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We propose a new method for selecting a common subset of explanatory variables where the aim is to
model several response variables. The idea is a natural extension of the LASSO technique proposed by
Tibshirani (1996) and is based on the ( joint) residual sum of squares while constraining the parameter
estimates to lie within a suitable polyhedral region. The properties of the resulting convex programming
problem are analyzed for the special case of an orthonormal design. For the general case, we develop
an efficient interior point algorithm. The method is illustrated on a dataset with infrared spectrometry
measurements on 14 qualitatively different but correlated responses using 770 wavelengths. The aim is to
select a subset of the wavelengths suitable for use as predictors for as many of the responses as possible.
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1. INTRODUCTION

Many practical (linear) regression problems are ill-
conditioned. When the problem contains a large number of
highly correlated predictors, the need to select predictors care-
fully, or otherwise regularize the problem, is well known. Some
traditional techniques used for this purpose are direct variable
selection (Miller 1990; Burnham and Anderson 1998), ridge
regression (see, e.g., Hocking 1996; Draper and Smith 1998),
and partial least squares (Wold 1984; Martens and Naes 1989;
Brown 1993). The latter is typically used if the number of ex-
planatory variables is large relative to the number of obser-
vations. Newer techniques that have been proposed include
the nonnegative garotte of Breiman (1995) and the least ab-
solute shrinkage and selection operator (LASSO) of Tibshirani
(1996). Later we discuss the LASSO in more detail and propose
a method that extends the LASSO methodology in a natural
way to the problem in which several related response variables
are observed and the researcher desires, either because of avail-
able a priori information or for other reasons, to model these
response variables using the same common subset of predic-
tors.

Breiman and Friedman (1997) discussed various applications
in which the aim is to model several related response variables
using the same set of predictors, and proposed a method that
uses the relationship between the response variables to find a
“simultaneous” model for each response variable. They showed
that such a simultaneous model can outperform an approach in
which each response variable is modeled separately. However,
their approach uses all available predictors to simultaneously
build models for all of the response variables, and these authors
did not address the question of variable selection.

Using a Bayesian approach, Brown, Fearn, and Vannucci
(1999) and Brown, Vannucci, and Fearn (1998, 2002) addressed
the question of variable selection in the setting where one has
several related response variables and a (large) set of predictors

to choose from. However, their methods require the use of quite
sophisticated Markov chain Monte Carlo (MCMC) algorithms,
for which the choice of tuning parameters and the monitoring
for convergence do not appear to be trivial. By way of contrast,
the method that we propose for variable selection in this setting
is based on a regularization approach inspired by the LASSO
methodology. Although we are aware that many variable selec-
tion procedures that use a regularization approach, including the
LASSO, can be explained via a Bayesian framework (see, e.g.,
Leamer 1978), we do not develop a Bayesian interpretation for
our method in this article.

The LASSO technique minimizes the residual sum of squares
while bounding the L1-norm of the coefficient vector by a spec-
ified value. Suppose that we observe data on a response vari-
able yi and p explanatory variables xil, i = 1, . . . ,n and l =
1, . . . ,p, and that the response variable is centered (

∑
i yi = 0)

and the explanatory variables are standardized (
∑

i xil = 0 and∑
i x2

il/n = 1 for all l = 1, . . . ,p). Then the LASSO estimates
are given by the solution to the following optimization prob-
lem:

minimize
b1,...,bp

1

2

n∑

i=1

(

yi −
p∑

l=1

xilbl

)2

(1a)

subject to
p∑

l=1

|bl| ≤ t. (1b)

Tibshirani (1996) showed that this approach has features in
common with both ridge regression and variable selection. As
in ridge regression, the solution b̂i of (1) tends to shrink to 0 as
t goes to 0. In contrast, the nonsmooth nature of the L1-norm,
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which is nondifferentiable when any components bl are 0, tends
to force some of the solution components b̂i’s to be 0. In this
sense, the outcome is similar to variable selection.

In this article we propose a method that extends the LASSO
methodology in a natural way to the problem in which sev-
eral related response variables are observed and the researcher’s
aim is to find predictors for all of them from a common sub-
set of variables. The dataset that motivated this research and
that we use to illustrate our methodology was kindly provided
by Dr. Bronwyn Harch of CMIS/CSIRO in Adelaide. In this
dataset, experimenters used 24 soil samples to take measure-
ments on 14 quantities (EC, pH, pHCaCl2, CLeco, Org.C,
NLeco, extP, Ca, Mg, Na, K, TotalCations, CEC, and CaCO3)
at 770 different wavelengths. The aim is to identify those wave-
lengths (explanatory variables) that are the most informative for
detecting and quantifying the presence of a particular quantity,
say Org.C.

Applying the LASSO methodology to each response variable
of this dataset, choosing values for t between 0 and 1, we ob-
tain the results shown in Figure 1. Here the 770 different wave-
lengths, spaced approximately equally along a spectrum, are
labeled X1 to X770 for simplicity. In each panel, the abscissa is
the constraint bound t in (1b) and the ordinate is the coefficient
value. (Because the predictors are scaled to mean 0 and unit
variance, the coefficients are also on comparable scales.) Note
that for most of the response variables, only a very few of the
coefficients are nonzero for any given value of t, but the set of
nonzero coefficients depends strongly on t. Typically a regres-
sor enters the model (i.e., has a nonzero coefficient) and drops
out again to be replaced by a “nearby” regressor. For example,
consider the panel for CaCO3. Initially, for small t, X116 is
selected by the LASSO. As t increases to about .8, X116 is
replaced by X117, which in turn is replaced by X119 as t ap-
proaches 1. These three regressors are highly correlated. Given
this high correlation among regressors, another recently pro-
posed modification of the LASSO, the “elastic net” (Zou and
Hastie 2005), might be more appropriate if one wants to model
the response variables separately.

A feature in Figure 1 that is not so obvious is that at t = 1, the
set of variables selected for most response variables includes
only a few regressor variables. Moreover, the indices of these
regressor variables lie mostly in a few particular regions of the
spectrum.

Figure 2 shows a pairwise scatterplot of the 14 response
variables. We observe at least some correlation between most
of the response variables, in particular among EC, pH, pH-
CaCl2, Cleco, Org.C, NLeco, Ca, TotalCations, and CEC. With
regard to NLeco, we would also like to point out that one
observation—namely, the 10th—appears to be an outlier.

The correlation among the response variables and the results
of the separate LASSO analysis suggest that possibly a single
set of regressor variables is sufficient to model all (or at least
most) of the response variables. One may also expect that by
using all response variables simultaneously to select a single set
of regressor variables, it is possible to avoid overfitting, which
is a potentially serious problem if we select a separate set of
regressor variables for each response variable.

1.1 Extending the LASSO to Multiple Responses

We propose extending the LASSO methodology to achieve
simultaneous variable selection. To fix notation, suppose that
we have n observations on k response variables yij and p ex-
planatory variables xil (i = 1, . . . ,n, j = 1, . . . , k, and l =
1, . . . ,p). We assume not only that the explanatory variables
are standardized, as described earlier, but also that the response
variables are standardized, that is,

∑
i yij = 0 and

∑
i y2

ij/n = 1
for all j = 1, . . . , k. We might interpret the regression parame-
ter blj as the “explanatory power” that the lth regressor vari-
able has on the jth response variable. It seems natural to take
bl,max = max(|bl1|, . . . , |blk|) as a measure of the “simultane-
ous explanatory power” of the lth regressor on all k response
variables. Following the approach of Tibshirani (1996), we may
now impose a constraint on the sum of the bl,max, l = 1, . . . ,p,
to identify the regressor variables that simultaneously best ex-
plain all response variables. Thus we arrive at the following
problem:

minimize
b11,...,bpk

1

2

k∑

j=1

n∑

i=1

(

yij −
p∑

l=1

xilblj

)2

, (2a)

subject to
p∑

l=1

max(|bl1|, . . . , |blk|) ≤ t. (2b)

Note that if k = 1, then (2) reduces to the LASSO (1). It should
also be noted that we propose to use (2) as an exploratory tool
to identify a suitable subset of regressor variables. Once this
subset is identified, we suggest that its suitability for model-
ing most (or all) of the response variables is assessed further
using standard statistical techniques, and that the selected re-
gressor variables be used in unconstrained (linear) models. It is
not clear to us that the actual parameter estimates at the solution
of (2) have any inherent meaning or use.

Although for the dataset that we use to illustrate our method-
ology, it was not crucial that the same set of predictors can
be used to model all response variables, there may be situa-
tions where the ability to identify a set of predictors to model
all response variables is crucial. For example, a manufacturer
of high-frequency measurement devices produces an instru-
ment that is designed to meet several different specifications
(likely correlated) for all carrier frequencies in a given range.
(We thank K. Kafadar for bringing this example to our atten-
tion.) However, production engineers would not be able to af-
ford to test every single frequency (e.g., 1 MHz, . . . , 500 MHz)
to verify that the instrument coming off the production line
passes all specifications at all frequencies. It would be to their
advantage to find a small subset of frequencies that can be
used to verify performance at all specifications. The engineers
would be able to save enormous amounts of time by setting
their signal generators to only a few frequencies and testing
the instrument response to all specifications as the frequency
is changed from one setting to the next. We suggest that our
methodology might be helpful in identifying such a subset of
frequencies.

The rest of the article is structured as follows. In Section 2
we provide some further motivation for the method that we
propose and discuss how it relates to similar work by others.
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Figure 1. Applying the LASSO to Each Variable Separately.
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Figure 2. Pairwise Plot of the 14 Response Variables.

In Section 3 we give an exact characterization of the solutions
to (2). We also describe a homotopy algorithm that calculates
all solutions (as functions of t) in the case where the design ma-
trix is orthonormal and develop an interior point algorithm for

the general case. Using the latter algorithm, we reanalyze the
infrared spectrometry data in Section 4. We provide further dis-
cussion on how this method can be extended in Section 5, and
offer some conclusions in Section 6.
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2. SOME MOTIVATION AND DISCUSSION OF
RELATED WORK

The proposed methodology can be viewed as a way to select
groups of regression estimates. That is, in a (potentially huge)
regression problem with m parameters, β1, . . . , βm, we parti-
tion the index set σ = {1, . . . ,m} into p disjoint sets, σl, such
that σ = ⋃

l σl, and seek the “most significant” groups of para-
meters. We allow βi to be nonzero only if i belongs to one of
the selected groups σl.

In Section 3 we show that our problem can be viewed from
this perspective. Another problem that fits into this setting is
variable selection in generalized additive models (Hastie and
Tibshirani 1990), as discussed by Bakin (1999). In this case,
each nonparametric function in the generalized additive model
is built from a B-spline basis, and the corresponding coeffi-
cients are collected into a group. By deciding which groups are
“significant,” Bakin (1999) essentially identified those regres-
sor variables that have a significant influence on the response
variable.

How can such a groupwise selection of regression parame-
ters be achieved? By generalizing other methods studied in the
statistical literature (Leamer 1978; Frank and Friedman 1993;
Tibshirani 1996), one might consider imposing the following
constraint onto the parameter estimates:

p∑

l=1

(∑

i∈σl

|βi|α
)1/α

=
p∑

l=1

∥
∥βσl

∥
∥

α
≤ t, (3)

where t ≥ 0 is some constant, βσl
is the vector consisting of

those βi’s for which i ∈ σl, and ‖ · ‖α is the Lα-norm. If α ≥ 1,
then the feasible region in (3) is a convex subset of R

m. This
property is advantageous from both numerical and theoretical
standpoints. It ensures that a solution exists if the parameter
estimates are defined as the minimizer of a (strictly) convex
function. In fact, for a strictly convex objective function, the
solution is unique. If the objective function is not strictly con-
vex then one can ensure that the solution is unique under further
regularity conditions, provided that t is small enough (see, e.g.,
the discussion in Osborne, Presnell, and Turlach 2000b for the
special case of the LASSO).

When t is small enough, the solution of the regression prob-
lem with constraint (3) lies on the boundary of the feasible set;
that is, equality holds in (3). Thus it is clear that imposing a
constraint like (3) shrinks the parameter estimates toward 0 as
t goes to 0. The size of this shrinkage and the manner in which
the parameter estimates are shrunk to 0, however, depends on
the particular choice of α. For α = 1, we have

p∑

l=1

∥
∥βσl

∥
∥

α
=

p∑

l=1

∑

i∈σl

|βi| =
m∑

l=1

|βl| = ‖β‖1,

and the constraint (3) reduces to the L1-norm of the complete
vector of parameter estimates, which is the constraint used by
Tibshirani (1996) in his LASSO method. Given the behavior of
the LASSO method (Tibshirani 1996; Osborne et al. 2000a, b),
it is clear that this choice does not achieve the desired “simulta-
neous” variable selection, so the choice α = 1 is not interesting
in this context.

Arguably, the most obvious choices for α > 1 would be
α = 2 and α = ∞. The former choice was studied by Bakin
(1999), whereas we study the latter choice α = ∞ in this ar-
ticle. Bakin (1999) noted that the use of α = 2 can be inter-
preted as a hybrid between the LASSO (if p = m, i.e., each
σl contains exactly one index) and ridge regression (if p = 1 and
σl = σ for the entire set of indices). Likewise, the use of α = ∞
leads to a hybrid between the LASSO ( p = m) and interval-
restricted least squares ( p = 1) (Clark and Osborne 1988). We
note that the optimization problem with α = 2 cannot be han-
dled as effectively with currently available optimization tech-
niques as can the problem with α = ∞. The latter leads to a
convex quadratic program, for which interior point methods can
be devised that exploit its special structure, as we show in this
article. The former leads to a second-order cone program (see,
e.g., Lobo, Vandenberghe, Boyd, and Lebret 1998). Although
software is now available for problems of this type (see, e.g.,
Sturm 1999), it is less able to take advantage of the structure of
the problem and as a consequence will probably be less efficient
in practice.

3. NUMERICAL ASPECTS OF THE ESTIMATOR

We now return to (2). To avoid some cumbersome notation,
we introduce the following matrix notation:

y
˜

j =




y1j
...

ynj



 ∈ R
n, j = 1, . . . , k,

y
˜
=






y
˜

1

...

y
˜

k




 ∈ R

nk,

(4)

X =




x11 . . . x1p
...

. . .
...

xn1 . . . xnp



 , and

X̃ = Ik ⊗ X =



X

. . .

X



 ∈ R
nk×pk,

where ⊗ denotes the Kronecker product. We arrange the re-
gression parameters blj in a matrix to implicitly define vectors
b
˜

1, . . . , b
˜

k ∈ R
p and b

˜
(1), . . . , b

˜
(p) ∈ R

k,




b11 . . . b1k
...

. . .
...

bp1 . . . bpk



 =
( | |

b
˜

1 · · · b
˜

k

| |

)

=





— b
˜
�
(1) —
...

— b
˜
�
(p)

—




 ,

and then define the vector b
˜

by

b
˜
=






b
˜

1
...

b
˜

k




 ∈ R

pk.

Using this notation, we write (2) as

minimize
b
˜
∈Rpk

f (b
˜
) = 1

2
(y
˜
− X̃b

˜
)�(y

˜
− X̃b

˜
) (5a)

subject to g(b
˜
) = t −

p∑

l=1

∥
∥b

˜
(l)

∥
∥∞ ≥ 0. (5b)
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We also define the vector of residuals as

r(b
˜
) = y

˜
− X̃b

˜
.

Remark 1. A referee pointed out that occasionally a covari-
ance matrix for errors across responses typically is incorporated
in multivariate regression problems. This amounts to changing
the objective function in (5a) to 1

2 (y
˜
− X̃b

˜
)�W(y

˜
− X̃b

˜
), where

W is a suitable (symmetric positive semidefinite) weight ma-
trix. We can accommodate this generalization easily by premul-
tiplying y

˜
and X̃ by W1/2. Because it is simple to incorporate

a weight matrix W in our formulation, our method can be ex-
tended to other models in which the objective function is not
the residual sum of squares, but rather is obtained from an iter-
atively (re)weighted least squares procedure, for example, gen-
eralized linear models (McCullagh and Nelder 1989).

Remark 2. As stated earlier, we generally assume that the ex-
planatory variables and the response variables are centered and
standardized to have (sample) mean 0 and (sample) variance 1.
Given the previous remark about the possible incorporation of
weights, such standardization may seem questionable. Obvi-
ously, just as for the LASSO and other statistical techniques
that are in wide use, our proposed method is not invariant un-
der rescaling of the variables (be they explanatory variables or
response variables). Thus, we suggest that by default, the vari-
ables should be centered and standardized unless the researcher
has good reasons not to do so.

3.1 Characterization of Solutions

We now use results from convex analysis (Rockafellar 1970;
Osborne 1985; Clarke 1990) to characterize solutions of (5).
Introducing a Lagrange multiplier λ for the constraint (5b), we
write the Lagrangian for (5) as

L(b
˜
, λ) = f (b

˜
) − λg(b

˜
), (6)

where λ ≥ 0. If we fix λ ≥ 0, then L(b
˜
, λ) is a convex function

in b
˜

and b̄
˜

minimizes L(b
˜
, λ) if and only if the pk-dimensional

null-vector 0
˜

is an element of the subdifferential ∂b
˜
L(b̄

˜
, λ)

(Osborne 1985, p. 23). From (6), we have

∂b
˜
L(b

˜
, λ) = −X̃�r

˜
+ λv

˜
,

where r
˜
= r(b

˜
) = y

˜
− X̃b

˜
denotes the residual vector and v

˜
=

(v1, . . . , vpk)
� has the following form:

• If ‖b
˜
(l)‖∞ > 0, then v

˜
(l) = (vl1, . . . , vlk)

�, where
∑k

j=1 |vlj| = 1 and, for j = 1, . . . , k, we have vlj ≥ 0 if
blj = ‖b

˜
(l)‖∞, vlj ≤ 0 if blj = −‖b

˜
(l)‖∞ and vlj = 0 if

|blj| �= ‖b
˜
(l)‖∞.

• If ‖b
˜
(l)‖∞ = 0, then v

˜
(l) = (vl1, . . . , vlk)

�, where
∑k

j=1 |vlj| ≤ 1.

Thus if b̄
˜

minimizes L(b
˜
, λ) for a given value of λ, then

0
˜
= −X̃�r̄

˜
+ λv̄

˜
, (7)

for some v̄
˜

of the form described earlier, and r̄
˜

= r(b̄
˜
) =

y
˜
− X̃b̄

˜
. The properties of v̄

˜
imply that v̄

˜
�b̄

˜
= ∑p

l=1 ‖b̄
˜
(l)‖∞,

so it follows from (7) that

λ = r̄
˜
�X̃b̄

˜

/ p∑

l=1

∥
∥b̄

˜
(l)

∥
∥∞. (8)

For b̄
˜

to be a solution of (5), we require not only that (7)
holds for some vector v̄

˜
satisfying the foregoing properties, but

also that b̄
˜

satisfies the constraint (5b), that λ satisfying (8) has
λ ≥ 0, and that the following complementarity condition holds:

λg(b
˜
) = λ

(

t −
p∑

l=1

∥
∥b

˜
(l)

∥
∥∞

)

= 0.

In the case of λ = 0, we have from (7) that X̃�r̄
˜
= 0, indicating

that b̄
˜

is the unconstrained least squares minimizer of (5a).
Although equation (7) gives a characterization of the solu-

tion for (5), the highly nonlinear way in which v
˜

depends on b
˜makes it impossible to calculate the solution directly from the

characterization just described. Some sort of iterative algorithm
is needed. For general X, an interior-point algorithm is devel-
oped in Section 3.3. The next section discusses the special case
in which X is an orthonormal matrix.

3.2 The Orthonormal Design Case

In this section we assume that X is orthonormal and that
n > p, so that X�X = Ip. For the LASSO, we can find explicit
formulas for the LASSO estimate based on the unconstrained
least squares estimate. Unfortunately, similar formulas do not
seem to be available for the current problem. We can, however,
develop a homotopy method, in which the constraint bound t
becomes the homotopy parameter, and we can examine the be-
havior of the solution to (5) as t varies. A similar analysis was
given by Osborne (1992) for the case of quantile regression,
and by Osborne et al. (2000a) and Efron, Hastie, Johnstone,
and Tibshirani (2004) for the LASSO. Specifically, the analysis
shows that the solution b

˜
of (2) is piecewise linear as a func-

tion of t and gives further insight into how our method selects
variables simultaneously.

We start by noting that, because X̃�X̃ = Ipk, the uncon-
strained minimizer of (5a) is

b
˜

0 = (b0
1, . . . ,b0

pk)
� = X̃�y

˜
.

Assuming that the blj’s are, for some nonnegative quantities ρl,
l = 1, . . . ,p, of the form

blj = sign(b0
lj) × min(|b0

lj|, ρl), l = 1, . . . ,p, j = 1, . . . , k,

(9)

we now show, by specifying the dependence of these ρl’s on t,
that (9) indeed yields the solution of (5). Observe that as long as
ρl ≤ ‖b

˜
0
(l)‖∞, for l = 1, . . . ,p, we have ρl = ‖b

˜
(l)‖∞. By using

X̃�X̃ = Ipk again, we rewrite f (b
˜
) as

f (b
˜
) = 1

2

{
(y
˜
− X̃b

˜
0)�(y

˜
− X̃b

˜
0) + (b

˜
0 − b

˜
)�(b

˜
0 − b

˜
)
}
.

(10)
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From (9), we have that |b0
lj − blj| = (|b0

lj| − ρl)+, where (x)+ =
max(0, x). By using this observation in conjunction with (10),
we reformulate (5) as

minimize
ρ1,...,ρl

1

2

k∑

j=1

p∑

l=1

(|b0
lj| − ρl)

2+ (11a)

subject to
p∑

l=1

ρl = t. (11b)

We now define σ ⊆ {1, . . . ,p} such that if l /∈ σ , then ρl = 0;
that is, σ is the set of indices l for which ρl may be different
from 0. Furthermore, for each l = 1, . . . ,p, let σl ⊆ {1, . . . , k}
be the set of indices j such that |b0

lj| > ρl if and only if j ∈ σl.
We then rewrite (11) as

minimize
ρ1,...,ρl

1

2

∑

l∈σ

∑

j∈σl

(|b0
lj| − ρl)

2,

subject to
∑

l∈σ

ρl = t.

Of course, we also require that ρl ≥ 0 for l ∈ σ . By introduc-
ing a Lagrange multiplier µ for the constraint in this problem,
we obtain from the optimality conditions that the solution must
satisfy the relations

µ =
∑

j∈σl

(|b0
lj| − ρl) =

(∑

j∈σl

|b0
lj|

)

− nlρl,

l ∈ σ and ρl > 0, (12a)

and

t =
∑

l∈σ

ρl, (12b)

where nl = |σl| denotes the number of elements in the set σl,
l = 1, . . . ,p.

We now use the Karush–Kuhn–Tucker (KKT) conditions
(12) to show that the ρl’s [and hence, by (9), the blj’s] are piece-
wise linear functions of t. Specifically, we show that there is a
sequence of “knots,” 0 = t0 < t1 < t2 < · · · < tm, such that the
ρl’s are linear in t for t ∈ [ti−1, ti] for i = 1,2, . . . ,m. At each of
the ti’s either σ changes by adding one or more indices or one
or more σl’s change by dropping one or more indices, or both
these events happen.

For t0 = 0, we set σ = {l :‖b
˜

0
(l)‖1 = maxl=1,...,p ‖b

˜
0
(l)‖1} and

ρl(t0) = 0 for l = 1, . . . ,p. Clearly, this is the optimal solution
for t = 0 and fulfills the KKT conditions (12). An iterative ho-
motopy algorithm proceeds as follows: Assume that we are at ti;
then define, for each l ∈ σ ,

ρl(t) = ρl(ti) + 1
∑

l∈σ 1/nl

1

nl
(t − ti).

Note that each ρl is a linear function of t and that if∑
l∈σ ρl(ti) = ti, then

∑
l∈σ ρl(t) = t for all t > ti, provided

neither the set σ nor any of the sets σl changes. Hence these
ρl’s fulfill the KKT condition (12b) for t between ti and ti+1.

Furthermore, for each l ∈ σ , we define

µl(t) =
(∑

j∈σl

|b0
lj|

)

− nlρl(t).

Because of the definition of the ρl(t)’s, this definition ensures
that the optimality condition (12a) holds for t > ti whenever
it holds at ti, as long as none of the sets σl changes. That is,
µl1(t) = µl2(t) = µ(t) for any l1, l2 ∈ σ .

We conclude that the ρl(t)’s defined earlier are the solu-
tions to (11) for all t’s between ti and ti+1. It remains to deter-
mine the next knot ti+1. To find ti+1, we calculate τ ∗

l such that
ρl(τ

∗
l ) = minj∈σl(|b0

lj|), for each l ∈ σ . Let τ ∗ = minl∈σ τ ∗
l be

the constraint bound t at which one or more of the σl’s change
by dropping one or more indices.

Furthermore, for some l0 ∈ σ , let µ(t) = µl0(t). [As noted
earlier, the µl(t), l ∈ σ , are all identical.] Then, provided
that not all variables have yet entered the model (i.e., σ �=
{1, . . . ,p}), we calculate τ † such that µ(τ †) = maxl/∈σ ‖b

˜
0
(l)‖1.

In other words, τ † is the constraint bound t at which σ changes
by adding one or more indices. In the alternative case of σ =
{1, . . . ,p}, we calculate τ † such that µ(τ †) = 0; that is, τ † is the
constraint bound at which we reach the unconstrained solution.

We then set ti+1 = min(τ ∗, τ †) > ti. If ti+1 = τ † and
µ(ti+1) �= 0, then we update σ to σ = σ ∪ {l :‖b

˜
0
(l)‖1 =

µ(ti+1)}. If µ(ti+1) = 0, then we have reached the uncon-
strained solution and the algorithm stops; otherwise, it con-
tinues as described above.

We conclude from this analysis that for X orthonormal, the
solution vector b

˜
of (2) is a (continuous) piecewise linear func-

tion of the constraint parameter t. This property of the solution
vector b

˜
also holds for general X, if X has full column rank.

(The proof of the more general result is omitted but is available
from the authors on request.) We believe that extensions of the
continuity and piecewise linearity results hold for general X, as
in the LASSO (Osborne et al. 2000a; Efron et al. 2004). How-
ever, because the solution for each t is not necessarily unique
(except under additional assumptions on X), the analysis of this
case is somewhat more difficult.

This analysis also gives some insight into how our method
selects variables. In the case of an orthonormal design, it essen-
tially orders the variables such that
∥
∥b

˜
0
(l1)

∥
∥

1 ≥ ∥
∥b

˜
0
(l2)

∥
∥

1 ≥ ∥
∥b

˜
0
(l3)

∥
∥

1 ≥ · · · ≥ ∥
∥b

˜
0
(lp−1)

∥
∥

1 ≥ ∥
∥b

˜
0
(lp)

∥
∥

1,

and then selects the variables xil1, xil2, . . . , xilm , where m de-
pends on t, using this ordering. Note that the unconstrained co-
efficient estimates b

˜
0
(l) are sorted according to their L1-norms.

This shows that the constraint that we propose achieves its “si-
multaneous” variable selection by measuring the over all con-
tributions of an explanatory variable by summing its (absolute)
contribution over all of the k regressions. The variable that is
best with respect to this measure is selected first, followed by
the variable that is second best with respect to this measure, and
so on.

3.3 The General Case

In this section we develop an interior point algorithm for
solving (2) for general X̃. First, to express this problem as a
convex quadratic program, we define

Q = X̃�X̃, c = −X̃�y
˜
∈ R

pk, d = 1
2 y

˜
�y

˜
,
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and use u
˜

l to denote an l-dimensional vector with all entries
equal to 1. By introducing an auxiliary vector z

˜
∈ R

p, we now
write (5) as

minimize
b
˜

1
2 b

˜
�Qb

˜
+ c

˜
�b

˜
+ d (13a)

subject to u
˜

k ⊗ z
˜
− b

˜
≥ 0

˜
, (13b)

u
˜

k ⊗ z
˜
+ b

˜
≥ 0

˜
, and (13c)

t − u
˜
�
p z

˜
≥ 0. (13d)

It is well known that convex quadratic programming prob-
lems can be solved efficiently using primal–dual infeasible
interior-point algorithms (Roos, Terlaky, and Vial 1997; Wright
1997; Ye 1997). We now present a brief derivation of the
interior-point approach, as applied to our specific problem (13).

Using the Lagrange multipliers λ
˜

l, λ
˜

u ∈ R
kp and τ ∈ R, the

Lagrangian for (13) is

L(b
˜
, z

˜
,λ

˜
u,λ

˜
l, τ ) = 1

2 b
˜
�Qb

˜
+ c

˜
�b

˜
+ d − λ

˜
�
u (u

˜
k ⊗ z

˜
− b

˜
)

− λ
˜
�
l (u

˜
k ⊗ z

˜
+ b

˜
) − τ(t − u

˜
�
p z

˜
).

The optimality conditions for b
˜

to solve (13) are

Qb
˜
+ c

˜
+ λ

˜
u − λ

˜
l = 0

˜
,

−(u
˜
�
k ⊗ Ip)λ

˜
u − (u

˜
�
k ⊗ Ip)λ

˜
l + τu

˜
p = 0

˜
,

u
˜

k ⊗ z
˜
− b

˜
≥ 0

˜
,

u
˜

k ⊗ z
˜
+ b

˜
≥ 0

˜
,

t − u
˜
�
p z

˜
≥ 0,

λ
˜

u ≥ 0
˜
, λ

˜
l ≥ 0

˜
, τ ≥ 0,

and

λ
˜
�
u (u

˜
k ⊗ z

˜
− b

˜
) = 0

˜
,

λ
˜
�
l (u

˜
k ⊗ z

˜
+ b

˜
) = 0

˜
,

τ (t − u
˜
�
p z

˜
) = 0.

Because the problem is a convex quadratic program, these con-
ditions are sufficient as well as necessary. By introducing slack
variables s

˜
u and s

˜
l in R

kp and ζ ∈ R, we restate these condi-
tions in a form that is more convenient for development of the
interior point approach:

Qb
˜
+ c

˜
+ λ

˜
u − λ

˜
l = 0

˜
, (14a)

−(u
˜
�
k ⊗ Ip)λ

˜
u − (u

˜
�
k ⊗ Ip)λ

˜
l + τu

˜
p = 0

˜
, (14b)

u
˜

k ⊗ z
˜
− b

˜
− s

˜
u = 0

˜
, (14c)

u
˜

k ⊗ z
˜
+ b

˜
− s

˜
l = 0

˜
, (14d)

t − u
˜
�
p z

˜
− ζ = 0, (14e)

�uSuu
˜

pk = 0
˜
, �lSlu

˜
pk = 0

˜
, τζ = 0, (14f)

and

λ
˜

u ≥ 0
˜
, λ

˜
l ≥ 0

˜
, τ ≥ 0,

(14g)
s
˜
u ≥ 0

˜
, s

˜
l ≥ 0

˜
, ζ ≥ 0.

(Here we use a standard notational convention from the interior-
point literature, namely that if a lowercase and an uppercase let-
ter are used at the same time, then the lowercase letter indicates
a vector and the uppercase letter indicates a diagonal matrix
whose diagonal elements are the elements of the corresponding
vector.) Primal–dual interior-point methods view (14) as a con-
strained system of nonlinear equations. They seek a root of the
function F defined by the equality conditions in (14), that is,

F(b
˜
, z

˜
,λ

˜
u,λ

˜
l, τ, s

˜
u, s

˜
l, ζ )

=

















Qb
˜
+ c

˜
+ λ

˜
u − λ

˜
l

−(u
˜
�
k ⊗ Ip)λ

˜
u − (u

˜
�
k ⊗ Ip)λ

˜
l + τu

˜
p

u
˜

k ⊗ z
˜
− b

˜
− s

˜
u

u
˜

k ⊗ z
˜
+ b

˜
− s

˜
l

t − u
˜
�
p z

˜
− ζ

�uSuu
˜

pk

�lSlu
˜

pk

τζ

















= 0, (15)

over the set defined by the inequalities listed in (14g). An im-
portant concept in primal–dual methods is the central path,
which is defined as the solution of the following perturbed vari-
ant of (15), for some parameter µ > 0:

F(b
˜
, z

˜
,λ

˜
u,λ

˜
l, τ, s

˜
u, s

˜
l, ζ ) =
















0
˜
0
˜
0
˜
0
˜
0

µu
˜

pk

µu
˜

pk

µ
















, (16)

over the strict interior of the feasible region defined by (14g),
that is,

λ
˜

u > 0
˜
, λ

˜
l > 0

˜
, τ > 0,

(17)
s
˜
u > 0

˜
, s

˜
l > 0

˜
, ζ > 0.

Maintenance of strict positivity of these variables at each iter-
ation [versus the nonnegative constraints listed in (14g)] is the
origin of the term “interior point.”

Interior-point methods of the path-following type (such as
the one that we use here) find the solution of (15), subject to
the constraints in (14g), by following the central path (16), (17)
as µ decreases to 0. Rather than calculate the central path point
exactly for each value of µ, path-following methods take a sin-
gle Newton-like step toward a point on the central path that is,
in a sense, closer to the solution than the current iterate. We de-
fine the central path point corresponding to the current iterate
by defining µ as

µ = λ
˜
�
l s

˜
l + λ

˜
�
u s

˜
u + τζ

2pk + 1
. (18)

(Note that this µ is the average value of the pairwise products
λu,isu,i and λl,isl,i, i = 1,2, . . . ,pk, and τζ .) We then choose a
centering parameter σ ∈ (0,1), and apply a modified Newton
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step toward the central path point defined by (16)–(17) in which
µ is replaced by σµ. The modification (due to Mehrotra 1992
and detailed later) enhances the approximation of (15) on which
the Newton step is based, making it approach a second-order
approximation rather than the usual first-order (linear) approx-
imation. By requiring σ to be strictly less than 1, we ensure
that the step aims at a point further along the central path than
the point corresponding to the current iterate. A heuristic for
choosing σ was also described by Mehrotra (1992) and is de-
tailed later. Practical variants of this algorithm may contain
other important features, such as techniques for determining the
distance to move along the calculated step, a method for calcu-
lating the starting point, and possibly third- and higher-order
modifications to the search direction.

We now focus on the system of equations obtained from the
modified Newton step for (16). By defining the residuals at
the current point from (15), with the appropriate adjustments
for central-path perturbation (the terms involving σ ) and for
higher-order enhancement (the terms r̂

˜
hi, r̂

˜
lo, and r̂τζ ), we ob-

tain















r
˜

b

r
˜

z

r
˜

u

r
˜

l

rt

r
˜

hi

r
˜

lo

rτζ
















:=

















Qb
˜
+ c

˜
+ λ

˜
u − λ

˜
l

−(u
˜
�
k ⊗ Ip)λ

˜
u − (u

˜
�
k ⊗ Ip)λ

˜
l + τu

˜
p

u
˜

k ⊗ z
˜
− b

˜
− s

˜
u

u
˜

k ⊗ z
˜
+ b

˜
− s

˜
l

t − u
˜
�
p z

˜
− ζ

�uSuu
˜

pk − σµu
˜

pk + r̂
˜

hi

�lSlu
˜

pk − σµu
˜

pk + r̂
˜

lo

τζ − σµ + r̂τζ

















. (19)

The modified Newton system is then













Q Ipk −Ipk

−u
˜
�
k ⊗ Ip −u

˜
�
k ⊗ Ip u

˜
p

−Ipk u
˜

k ⊗ Ip −Ipk

Ipk u
˜

k ⊗ Ip −Ipk

−u
˜
�
p −1

Su �u

Sl �l

ζ τ














×













	b
˜

	z
˜

	λ
˜

u

	λ
˜

l

	τ

	s
˜
u

	s
˜
l

	ζ













= −













r
˜b

r
˜
z

r
˜
u

r
˜l

rt

r
˜hi

r
˜lo

rτζ













. (20)

Thus, at each iteration of our interior-point algorithm, we
have to solve systems of equations of the form (20). Although
this system of equations is very large, it is also highly struc-
tured, and some block elimination greatly reduces its dimen-
sion. Details of these algebraic manipulations are given in the
technical report (available from the authors on request) on
which this article is based.

We continue with some details of our implementation of the
Mehrotra algorithm, which actually solves two systems of the
form (20) at each iteration, with the same coefficient matrices
but different right sides (19). In the first of these systems, we

set σ = 0 and r̂
˜

hi = 0, r̂
˜

lo = 0, and r̂τζ = 0, to obtain the affine-
scaling direction. This direction, which we denote by

(	b
˜

aff,	z
˜

aff,	λ
˜

aff
u ,	λ

˜
aff
l ,	τ aff,	s

˜
aff
u ,	s

˜
aff
l ,	ζ aff), (21)

is simply the pure Newton direction for the system of equa-
tions F given in (15). We then find the largest step length
αaff ∈ (0,1] such that a step of length αaff along this direction
from the current iterate satisfies the conditions (14g). We then
calculate the value µaff from (18) that would occur if we actu-
ally took this step, and set

σ =
(

µaff

µ

)3

, (22)

where µ is calculated using the current iterate. We use this value
of σ to form the right side for the second system, and also use
the components of (21) to define the residual modifications

r̂
˜

hi = 	�aff
u 	Saff

u u
˜

pk,

r̂
˜

lo = 	�aff
l 	Saff

l u
˜

pk, (23)

r̂τζ = 	τ aff	ζ aff.

We then solve (20) with the new right side to obtain the actual
search direction. The heuristic for σ in (22) yields a value close
to 0 when the pure Newton direction appears to be a profitable
search direction. Thus the calculated step will not be much dif-
ferent from the pure Newton direction, and will move quite ag-
gressively to reduce the value of µ on this iteration. When the
affine-scaling direction does not make much progress in reduc-
ing µ, the heuristic yields a conservative choice of σ , closer
to 1.

The step length along the search direction is chosen by means
of a heuristic due to Mehrotra (1992, sec. 6) and described by
Wright (1997, p. 205). The heuristic is modified in an obvi-
ous way to account for the fact that our objective function is
quadratic rather than linear. This choice of step ensures that the
strict inequalities (17) are satisfied by the new iterate.

We terminate the algorithm when µ and the residuals in (19)
become sufficiently small. (In our code, we apply the simple
test µ < 10−8.) We obtain a starting point by simply setting
z
˜
= 0 and b

˜
= 0, whereas the components of λ

˜
u, λ

˜
l, s

˜
u, s

˜
l, τ ,

and ζ are all set to some value (in our code, 105).
An outline of the overall algorithm is as follows:

1. Choose a starting point.
2. Calculate µ from (18). If µ is small enough, then stop.
3. Calculate the affine-scaling direction (21) by solving the

system (19)–(20) with σ = 0 and zero residual modifica-
tions.

4. Use the affine-scaling direction to calculate σ according
to (22) and the residual modifications according to (23).

5. Solve (19)–(20) with the new right side to obtain the ac-
tual step.

6. Calculate the step length and take the step.
7. Return to step 2 and iterate.

When the algorithm terminates, the final iterate is usually
close to the solution of (2), but has all its components nonzero.
We use a heuristic to determine which of these components
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represent indices of the variables that should be in the model.
Specifically, we set

I = {
l :

∥
∥b

˜
(l)

∥
∥∞ > t10−4, l = 1, . . . ,p

}
,

and set all blj’s with l /∈ I to 0. For the case where k = 1, there
is some evidence that this heuristic is too liberal, in the sense
that coefficients that are 0 at the exact solution are some dis-
tance from 0 at the final interior-point iterate. However, this oc-
curs only for some values of t—namely, some of those at which
variables enter or drop out of the model. This behavior is thus
not of great concern, because as argued earlier, we regard the
methodology as exploratory only.

4. THE INFRARED SPECTROMETRY
DATA REVISITED

We implemented the algorithm described in Section 3.3 in C
and applied it to the infrared spectrometry data discussed in
Section 1. Our hope is that, by using all response variables si-
multaneously to select a single set of regressor variables, we
can avoid problems of overfitting and high variability.

As remarked earlier, Figure 2 indicates that one observation
in NLeco—namely, the 10th—is suspicious and possibly an
outlier. Hence we ran our analysis twice, once using all obser-
vations and once with the 10th observation removed from all
of the variables. In this way we also hoped to get some insight
into the robustness of the proposed methodology with respect
to outliers.

We used several values for the tuning parameter t: t = .1,
.2, .25, .3, .4, .5, .6, .7, .75, .8, .9, and 1.0. The results are
summarized in Table 1 for the complete dataset and in Table 2
for the dataset with the 10th observation missing. Each table
lists all chosen regressor variables for various values of t. The
horizontal lines link the values of t for which each coefficient
remains nonzero in the solution.

Note that the tables are quite similar, showing essentially
the same group of variables selected over the range of t val-
ues. Only X691 from Table 1 is replaced by X690 in Table 2
and X87 is added. Thus, at least for this extreme example, the
method appears to be fairly robust with respect to the outlier in
the 10th observation of NLeco.

Table 1. Selected Variables Using the Complete Dataset

.1 .2 .25 .3 .4 .5 .6 .7 .75 .8 .9 1.0

X81
X82
X84
X85
X86
X112
X113
X114
X118
X220
X622
X623
X662
X667
X672
X673
X691

Table 2. Selected Variables Without the 10th Observation

.1 .2 .25 .3 .4 .5 .6 .7 .75 .8 .9 1.0

X81
X82
X84
X85
X86
X87
X112
X113
X114
X118
X220
X622
X623
X662
X667
X672
X673
X690

Although there still appears to be some variation, and several
variables are identified as being nonzero for only a few values
of t, the method consistently picks regressor variables from only
three separate ranges of the spectrum. Roughly speaking, these
ranges are the 81st–87th, the 112th–118th, and the 622nd–691st
frequencies. Within each of these ranges, the regressor vari-
ables are highly correlated. The minimum correlation in the
group X81, X82, X84, X85, X86, and X87 is larger than .9989,
whereas the minimum correlation in the group X112, X113,
X114, and X118 is larger than .9993. For the last group
X622, X623, X662, X667, X672, X673, X690, and X691, the
minimum correlation is larger than .9431. Because this group
spans a wider range of frequencies, it is not surprising that its
correlation is slightly smaller than the others.

Given the high correlations, there are essentially two ways
in which one could proceed: either select one regressor vari-
able from each group or average over the variables in each
group. Here, for illustrative purposes we use the first method
and choose those variables that are selected for most values of t,
that is, X85, X114, and X622. Both Table 1 and Table 2 suggest
using this set of explanatory variables.

To investigate how well this selection of variables performs,
we fit linear regression models to each of the response vari-
ables using these three regressor variables. The resulting fits
are shown in Figure 3, for the case in which all observations are
used and in Figure 6 for the case in which the 10th observation
is removed. Figures 4 and 7 show the corresponding plots of the
jackknifed residuals, whereas Figures 5 and 8 show the normal
quantile plots based on these jackknifed residuals.

From these figures, it seems that a linear regression model us-
ing these three predictors is satisfactory, at least in most cases.
Of course, in the figures that are produced from the complete
dataset, the outlier in NLeco is clearly visible. The residual plot
for Na shows a lot of structure, but this is due to the granularity
of this response variable. Modeling of Na clearly is a difficult
task, because this response variable takes only 5 distinct values,
with 18 replications of the smallest value and 3 replications of
the median.

The results of significance tests for each parameter in each of
the linear models are summarized in Table 3. An entry of “ *** ”
in this table means that in the linear model for the response
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Figure 3. Linear Fits Using Three Explanatory Variables (all observations).

Figure 4. Residual Plots (all observations).
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Figure 5. Normal Quantiles Plots for the Residuals (all observations).

Figure 6. Linear Fits Using Three Explanatory Variables (without the 10th observation).
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Figure 7. Residual Plots (without the 10th observation).

Figure 8. Normal Quantile Plots for the Residuals (without the 10th observation).
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Table 3. Significance of Selected Variables in Each Model

All observations Without the 10th observation

Intercept X85 X114 X622 Intercept X85 X114 X622

EC *** * *** *
pH *** *** * ** *** *** * *
pHCaCl2 *** *** ** *** *** **
CLeco *** *** ** * *** *** ** *
Org.C *** *** * *** ** *
NLeco *** *** *** *
extP *** ***
Ca *** *** *** *** ** ***
Mg *** *** *** *** *** ***
Na *** * * *** * *
K *** ***
TotalCations *** *** *** *** ** ***
CEC *** *** *** *** *** *** *** ***
CaCO3 *** ** *** *** ** ***

variable (given in the leftmost column), the p value for the
t-statistics of the parameter estimate for the regressor variable
(given in the top row) is below .1%. If the p value is between
.1% and 1%, then the entry is “ ** ” and a “ * ” denotes that the
p value is between 1% and 5%.

The results in Table 3 show that if all observations are used,
then none of the three regressors is significant for NLeco. This
is hardly surprising, because the outlying observation grossly
inflates the residual sum of squares. Table 3 also shows that,
except for EC, extP, and K, at least two of the three re-
gressor variables that we have chosen are significant for each
response variable. In the case of K, this observation is not
surprising, given the results of the LASSO summarized in Fig-
ure 1. When the LASSO method is applied to each response
variable separately, the regressor variables chosen for K, with
t = 1 are essentially X54 and X220. For EC, the selected re-
gressor variables with t = 1 are X87, X108, and X694, whereas
for extP the LASSO selects X1, X118, X345, and X732. It is
surprising that X114 is not significant (if used together with
X85 and X622) for either EC or extP in Table 3.

For all other response variables, Figure 1 shows that for t = 1,
LASSO selects regressor variables that are close to the set X85,
X114, and X662. However, it is much harder to select a single
set of regressor variables from these individual results.

5. POSSIBLE EXTENSIONS

In Section 4 the infrared spectrometry data were analyzed
twice, with and without the 10th observation. As shown in Fig-
ure 2, this observation appears to be an outlier for the response
variable NLeco. With respect to the other variables, however, it
does not seem suspicious. Even though the result of the analy-
sis in Section 4 does not seem to be influenced by the outlier, it
may be preferable in other situations to mark such observations
as missing values. This would allow us to use the observations
for the other response variables in the analysis.

Theoretically, the methodology proposed here can be modi-
fied easily to take into account missing values in the response
variables. One way to modify the procedure would be to remove
the corresponding rows from y

˜
and X̃ in (4). We plan to inves-

tigate this modification in a future project. However, given the
similarity of the results in Section 4, regardless of whether the

outlying observation was deleted, we believe that application
of this modification on the dataset studied here would not be of
high interest.

The implementation described in this article has put some
strain on our computational resources. A rough analysis shows
that the algorithm, as described in Section 3.3, needs memory
of order O(p2 + np + kn2), and the number of operations per it-
eration is roughly O(p3 +kn3 +kpn2). A detailed description of
the implementation of our algorithm can be found in the techni-
cal report (available from the authors on request) on which this
article is based.

Implementation of the modification with missing rows could
be performed without increasing the computational demands
appreciably, although the complexity of the implementation
would increase. We would still need to store only a single copy
of the matrix X, together with a list of missing values for each
observation.

For the infrared spectrometry data, the dimensions are
k = 14, n = 24, and p = 770. All results given in this article
were calculated on a 450-MHz Pentium PC with 128 MB of
RAM running Linux. Because of the size of p for this dataset,
each iteration of the interior-point algorithm used roughly
10.4 seconds and, depending on the value of t, between 2 and 5
minutes were needed to calculate the solution of (2). By way of
contrast, the results shown in Figure 1 were calculated using the
algorithm described by Osborne et al. (2000b). That algorithm
is an active set algorithm specifically designed to calculate the
LASSO estimate fast and efficiently. Each panel in Figure 1 is
based on 80 equispaced values for t between 0 and 1. For a sin-
gle response variable, the time to calculate the solutions of (1)
for all 80 values of t was roughly 3.2 seconds. Unfortunately,
the active set algorithm of Osborne et al. (2000b) can not be
adapted readily to the more general problem (2). Given the large
difference in performance, however, we believe that it would be
worthwhile to develop an active set method to solve (2).

6. CONCLUSIONS

Tibshirani (1996) showed that restricting parameter estimates
to a polyhedral region while minimizing the residual sum of
squares yields a method that successfully combines elements
of ridge regression and subset selection. In this article we have
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extended Tibshirani’s idea to the situation in which we seek a
subset of regressor variables that is useful for several response
variables simultaneously. This extension leads again to a convex
programming problem; we describe an interior-point algorithm
for solving this problem.

Application of this method to the infrared spectrometry data
shows that this method can be quite useful in identifying a sin-
gle subset for simultaneous modeling purposes. The example
chosen to motivate and illustrate much of what we have done
here was extreme in the sense that the number of regressors is
huge, the number of responses is moderate, and the number of
observations is almost unrealistically small. We contend that in
less extreme cases the computational load will be more man-
ageable, and the methodology will be just as useful. Testing the
method on more datasets would be enlightening.
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