ; n);

where � is random as above. Finally, we set b = Ax� and c = AT�� + s�. Note than
by our choice of B, A�B consists of the last jBj columns of A. We modi�ed A in some
of the problems to introduce various types of rank de�ciency.

The code was an implementation of the infeasible-interior-point algorithm de-
scribed by Wright [16]. The details of this algorithm are unimportant; we need note
only that its iterates satisfy the estimates (5.1) in exact arithmetic and that the algo-
rithm takes steps along the a�ne scaling direction during its later iterations, provided
that these steps make reasonable progress. At each iteration of the algorithm, we cal-
culated the a�ne-scaling direction (whether or not it was actually used as a search
direction), and kept a log of information about this step and about various other
properties of the iterates and the modchol procedure. The parameter � was set to
10�13, which is about 500u on the SPARCstation 5 that was used for the experiments.
The results were not particularly sensitive to this parameter.

Results for various problems are shown in Tables 6.1, 6.2, 6.3, 6.4, and 6.5. For

each iteration, we tabulate the norms kc�xa�k1, kc��a�k1, and kc�sa�k1 of the
a�ne-scaling step calculated at that iterate, together with the the duality measure
� and residual norm k(rb; rc)k1 for that iterate. We also tabulate the number of
small pivots encountered during the factorization, that is, the number of elements in
J . The step-to-boundary �max along the calculated a�ne-scaling direction is also
tabulated. (The algorithm actually uses the a�ne-scaling direction if this parameter
exceeds 0:8; otherwise, it uses a direction with a centering component.) A horizontal
line in each table indicates the iterate at which termination would occur if we use the
termination criterion of Section 5.5.

In Table 6.1 we chose jBj = m = 6, making the linear program nondegenerate
and the primal-dual solution unique. Note that the pivot-skipping mechanism in
modchol is not activated for this problem, since the matrix AD2AT is approaching

a well-conditioned limit. It is clear from the table that c��a� and c�sa� satisfy the
estimates (5.24) and (5.31), respectively, even when the algorithm continues to iterate

past the point of normal termination. The component c�xa�, on the other hand,
clearly shows the inuence of the O(��1u) error term in (5.36) when � falls below
u. As discussed in Section 5.5, this error is transmitted to the computed residual rb,
destroying the quality of subsequent iterates. A similar deterioration is noted in the
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Table 6.1

A�ne-scaling step properties for a problem with m = 6, n = 12, jBj = 6, rankA�B = 6.
k � k = k � k1, and the horizontal line represents the normal point of termination

Small log log log log

Iteration Pivots log � k(rb; rc)k kc�x
a�

k kc��
a�

k kc�s
a�

k �max

...
12 0 -0.6 -11.1 -0.1 -0.6 0.6 .26426
13 0 -1.4 -10.7 0.4 -1.1 0.1 .77520
14 0 -2.1 -10.7 1.2 -2.3 -1.1 .39373
15 0 -3.3 -10.4 -0.3 -1.3 -0.1 .62276
16 0 -4.8 -8.1 -1.1 -5.2 -3.9 .99697
17 0 -7.2 -10.5 -3.5 -8.3 -7.1 .99999
18 0 -12.0 -12.2 -8.2 -14.0 -12.5 >.99999

19 0 -21.0 -12.0 -3.6 -14.9 -13.9 .99975
20 0 -24.2 -4.6 -1.4 -15.0 -13.9 .93989
21 0 -26.2 -1.5 1.4 -15.3 -14.5 .06843
...

Table 6.2

A�ne scaling step properties for a problem with m = 6, n = 12, jBj = 4, rankA�B = 4.
k � k = k � k1, and the horizontal line represents the normal point of termination.

Small log log log log

Iteration Pivots log � k(rb; rc)k kc�x
a�

k kc��
a�

k kc�s
a�

k �max

...
12 0 -0.6 -12.0 0.1 -1.3 0.7 .95133
13 0 -1.9 -11.4 -1.5 -0.2 1.8 .51719
14 0 -2.4 -9.5 -1.8 -0.9 1.0 .90453
15 1 -3.4 -9.3 -2.7 -5.5 -3.5 .98770
16 2 -5.2 -9.1 -4.4 -7.2 -5.2 .99977
17 2 -8.5 -11.1 -7.7 -10.5 -8.5 >.99999
18 2 -14.4 -13.0 -12.5 -15.8 -14.2 >.99999
19 2 -25.1 -12.3 -1.5 -15.9 -13.7 >.99999
20 2 -29.7 1.2 6.7 -15.9 -13.3 .00016
...

step length �max. These observations show that it is important for the interior-point
algorithm to save the best iterate obtained so far, so that it can report this value if it
happens to push beyond the appropriate point of termination.

Table 6.2 shows results for the case of a problem in which jBj = 4 with A�B full
rank, which causes the coe�cient matrix in (2.15a) to have four eigenvalues of size
�(��1) and the remaining two of size �(�). The second column shows thatmodchol
detects small pivots when � becomes su�ciently small, and con�rms that the quality
of interior-point steps remains high after this point, at least until until an accuracy of
u1=2 is achieved. The behavior of the algorithm for very small values of �|beyond
the point of normal termination|is the same as that of Table 6.1.

The locations of the small pivots detected by modchol for the problem reported
in Table 6.2 were at the bottom left of the matrix. We noted earlier that when this
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Table 6.3

A�ne scaling step characteristics for a problem with m = 6, n = 12, jBj = 6, rankA�B = 5
(Rows 1 and 2 of A have a single nonzero each, in the same column location). k � k = k � k1, and
the horizontal line represents the normal point of termination.

Small log log log log

Iteration Pivots log � k(rb; rc)k kc�x
a�

k kc��
a�

k kc�s
a�

k �max

...
11 1 -0.5 -12.6 0.3 1.6 0.8 .23771
12 1 -1.2 -10.3 0.6 1.0 0.2 .81949
13 1 -1.9 -10.3 0.9 0.1 -0.7 .67937
14 1 -2.4 -10.2 1.0 -0.9 -1.7 .50171
15 1 -3.4 -10.2 0.0 -2.3 -3.0 .95044
16 1 -4.7 -9.7 -1.0 -5.0 -5.0 .99199
17 1 -6.8 -11.3 -3.1 -7.1 -7.1 .99991
18 1 -10.9 -10.4 -0.3 -11.2 -11.1 .90487
19 1 -11.9 -10.3 0.3 -12.3 -12.2 .53423
...

Table 6.4

A�ne scaling step characteristics for a problem with m = 6, n = 12, jBj = 4, rankA�B = 3
(A�B has two dependent columns). k � k= k � k1, and the horizontal line represents the normal point
of termination.

Small log log log log

Iteration Pivots log � k(rb; rc)k kc�x
a�

k kc��
a�

k kc�s
a�

k �max

...
11 0 -0.4 -12.5 0.2 -0.4 1.1 .86945
12 0 -1.3 -11.2 -0.9 0.6 2.5 .19214
13 0 -1.8 -9.3 -0.9 -3.4 -1.5 >.99999
14 0 -3.8 -11.9 -3.2 -2.3 -0.4 .99848
15 3 -6.7 -9.5 -5.0 -8.0 -6.1 .99999
16 3 -11.8 -12.5 -0.2 -13.1 -11.1 .98866

17 3 -13.8 -12.6 1.9 -13.8 -11.9 .85592
18 3 -14.7 -13.5 -5.3 -13.2 -11.3 .92960
19 3 -15.8 -6.5 -6.5 -13.7 -11.7 >.99999
...

is the case, we have that the estimate kEk � ��1=2 of Lemma 3.2 can be replaced
by the stronger estimate kEk � ��. To show that the algorithm's performance does
not depend critically on this smaller value of the error, we modi�ed A to obtain a
number of examples in which the small pivots appeared in locations other than the
lower right of the matrix. In the problem report in Table 6.3, we modi�ed the matrix
A by replacing all elements in rows 1 and 2 with zeros, except for the element in the
last column. We chose jBj = 6, so that the matrix A�B formed by the last 6 columns
of A has rank 5. Moreover, the fact that rows 1 and 2 of A are multiples of each
other ensures that the (2; 2) pivot will be agged as a small pivot in modchol. It
also implies that the assumption that A has full rank is violated. Table 6.3 con�rms
that the quality of the interior-point steps remains high. The algorithm's behavior is
qualitatively the same as in the earlier examples.
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Table 6.5

A�ne scaling step characteristics for a problem with m = 6, n = 12, jBj = 4, rankA�B = 3
(A�B has two dependent columns, and the �rst two rows of A contain a single nonzero each, in
the same column location). k � k = k � k1, and the horizontal line represents the normal point of
termination.

Small log log log log

Iteration Pivots log � k(rb; rc)k kc�x
a�

k kc��
a�

k kc�s
a�

k �max

...
11 1 -0.7 -10.0 0.3 2.9 2.4 .82144
12 1 -1.4 -9.3 -0.1 2.2 1.7 .85477
13 1 -2.2 -8.6 -0.5 -1.1 0.6 .50951
14 1 -2.5 -9.0 -0.8 -2.9 -1.3 .70461
15 2 -4.5 -10.5 -3.3 -2.0 -1.2 .99889
16 3 -7.5 -6.8 -5.4 -6.2 -4.2 >.99999

17 3 -12.9 -12.1 0.4 -11.9 -9.9 .95922
18 3 -14.3 -12.6 2.0 -13.3 -11.3 .20762
...

The results in Table 6.3 illustrate that, as predicted by the analysis, the use of
modchol does not cause the interior-point algorithm to break down even when A�B
is rank de�cient. We con�rm this observation in Tables 6.4 and 6.5 with two other
experiments involving rank-de�cient matrices. Table 6.4 reports an identical problem
to that of Table 6.2 except that in the matrix A, the third-last column was replaced
by a multiple of the second-last column. The matrices A and A�B are thereby rank
de�cient. When � becomes su�ciently small, modchol detects a numerical rank of
3 in the matrix of (2.15a), and the interior-point algorithm behaves similarly as in
the earlier tables. In Table 6.5, the modi�cations of A used in Tables 6.3 and 6.4
were both performed, giving a matrix A�B of rank 3 such that the pivots are not
all con�ned to the lower right corner of the matrix in (2.15a). (The (2; 2) pivot is
always small.) The behavior is once again similar to that of the earlier tables. We
note especially iteration 15, at which two pivots are classi�ed as \small" while a third
pivot is slightly greater than the threshold, giving rise to a large spread in the nonzero
diagonal elements of ~L. The resulting iterate contains some inaccuracy that manifests
itself in a slight increase in the residual rb, but this is quickly corrected at iteration
16, at which the large and small pivots become clearly separated.

Finally, we note that we tried degenerate test problems in which jBj > m. These
are less interesting because modchol detects no small pivots in factoring the matrix
of (2.15a). Their behavior is once again similar to that of the other test problems, so
we omit the details.
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