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Abstract. We show that an interior-point method for monotone variational inequalities exhibits
superlinear convergence provided that all the standard assumptions hold except for the well-known
assumption that the Jacobian of the active constraints has full rank at the solution. We show that
superlinear convergence occurs even when the constant-rank condition on the Jacobian assumed in
an earlier work does not hold.
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1. Introduction. We consider the following monotone variational inequality
over a closed convex set C � IR

n:

Find z 2 C such that (z0 � z)T�(z) � 0; for all z0 2 C,(1)

where � : IRn ! IR
n and the set C is de�ned by the following algebraic inequality:

C = fz j g(z) � 0g;

where g : IRn ! IR
m. The mapping � is assumed to be C1 (continuously di�erentiable)

and monotone; that is,

(z0 � z)T (�(z0) � �(z)) � 0 for all z0; z 2 IR
n,

while each component function gi(�) of g(�) is convex and twice continuously di�eren-
tiable.

By introducing g(�) explicitly into the problem (1), we obtain the following mixed
nonlinear complementarity (NCP) problem: Find the vector triple (z; �; y) 2 IR

n+2m

such that �
0
y

�
=

�
f(z; �)
�g(z)

�
; (�; y) � 0; �T y = 0;(2)

where f : IRn+m ! IR
n is the C1 function de�ned by

f(z; �) = �(z) +Dg(z)T�:(3)

It is well known [5] that, under suitable conditions on g such as the Slater constraint
quali�cation, z solves (1) if and only if there exists a multiplier � such that (z; �)
solves (2).

To show superlinear (local) convergence in methods for nonlinear programs, one
usually makes several assumptions with regard to the solution point. Until recently,
these assumptions included (local) uniqueness of the solution (z; �; y). This uniqueness
condition was relaxed somewhat in [10] to allow for several multipliers � corresponding
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to a locally unique solution z� of (1), by introducing a constant-rank condition on the
gradients of the constraints gi that are active at z�. The point of this article is to
show that superlinear convergence holds in the previous setting [10] even when the
constant-rank condition does not hold. This result lends theoretical support to our
numerical observations [10, Section 7].

Briey stated, the assumptions we make to obtain the superlinear results are as
follows: monotonicity and di�erentiability of the mapping from (z; �) to (f(z; �);�g(z)),
such that the partial derivative with respect to z is Lipschitz near z�; a positive de�-
niteness condition to ensure invertibility of the linear system that is solved at each it-
eration of the interior-point method; the Slater constraint quali�cation on g; existence
of a strictly complementary solution; and a second-order condition that guarantees
local uniqueness of the solution z� of (1). A formal statement of these assumptions
and further details are given in Section 2.2.

Before the present paper was written, superlinear convergence had been proved
for other methods for nonlinear programming without the strict complementarity as-
sumption, but these results typically required the Jacobian of active constraints to
have full rank (see Pang [8], Bonnans [1], and Facchinei, Fischer, and Kanzow [2]).
Monteiro and Zhou [7] undertook an alternative line of investigation, namely, primal-
dual interior-point methods for linearly constrained convex programs where the ob-
jective function satis�ed a relaxed second-order condition that allowed for multiple
(primal) solutions. They show superlinear convergence of the method of Ralph and
Wright [10] for this class of problems.

Since the �rst version this paper was written, there have been several algorith-
mic developments for which superlinear convergence can be proved under conditions
that do not imply linear independence of the active constraint gradients, or indeed
multiplier nondegeneracy, at the solution point. Fischer [3] modi�es the classical se-
quential quadratic programming (SQP) method of Wilson to produce a method that
is quadratically convergent under some nonstandard assumptions that do not imply
multiplier uniqueness. Qi and Wei [9] show superlinear convergence of a feasible point
SQP algorithm in the presence of multiplier degeneracy by requiring, amongst other
things, a kind of constant-rank condition on the constraint gradients that are active at
the optimal solution. Wright discusses SQP in [13, 14] and interior-point methods in
[15]. The paper [13] presents a stabilized version of SQP that exhibits quadratic con-
vergence while allowing for multiplier degeneracy under strict complementarity and
otherwise standard conditions; see Hager [4] for a convergence analysis of this method
without strict complementarity. The recent paper [15] uses linear algebra arguments
to show, among other things, that local superlinear convergence can be obtained for
nonlinear programs under assumptions similar to those discussed here, except that
one can omit the monotonicity (convexity) condition (Assumption 1 in Section 2.2).

Possibly the best known application of (1) is the convex programming problem
de�ned by

min
z

�(z) subject to z 2 C;(4)

where � : IR
n ! IR is C2 and convex. Let � = D�. It is easy to show that the

NCP formulation (2),(3) is equivalent to the standard Karush-Kuhn-Tucker (KKT)
conditions for (4). If a constraint quali�cation holds, then solutions of (4) correspond,
via Lagrange multipliers, to solutions of (2){(3) and, in addition, solutions of (1) and
(4) coincide.

We consider the solution of (1) by the interior-point algorithm of Ralph and



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 3

Wright [10], which is in turn a natural extension of the safe-step/fast-step algorithm
of Wright [11] for monotone linear complementarity problems. The algorithm is based
on a restatement of the problem (2) as a set of constrained nonlinear equations, as
follows: 24 �f(z; �)y + g(z)

��Y e

35 =

24 rf (z; �)
rg(z; y)
��Y e

35 = 0; (�; y) � 0;(5)

where the residuals rf and rg are de�ned in an obvious way. All iterates (zk; �k; yk)
satisfy the positivity conditions strictly; that is, (�k; yk) > 0 for all k = 0; 1; 2; : : :.
The interior-point algorithm can be viewed as a modi�ed Newton's method applied to
the equality conditions in (5), in which search directions and step lengths are chosen
to maintain the positivity condition on (�; y). Near a solution, the algorithm takes
steps along the pure Newton direction de�ned by24 Dzf DgT 0

�Dg 0 �I
0 Y �

3524 �z
��
�y

35 =

24 rf (z; �)
rg(z; y)
��Y e

35 :(6)

The solution (�z;��;�y) of this system is also known as the a�ne-scaling direction.
The duality measure de�ned by

� = �T y=m

is used frequently in our analysis as a measure of noncomplementarity and infeasibility.
To extend the superlinear convergence result of [10] without a constant-rank con-

dition on the active constraint Jacobian, we show that the a�ne-scaling step de�ned
by (6) has size O(�). Hence, the superlinearity result can be extended to most algo-
rithms that take near-unit steps along directions that are asymptotically the same as
the a�ne-scaling direction.

Since we are extending our work in [10], much of the analysis in the earlier work
carries over without modi�cation to the present case, and we omit many of the de-
tails here. We focus instead on the main technical result needed to prove fast local
convergence|the estimate (�z;��;�y) = O(�) for the a�ne-scaling step|and re-
state just enough of the earlier material to make the current note self-contained.

2. The Algorithm and its Convergence. In this section, we review the nota-
tion and assumptions of the algorithm from Ralph and Wright [10]. We also state the
main global and superlinear convergence results, which di�er from the correspond-
ing theorems in [10] only in the absence of the constant-rank assumption. Using the
framework of [10], we can accomplish our main goal|a proof of Theorem 2.2|without
referring directly to the algorithm. The statement of the algorithm is given in the
appendix for completeness.

2.1. Notation and Terminology. We use S to denote the solution set for (2),
and Sz;� to denote its projection onto its �rst n+m components; that is,

S = f(z; �; y) j (z; �; y) solves (2)g; Sz;� = f(z; �) j (z; �;�g(z)) 2 Sg:

For a particular z� to be de�ned in Assumption 4 in the next subsection, we de�ne

S�� = f� j (z�; �) 2 Sz;�g:(7)
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We can partition f1; 2; : : :;mg into basic and nonbasic index sets B and N such
that for all solutions (z�; ��; y�) 2 S, we have

��i = 0; for all i 2 N ; y�i = 0; for all i 2 B.

The solution (z�; ��;�g(z�)) is strictly complementary if �� + y� > 0; that is, ��i > 0
for all i 2 B and y�i = �g(z

�) > 0 for all i 2 N .
We use �N and �B to denote the subvectors of � that correspond to the index sets

N and B, respectively. Similarly, we use DgB(z) to denote the jBj�n row submatrix
of Dg(z) corresponding to B.

Finally, if we do not specify the arguments for functions g, Dg, f , and so on, they
are understood to be the appropriate components of the current point (z; �; y). The
notation Dg� refers to Dg(z�).

2.2. Assumptions. Here we give a formal statement of the assumptions needed
for global and superlinear convergence. Some motivation is given here, but we refer
the reader to the earlier paper [10] for further details.

The �rst assumption ensures that the mapping f de�ned by (3) is monotone with
respect to z and therefore that the mapping (z; �)! (f(z; �);�g(z)) is monotone.

Assumption 1. � : IRn ! IR
n is C1 and monotone; and each component function

gi of g : IR
n ! IR

m is C2 and convex.
The second assumption requires positive de�niteness of a certain matrix projec-

tion, to ensure that the coe�cient matrix of the Newton-like system to be solved for
each step in the interior-point algorithm is nonsingular (see the appendix, (48)).

Assumption 2. The two-sided projection of the matrix

Dzf(z; �) = D�(z) +
mX
i=1

�iD
2gi(z)

onto kerDg(z) is positive de�nite for all z 2 IR
n and � 2 IR

m
++; that is, for any basis

matrix Z of kerDg(z), the matrix ZTDzf(z; �)Z is positive de�nite.
Note that this assumption is trivially satis�ed when the nonnegativity condition

z � 0 is incorporated in the constraint function g(�).
We assume, too, that the Slater condition holds for the constraint function g.
Assumption 3. There is a vector �z 2 C such that g(�z) < 0.
Next, we assume the existence (but not uniqueness) of a strictly complementary

solution.
Assumption 4. There is a strictly complementary solution (z�; ��; y�), that is,

(z�; ��; y�) satis�es (2) with �� + y� > 0.
The strict complementarity condition is essential for superlinear convergence in a

number of contexts besides NCP and nonlinear programming. See, for exampleWright
[12, Chapter 7] for an analysis of linear programming and Monteiro and Wright [6] for
asymptotic properties of interior-point methods for monotone linear complementarity
problems.

Next, we make a smoothness assumption on � and g in the neighborhood of the
�rst component z� of the strictly complementary solution from Assumption 4.

Assumption 5. The matrix-valued functions D� and D2gi, i = 1; 2; : : : ;m are
Lipschitz continuous in a neighborhood of z�.

Finally, we make an invertibility assumption on the projection of the Hessian
onto the kernel of the active constraint Jacobian. This assumption is essentially a
second-order su�cient condition for optimality.
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Assumption 6. Let z� be de�ned as in Assumption 4, and let B, Sz;� and S�� be
de�ned as in Section 2. Then for each � 2 S��, the two-sided projection of Dzf(z�; �)
onto ker(Dg�B) is invertible.

We mention that with Assumption 2, the invertibility condition of Assumption 6
is equivalent to positive de�niteness of the two-sided projection.

We show in [10, Lemma 4.2] that, under the assumptions above, the �rst compo-
nent of all solutions (z; �) 2 Sz;� is z�, so that Sz;� has the form Sz;� = fz�g � S��.
Moreover, Lemma4.1 of [10] shows that the set S�� de�ned in (7) is polyhedral, convex,
and compact, and is therefore equal to the convex hull of its extreme points.

In the statements of our results, we refer to a set of \standing assumptions,"
which we de�ne as follows:

Standing Assumptions: Assumptions 1{6, together with an assump-
tion that the algorithm of Ralph and Wright [10] applied to the
problem (2) generates an in�nite sequence f(zk; �k; yk)g with a limit
point.

Along with Assumptions 1{6, the superlinear convergence result in Ralph and Wright
[10] requires a constant-rank constraint quali�cation to hold. To be speci�c, the
analysis of that paper requires the existence of an open neighborhood U of z� such
that for all matrix sequences fHkg � fDgB(z)T j z 2 Ug with Hk ! H� = DgB(z�)T

and all index sets J � f1; 2; : : :; jBjg, we have that

rankHk
�J ! rankH�

�J :

However, in the analysis of [10], this assumption is not invoked until Section 5.4, so we
are justi�ed in reusing many results from earlier sections of that paper here. Indeed,
we also reuse results from later sections of [10] by applying them to constant matrices
(which certainly satisfy the constant-rank condition).

The algorithmmakes use of a family of sets 
(; �) de�ned for positive parameters
 and � as follows:


(; �) = f(z; �; y) j (�; y) � 0; krf (z; �)k � ��;(8)

krg(z; y)k � ��; �iyi � �; i = 1; 2; : : : ;mg :

In particular, the kth iterate (zk; �k; yk) belongs to 
(k; �k), where the algorithm
chooses the sequences fkg and f�kg to satisfy

0 < �min = �0 � �1 � � � � � �k � � � � < �max;

max = 0 � 1 � � � � � k � � � � � min > 0:

Given the notation


k
4
= 
(k; �k); 


4
= 
(min ; �max);

it is easy to see that


0 � 
1 � � � � � 
k � � � � � 
:

Since all iterates (zk; �k; yk) belong to 
, and since the residual norms krfk and krgk
are bounded in terms of � for vectors in this set, we are justi�ed in using � alone as
an indicator of progress, rather than a merit function that also takes account of the
residual norms.
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We have already noted that z� is the �rst component of all solutions, under the
standing assumptions, and that S�� is compact. Moreover, we show in [10, Theo-
rem 3.2] (see also Theorem 2.1 below) that if the our algorithm generates an in�nite

sequence (zk; �k; yk), all its limit points lie in S. Let (z�; �̂; y�) be any �xed limit
point; it follows immediately that

(z�; �̂; y�) 2 S;(9)

where y� = �g(z�) by de�nition. We are particularly interested in points in 
 that lie
close to this limit point, so we consider the near-solution neighborhood S(�) de�ned
by

S(�)
4
= f(z; �; y) 2 
 j k(z; �; y)� (z�; �̂; y�)k � �g:(10)

2.3. Convergence of the Algorithm. The algorithm converges globally ac-
cording to the following theorem.

Theorem 2.1. (Ralph and Wright [10, Theorem 3.2]) Suppose that Assump-
tions 1 and 2 hold. Then either

(A) (zk; �k; yk) 2 S for some k <1, or
(B) all limit points of f(zk; �k; yk)g belong to S.
Here, however, our focus is on local superlinear convergence. The theorem below

is simply a restatement of [10, Theorem 3.3] without the constant-rank condition on
the active constraint Jacobian matrix [10, Assumption 7].

Theorem 2.2. Suppose that Assumptions 1, 2, 3, 4, 5, and 6 are satis�ed and
that the sequence f(zk; �k; yk)g is in�nite, with a limit point (z�; �̂; y�) 2 S. Then the
algorithm eventually always takes fast steps, and

(i) the sequence f�kg converges superlinearly to zero with Q-order at least 1+ �̂ ,
and

(ii) the sequence f(zk; �k; yk)g converges superlinearly to (z�; �̂; y�) with R-order
at least 1 + �̂ .

The proof of this result follows that of the earlier paper in all respects except for
the estimate

(�z;��;�y) = O(�)(11)

for the a�ne-scaling step calculated from (6). The remainder of the paper is devoted
to proving that this estimate holds under the given assumptions.

3. An O(�) Estimate for the A�ne-Scaling Step. Our strategy for proving
the estimate (11) for the step (6) is based on a partitioning of the right-hand side in
(6). The following vectors are useful in de�ning the partition.

�f = Dzf(z; �)(z
� � z) +Dg(z)T (�� � �);(12a)

�g = y �Dg(z)(z� � z) + g(z�);(12b)

��f = Dzf(z; �)(z
� � z) +Dg(z�)T (�� � �);(12c)

��g = y �Dg(z�)(z� � z) + g(z�);(12d)

�f = �f(z; �) �Dzf(z; �)(z
� � z)�Dg(z)T (�� � �);(12e)

�g = g(z) � g(z�) +Dg(z)(z� � z);(12f)

where z� is de�ned in Assumption 4 and (z�; ��) is the projection of the current point
(z; �) onto the set Sz;� of (z; �) solution components. The right-hand side of (6) can
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be partitioned as 24 rf
rg
��Y e

35 =

24 �f
�g
��Y e

35+

24 �f
�g
0

35 :
We de�ne a corresponding splitting of the a�ne-scaling step:

(�z;��;�y) = (t; u; v) + (t0; u0; v0);(13)

where (t; u; v) and (t0; u0; v0) satisfy the following linear systems:24 Dzf (Dg)T 0
�Dg 0 �I
0 Y �

3524 t
u
v

35 =

24 �f
�g
��Y e

35 ;(14)

24 Dzf (Dg)T 0
�Dg 0 �I
0 Y �

3524 t0

u0

v0

35 =

24 �f
�g
0

35 :(15)

We de�ne a third variant on (6) as follows:24 Dzf (Dg�)T 0
�(Dg�) 0 �I

0 Y �

35
264 c�zc��c�y

375 =

24 ��f
��g
��Y e

35 ;(16)

and split the step (c�z; c��; c�y) as

(c�z; c��; c�y) = (~t; ~u; ~v) + (~t0; ~u0; ~v0);(17)

where (~t; ~u; ~v) and (~t0; ~u0; ~v0) satisfy24 Dzf (Dg�)T 0
�(Dg�) 0 �I

0 Y �

3524 ~t
~u
~v

35 =

24 ��f
��g
0

35(18)

24 Dzf (Dg�)T 0
�(Dg�) 0 �I

0 Y �

3524 ~t0

~u0

~v0

35 =

24 0
0

��Y e

35 :(19)

Because of Assumption 2, the matrices in (14), (15), (16), (18), and (19) are all
invertible, so all these systems have unique solutions.

Our basic strategy for proving the estimate (11) is as follows. From [10, Sec-
tion 5.3], we have without assuming the constant-rank condition that (t0; u0; v0) =
O(�) for all (z; �; y) 2 S(�), where � 2 (0; 1) is a positive constant. The constant-rank
assumption is, however, needed in [10] to prove that the other step component (t; u; v)
is also O(�). In this article, we obtain the same estimate without the constant-rank
assumption, by proving that

(c�z; c��; c�y) = O(�); (c�z � t; c��� u; c�y � v) = O(�);(20)
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for all (z; �; y) 2 S(�).
Our �rst result, proved in the earlier paper [10], collects some bounds that are

useful throughout this section.
Lemma 3.1. [10, Lemma 5.1] Suppose that the standing assumptions hold. Then

there is a constant C0 such that the following bounds hold for all (z; �; y) 2 S(1):

�i � C0� (i 2 N ); yi � C0� (i 2 B);(21a)

�i � min=C0 (i 2 B); yi � min=C0 (i 2 N );(21b)

yi � min�=C0 (i 2 B); �i � min�=C0 (i 2 N ):(21c)

Lemma 3.1 implies that the limit point (z�; �̂; y�) de�ned in (9) has

�̂i > 0; i 2 B; y�i = �gi(z
�) > 0; i 2 N :(22)

The second result is a general one that relates di�erent components of the solu-
tions of the systems (14), (15), (16), (18), and (19).

Lemma 3.2. (cf. [10, Lemma 5.2]) Suppose that the standing assumptions are
satis�ed, and consider a general system of the form24 Dzf DgT 0

�Dg 0 �I
0 Y �

3524 �t
�u
�v

35 =

24 d1

d2

d3

35 ;(23)

where (d1; d2; d3) represents an arbitrary right-hand side. Then there are constants

�̂ 2 (0; 1) and C1 > 0 such that for all (z; �; y) 2 S(�̂), the solution of (23) satis�es

k�tk � C1

�
k(d1; d2; d3)k+ �k�uBk

�
:(24)

We can choose C1 such that the same estimate holds if we replace Dg(z) by Dg(z�)
in the coe�cient matrix in (23).

Proof. Note �rst from [10, Equation (78)] that

k(z; �)� (z�; ��)k � C1;1�; for all (z; �; y) 2 S(�2);(25)

for some positive constants C1;1 and �2 2 (0; 1). Note too that as in the proof of [10,
Lemma 5.2], we have for any � 2 (0; 1] that � = O(�) for all (z; �; y) 2 S(�).

By eliminating the �v component from (23), we obtain�
Dzf DgT

�Dg ��1Y

� �
�t
�u

�
=

�
d1

d2 +��1d3

�
:

We reduce the system further by eliminating �uN to obtain�
(Dzf) + (DgN )T�NY

�1
N (DgN ) (DgB)T

�(DgB) ��1B YB

� �
�t
�uB

�
(26)

=

�
d1 � (DgN )T�NY

�1
N [d2 +��1N d3N ]

d2B +��1B d3B

�
4
=

�
�d1

�d2B

�
:

Because of the bounds (21), we have for any (z; �; y) 2 S(1) that

k �d1k � kd1k+ kDgN k
�
k�NY

�1
N k kd

2k+ kY �1
N kkd

3
Nk
�
� C1;2k(d

1; d2; d3)k;(27)



SUPERLINEAR CONVERGENCE WITHOUT NONDEGENERACY 9

and

k �d2Bk � kd
2
Bk+ k�

�1
B kkd

3
Bk � C1;2k(d

1; d2; d3)k:(28)

for some constant C1;2. By noting that �NY
�1
N = O(�) and ��1B YB = O(�), and that

Dzf(z; �) �Dzf(z
�; �̂) = O(k(z; �)� (z�; �̂)k) = O(�);

DgB �Dg�B = O(kz � z�k) = O(�);

for all (z; �; y) 2 S(�) and all � 2 (0; 1], we have by rearranging (26) that�
Dzf(z

�; �̂) (Dg�B)
T

�(Dg�B) 0

� �
�t
�uB

�
=

�
�d1 + [Dzf(x�; �̂) �Dzf(z; �)]�t� (DgN )T�NY

�1
N (DgN )�t+ (Dg�B �DgB)�uB

�d2B � (Dg�B �DgB)�t � ��1B YB�uB

�
=

�
�d1

�d2B

�
+ O((� + �)k�tk) +O(�k�uBk);

for all (z; �; y) 2 S(�), where � 2 (0; �2) and �2 is de�ned as in (25). By partitioning
�t into its components in kerDg�B and ran (Dg�B)

T , we have from Assumption 6 that �t
is bounded in norm by a multiple of the right-hand side in the system above. Hence,
by applying (27) and (28), we can de�ne a constant C1;3 such that

k�tk � C1;3

�
k(d1; d2; d3)k+ �k�uBk+ (�+ �)k�tk

�
:(29)

We can choose �̂ small enough that the coe�cient of k�tk on the right-hand side of

(29) is smaller than 0:5 for all � 2 (0; �̂]. By rearranging this expression, we obtain

k�tk � 2C1;3

�
k(d1; d2; d3)k+ �k�uBk

�
;

which veri�es (24).
The proof of the last statement is similar.
We can apply the lemmaabove to the systems (16) and (18) to obtain the following

result.
Lemma 3.3. (cf. [10, Lemma 5.2]) Suppose that the standing assumptions are

satis�ed. Then there are constants �̂ 2 (0; 1) and C2 > 0 such that for all (z; �; y) 2

S(�̂), the solutions (c�z; c��; c�y) of (16) and (~t; ~u; ~v) of (18) satisfy the following
relations:

kc�zk � C2�(1 + kc��Bk);(30a)

k~tk � C2�(1 + k~uBk):(30b)

Proof. To prove these result, we need to verify only that the right-hand sides of
(16) and (18) are bounded by a multiple of �. By Lipschitz continuity (Assumption 5),
the de�nitions (8) and (10), and the fact that f(z� ; ��) = 0 where (z�; ��) is de�ned in

(12), we can decrease �̂ of Lemma 3.2 if necessary so that there is a constant C2;1 > 0
for which

k��fk

� kf(z; �) + (Dzf)(z
� � z) +Dg(z)T (�� � �)� f(z�; ��)k+ kf(z; �)k

+kDg(z) �Dg(z�)kk�� � �k

� Lk(z; �) � (z�; ��)k2 + �max�+ Lkz � z�kk�� � �k

� C2;1�; for all (z; �; y) 2 S(�̂);(31)
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where L denotes the Lipschitz constant of Assumption 5. (The radius �̂ is chosen

small enough that S(�̂) lies inside the neighborhood of Assumption 5.) For the second
right-hand side component, we have simply that

k��gk � krgk+ kg(z
�)� g(z) �Dg(z�)(z� � z)k

� �max�+ Lkz� � zk2

� C2;2�; for all (z; �; y) 2 S(�̂);(32)

for some constant C2;2. For the remaining right-hand-side component in (16), we have
trivially that

k�Y ek1 = m�:

The results now follow immediately from Lemma 3.2.
The next result and others following make use of the positive diagonal matrix D

de�ned by

D = ��1=2Y 1=2:(33)

From Lemma 3.1, there is a constant C3 such that

kDk � C3�
�1=2; kD�1k � C3�

�1=2;(34)

for all (z; �; y) 2 S(1).
Lemma 3.4. (cf. [10, Lemma 5.3]) Suppose that the standing assumptions are

satis�ed. Then there are constants �̂ > 0 and C4 > 0 such that

kDc��k � C4�
1=2; kD�1c�yk � C4�

1=2;(35)

for all (z; �; y) 2 S(�̂).

Proof. Let �̂ be the smaller of those de�ned in Lemmas 3.2 and 3.3, but decreased
if necessary to ensure that

(z; �; y) 2 S(�̂) ) � � 1:(36)

The proof closely follows that of [10, Lemma 5.3], but we spell out the details here
because the analytical techniques are also needed in a later result (Theorem 3.9).

Recall the splitting (17) of the step (c�z; c��; c�y) into components (~t; ~u; ~v) and
(~t0; ~u0; ~v0) de�ned by (18) and (19), respectively. By multiplying the last block row in
(19) by ��1=2Y �1=2 and using (33), we �nd that

D~u0 +D�1~v0 = �(�Y )1=2e:(37)

Using (19) again, we obtain

(~u0)T ~v0 = �(~u0)T (Dg�)~t0 = (~t0)T (Dzf)~t
0 � 0;

since Dzf is positive semide�nite by Assumption 1. Hence, by taking inner products
of both sides in (37), we obtain

kD~u0k2 + kD�1~v0k2 � k(�Y )1=2ek2 = m�;
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and therefore

kD~u0k � m1=2�1=2; kD�1~v0k � m1=2�1=2:(38)

For (~t; ~u; ~v), the third block row in (18) implies that D~u = �D�1~v. Therefore,
we have

�(Dg�)~t� ~v = ��g ) �~uT (Dg�)~t + ~uTD2~u = ~uT ��g

) kD~uk2 = (~u)T ��g + (~t)T ��f � (~t)T (Dzf)~t

) kD~uk2 � kD~uk kD�1��gk+ k~tk k��fk;(39)

where again we have used monotonicity of Dzf . De�ne the constant C4;1 as

C4;1 = max(C2C2;1; C2C2;1C3; C2;2C3):

From (30b), (31), (34), and (36), we have for (z; �; y) 2 S(�̂) that

k~tk k��fk � C2�(1+k~uBk)C2;1� � C2C2;1�
2(1+C3�

�1=2kD~uk) � C4;1(�
2+�1=2kD~uk):

From (32) and (34), we have

kD�1��gk � C3�
�1=2C2;2� � C4;1�

1=2:

By substituting the last two bounds into (39), we obtain

kD~uk2 � 2C4;1kD~uk�1=2 � C4;1�
2 � 0:

It follows from this inequality by a standard argument that

kD~uk � C4;2�
1=2;

for some constant C4;2 depending only on C4;1, and �̂. By combining this bound with
(17) and (38), we obtain

kDc��k � kD~uk+ kD~u0k � (C4;2 +m1=2)�1=2;

and the �rst part of (35) follows if we de�ne C4 = C4;2 +m1=2. Since D�1~v = �D~u,
the second part of (35) follows likewise.

Bounds on some of the components of c�� and c�y follow easily from Lemma 3.4.
Theorem 3.5. (cf. [10, Theorem 5.4]) Suppose that the standing assumptions are

satis�ed. Then there are constants �̂ 2 (0; 1) and C5 > 0 such that

kc��N k � C5�; kc�yBk � C5�:(40)

Proof. Let �̂ be as de�ned in Lemma 3.4. From the de�nition (33) and the bounds
(35), we have �����

�
yi
�i

�1=2 c��i

����� � kDc��k � C4�
1=2;
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for any i 2 N . Hence, by using (21), we obtain

jc��ij �

�
�i
yi

�1=2

C4�
1=2 �

C0�
1=2


1=2
min

C4�
1=2;

which proves that kc��N k � C5� for an obvious choice of C5. The bound on c�yB is
derived similarly.

Lemma 3.6. (cf. [10, Lemma 5.10]) Let ; 6= J � B and ; 6= K � N . If the
two-sided projection of Dzf(z; �) onto kerDg�B is positive de�nite, then for t 2 IR

n

and �J 2 IR
jJ j, we have that

(t; �J ) 2 ker

�
(Dzf) (Dg�J )

T

�Dg�J 0

�
if and only if t = 0 and �J 2 ker(Dg�J )

T . In addition, we have that

dimker

�
(Dzf) (Dg�J )

T 0
�Dg� 0 �I�K

�
= dimker(Dg�J )

T :

Proof. This result di�ers from [10, Lemma 5.10] only in that z� replaces z as the
argument of Dg(�). The proof is essentially unchanged.

By Assumptions 5 and 6, the two-sided projection of Dzf(z; �) onto the kernel of

(Dg�B) is positive de�nite for all (z; �; y) su�ciently close to the limit point (z�; �̂; y�)
de�ned in (9). It follows from Lemma 3.6 and (22) that the set��

Dzf(z; �) (Dg�B)
T 0

�(Dg�) 0 �I�N

�
: k(z; �)� (z�; �̂)k � ��

�
(41)

has constant column rank for some �� > 0.
Theorem 3.7. Suppose that the standing assumptions hold. Then there is a

positive constant ~� such that for all (z; �; y) 2 S(~�), we have that (c�z; c��B; c�yN ) is
the solution of the following convex quadratic program:

min
(�t;�uB;�vN )

1
2kDBB�uBk2 +

1
2k(DNN )�1�vNk2;

subject to(42) �
Dzf (Dg�B)

T 0
�(Dg�) 0 �(I�N )

�24 �t
�uB
�vN

35 =

"
��f � (Dg�N )

T c��N
��g + I�Bc�yB

#
:

Moreover, there is a constant C6 such that

k(c��B; c�yN )k � C6k(��f ; ��g; c��N ; c�yB)k:(43)

Proof. The value ~� = min(��; �̂), with �� from (41) and �̂ from Theorem 3.5, su�ces
to prove this result. The technique of proof is by now familiar (it follows the proof of
[10, Theorem 5.12] closely), and we omit the details.

At this point, we have proved the �rst estimate in (20), as we summarize in the
following theorem.
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Theorem 3.8. Suppose that the standing assumptions hold. Then there are
constants ~� 2 (0; 1) and C7 > 0 such that for any (z; �; y) 2 S(~�) we have

k(c�z; c��; c�y)k � C7�:

Proof. Let ~� be as de�ned in Theorem 3.7. From Theorem 3.5, (31), and (32), we
have for (z; �; y) 2 S(~�) that

k(��f ; ��g; c��N ; c�yB)k = O(�):

Hence, from (43) we have also that

k(c��B; c�yN )k = O(�);

and it follows from (30a) that kc�zk = O(�).
Our last result is concerned with the second estimate in (20) involving the rela-

tionship between (t; u; v) and (c�z; c��; c�y).
Theorem 3.9. Suppose that the standing assumptions hold. Then there are

constants � 2 (0; 1) and C8 > 0 such that

k(c�z � t; c��� u; c�y � v)k � C8�;

for all (z; �; y) 2 S(�).
Proof. By taking di�erences of (14) and (16), we obtain24 Dzf (Dg)T 0

�(Dg) 0 �I
0 Y �

35
264 c�z � tc��� uc�y � v

375
=

24 (Dg �Dg�)(�� � �) + (Dg �Dg�)T c��

(Dg �Dg�)(z� � z) + (Dg� �Dg)c�z
0

35 :(44)

We have from (25), Lipschitz continuity of Dg(�) (Assumption 5), and Theorem 3.8
that there is a radius �4 2 (0; ~�) such that24 (Dg �Dg�)(�� � �) + (Dg �Dg�)T c��

(Dg �Dg�)(z� � z) + (Dg� �Dg)c�z
0

35 = O(�2); all (z; �; y) 2 S(�4):(45)

The remainder of the proof follows that of [10, Lemma5.7]. By applying Lemma3.2
to the system (44), and using the estimate (45), we have that there are constants
�5 2 (0; �4) and C8;1 > 0 such that

kc�z � tk � C8;1

�
�2 + �kuB � c��Bk

�
; all (z; �; y) 2 S(�5):(46)

Next, we note that the technique used in the second half of the proof of Lemma 3.4
can be used to prove that there is � 2 (0; �5) such that

kD(c�� � u)k = kD�1(c�y � v)k � C8;2�
3=2; all (z; �; y) 2 S(�);(47)
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where D is the diagonal scaling matrix de�ned in (33). Modi�cations are needed only
to account for the di�erent right-hand side estimate (45) and the di�erent estimate

(46) of kc�z� tk; we omit the details. From (34) and (47), it follows immediately that

kc��� uk � C8;2C3�; kc�y � vk � C8;2C3�:

The �nal estimate for (c�z� t) is obtained by substituting these expressions into (46).

Corollary 3.10. Suppose that the standing assumptions hold. Then there are
constants � > 0 and C9 such that the a�ne-scaling step de�ned by (6) satis�es

k(�z;��;�y)k � C9�; all (z; �; y) 2 S(�).

Proof. We have from Theorems 3.8 and 3.9 that (t; u; v) = O(�) for � de�ned as
in Theorem 3.9. Moreover, it follows directly from [10, Section 5.3] that (t0; u0; v0) =
O(�), possibly after some adjustment of �. Hence, the result follows from (13).

4. Conclusions. The result proved here explains the numerical experience re-
ported in Section 7 of Ralph and Wright [10], in which the convergence behavior of
our test problems seemed to be the same regardless of whether the active constraint
Jacobian satis�ed the constant-rank condition. We speculated in [10] about possible
relaxation of the constant-rank condition and have veri�ed in this article that, in fact,
this condition can be dispensed with altogether.

Our results are possibly the �rst proofs of superlinear convergence in nonlinear
programming without multiplier nondegeneracy or uniqueness.

Acknowledgments. We thank the referees and associate editor for their com-
ments and suggestions.
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Appendix: The Algorithm. The major computational operation in the algo-
rithm is the repeated solution of n+ 2m-dimensional linear systems of the form24 Dzf DgT 0

�Dg 0 �I
0 Y �

3524 �z
��
�y

35 =

24 rf (z; �)
rg(z; y)

��Y e+ ~��ke

35 ;(48)

where the centering parameter ~� lies in the range [0; 1
2 ]. These equations are simply

the Newton equations for the nonlinear system of equality conditions from (2), except
for the ~� term. The algorithm searches along the direction (�z;��;�y) obtained
from (48).

At each iteration, the algorithm performs a fast step along a direction obtained by
solving (6) (or, equivalently, (48) with ~� = 0). We choose the neighborhood 
k+1 to
be strictly larger than 
k (by appropriate choice of k+1 and �k+1), thereby allowing
a nontrivial step �k to be taken along this direction without leaving 
k+1. If the fast
step achieves at least a certain �xed decrease in �, it is accepted as the new iterate.
Otherwise, we reset 
k+1  
k and de�ne a safe step by solving (48) with ~� chosen
in the range [��; 1) for some constant �� 2 (0; 12 ). We perform a backtracking line
search along this direction, stopping when we identify a value of �k that achieves a
\su�cient decrease" in � without leaving the set 
k+1.

The algorithm is parametrized by the following quantities whose roles are ex-
plained more fully in [10].

� 2 (0; 1); �� 2 (0; 1
2
); �� 2 (0; 1]; � 2 (0; 1); �̂ 2 (0; 1);

�min > 0; �max = �min exp(3=2); 0 < min < max �
1
2
;

� 2 (0; 12); � 2 (0;min((12�)
1=�̂ ; 1� �));

where exp(�) is the exponential function. The constants �min and max are related to
the starting point (z0; �0; y0) as follows:

�0i y
0
i � max�0; krf (z

0; �0)k � �min�0; krg(z
0; y0)k � �min�0:

The main algorithm is as follows.

t0  0; 0  max; �0  �min;
for k = 0; 1; 2; : : :,

if �k = 0
terminate with solution (zk; �k; yk);
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(zk+1; �k+1; yk+1) fast(zk; �k; yk; tk; k; �k);
if �k+1 � ��k

tk+1  tk + 1 ;
k+1  min + �tk+1 (max � min); �k+1  (1 + �tk+1 )�k;

else

tk+1  tk;
(zk+1; �k+1; yk+1) safe(zk; �k; yk; tk; k; �k);
k+1  k; �k+1  �k;

end for.

Although we may calculate both a fast step and a safe step in the same iteration,
the coe�cient matrix in (48) is the same for both steps, so the coe�cient matrix is
factored only once.

The safe-step procedure is de�ned as follows.

safe(z; �; y; t; ; �):
choose ~� 2 [��; 12 ], �

0 2 [��; 1];
solve (48) to �nd (�z;��;�y);
choose � to be the �rst element in the sequence �0; ��0; �2�0; : : :,

such that the following conditions are satis�ed:

�i(�)yi(�) �  �(�);

krf (z(�); �(�))k � ��(�);

krg(z(�); y(�))k � ��(�);

�(�) � [1� ��(1� ~�)]�

return (z(�); �(�); y(�)).

The fast step routine is described next.

fast(z; �; y; t; ; �):
solve (48) with ~� = 0 to �nd (�z;��;�y);

set ~ = min + �t+1(max � min); set ~� = (1 + �t+1)�;
de�ne

�0 = 1�
��̂

�t
;

if �0 � 0 return(z; �; y);
choose � to be the �rst element in the sequence �0; ��0; �2�0; : : :,
such that the following conditions are satis�ed:

�i(�)yi(�) � ~ �(�);

krf (z(�); �(�))k � ~��(�);

krg(z(�); y(�))k � ~��(�);

return (z(�); �(�); y(�)).


