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Abstract. We discuss minimization of a smooth function to which is added a separable regu-
larization function that induces structure in the solution. A block-coordinate relaxation approach
with proximal linearized subproblems yields convergence to critical points, while identification of the
optimal manifold (under a nondegeneracy condition) allows acceleration techniques to be applied
on a reduced space. The work is motivated by experience with an algorithm for regularized logistic
regression, and computational results for the algorithm on problems of this type are presented.
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1. Introduction. We discuss an algorithm for solving the problem

(1.1) min
x∈IRn

φτ (x) := f(x) + τP (x),

where f is smooth (at least locally Lipschitz continuously differentiable in the region
of interest) and τ > 0 is a parameter. The regularization function (or “regularizer”)
P has the following separable structure:

(1.2) P (x) =
∑
q∈Q

Pq(x[q]),

where each Pq is a closed, proper, extended-valued, convex function; [q] denotes a
subset of {1, 2, . . . , n}; and {x[q] | q ∈ Q} is a partition of the components of x. Not
all components of x need be involved in the regularization function; we may have
Pq ≡ 0 for some q.

Problems of the form (1.1) are appearing in many applications. Several (overlap-
ping) problems in this class have been particularly well studied in recent times.

• Compressed sensing, where in the `2-`1 formulation, f(x) = (1/2)‖Ax− y‖22
for some A ∈ IRm×n with m � n and special properties such as restricted
isometry, and P (x) = ‖x‖1.

• Regularized logistic regression, where f is a log-likelihood function obtained
from labeled training data and the regularizer P (x) is either ‖x‖1 [23, 21, 22]
(possibly modified by omission of one or more terms from the norm) or a
group-`2 regularizer [17].

• Regularized least squares, where again f is a linear least-squares function
while P could be ‖ · ‖1 (leading to the LASSO estimator [24]), a group-
`2 regularizer (with Pq(z) = ‖z‖2 in the notation above; see [35, 7]), or a
group `∞ regularizer (with Pq(z) = ‖z‖∞ [30]). The group regularizers allow
variables to be partitioned into subsets of closely related effects, where each
subset is selected or deselected as a group.
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Other works [12, 13, 34] consider algorithms for both logistic and least-squares loss
functions jointly.

In the examples above, the regularizer P is nonsmooth, but such is not always the
case. For example, in one formulation of the matrix completion problem of estimating
a low-rank matrix X ∈ IRm×p such that A(X) ≈ b, for noisy observations b ∈ IRl and
a given linear operator A : IRm×p → IRl, we can explicitly model X as a product of
factors L and RT (for L ∈ IRm×r and R ∈ IRp×r) and solve the following problem:

min
L,R

1

2
‖A(LRT )− b‖22 + τ(‖L‖2F + ‖R‖2F ).

(This formulation is an obvious consequence of [19, Subsection 5.3].)
In this paper we examine a block coordinate proximal linearization algorithm for

solving (1.1), in which at the current iterate x we select a subset Q′ ⊂ Q and solve
the following subproblem for some µ ≥ µmin > 0:

(1.3) min
d

∑
q∈Q′
∇[q]f(x)T d[q] +

µ

2
|d|2 + τ

∑
q∈Q′

Pq(x[q] + d[q]),

where ∇[q]f denotes the gradient subvector corresponding to the components of x
that belong to the partition [q], and here and throughout | · | denotes the Euclidean
norm. We refer to Q′ as the relaxation set at x. Clearly, the solution of (1.3) has
d[q] = 0 for all q /∈ Q′. Existence and uniqueness of a solution to (1.3) is immediate for
µ > 0, given our assumptions on the functions Pq, q ∈ Q. The optimality conditions
are

(1.4) 0 ∈ ∇[q]f(x) + µd[q] + τ∂Pq(x[q] + d[q]), for all q ∈ Q′,

where ∂ denotes the subdifferential of a convex function.
If the solution of (1.3) produces a “sufficient decrease” in the objective φτ , the step

is accepted. Otherwise µ is increased and (1.3) is re-solved, with the same relaxation
set Q′; this process is repeated until a valid step is found. At iteration k, we denote
this step by dk and refer to it as a prox-descent step. We then optionally compute an
enhanced step d̃k that is required to improve on dk and to satisfy its own sufficient
decrease conditions.

Denoting the relaxation set Q′ at iteration k by Qk, we require the following
“generalized Gauss-Seidel” condition to be satisfied (see [28]): For some integer T ≥ 1
and all k ≥ T − 1, we have

(1.5) Qk ∪Qk−1 ∪ · · · ∪Qk−T+1 = Q.

This condition ensures that every component of x is “touched” by the relaxation
scheme at least once every T iterations.

Effectiveness of the algorithm depends strongly on whether the subproblems (1.3)
can be formulated and solved efficiently. Such is the case in the applications mentioned
above. When Pq(z) = ‖z‖1, the solution can be obtained by the “soft thresholding”
operator at a cost that is linear in the total number of components in d[q], q ∈ Q′.
The costs are similar when Pq(z) = ‖z‖2 or Pq(z) = ‖z‖22.

The basic approach has been well studied in the case of Qk = Q for all k; see
for example the SpaRSA approach for compressed sensing [33] and the ProxDescent
framework of [16]. The block coordinate technique often gives better practical per-
formance when Qk encompasses only a small fraction of the components of x and
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where the cost of computing the corresponding partial gradient is small compared to
the cost of the full gradient. For the regularized logistic regression problem of [23],
for example, the cost of evaluating the partial gradient is approximately linear in the
number of components of the gradient required. We note that “Gauss-Southwell”
rules for choosing Qk (see [28]) are less appealing than (1.5) because they appear to
require knowledge of the full gradient.

This paper analyzes the convergence properties of a simple algorithm based on
(1.3), in which the relaxation sets are required only to satisfy the mild condition
(1.5). We describe in particular the global convergence properties of the method
and its ability to identify the partly smooth manifold on which a critical point x∗

lies (provided that the Pq satisfy appropriate properties at x∗). This identification
property leads us to propose a specific acceleration strategy for choosing the enhanced
step d̃k: a reduced Newton method on the partly smooth manifold. We prove a
superlinear convergence result for this strategy. We discuss how the algorithm can be
implemented on several specific problems of the type (1.1), and finally focus on the
important case of `1-regularized logistic regression. An implementation is described
in some detail and illustrative computational results are presented.

1.1. Related Work. We discuss here some recent work on related algorithms
and applications. Other related work can be found in the bibliographies of the papers
mentioned here.

The SpaRSA approach for compressed sensing [33] solves subproblems of the form
(1.3) in which f is a linear least-squares objective, P (x) = ‖x‖1, each partition [i]
contains the single index i (for i = 1, 2, . . . , n), and Q′ = Q. (In many applications
of compressed sensing, there is little to be saved by a partial gradient evaluation.)
SpaRSA has no “enhanced” step analogous to d̃k in Algorithm 1. In a more general
setting, Lewis and Wright [16] describe an algorithm for (1.1) in which P is allowed to
be non-separable and prox-regular (rather than separable and convex, as here). The
subproblems have the form (1.3) but again are solved on the full space, and enhanced
steps are not considered in any detail. (Global convergence results are proved and
there is some discussion of manifold identification.)

Another related line of work begins with the paper of Tseng and Yun [28], which
considers the same problem (1.1) as this paper and solves block-relaxation subprob-
lems like (1.3), but with a more general scaling in the quadratic term. A line search
is performed along the direction dk. (The algorithm described in the current paper
is simpler in that it uses the quadratic term in (1.3) to modify both the direction
and length of the step.) Enhanced steps are not considered explicitly in [28], though
second-order information could eventually be used in the quadratic term to enhance
the final convergence rate.

In later work [29], Tseng and Yun described a block relaxation approach for
minimization of a smooth function subject to linear constraints (but without the
separable regularization term of (1.1)). This problem is not unrelated to (1.1); we
can always enforce bound constraints, for example, by defining a separable P (x) that
takes on the value 0 when x satisfies its bounds and∞ otherwise. Special attention is
paid to the quadratic programming formulation of support vector machines. Another
paper by the same authors [27] considers (1.1) with the addition of linear equality
constraints, and describes a similar method. An application to bi-level optimization
is described. One of Tseng’s final papers [25] mentions the problem (1.1) again and
outlines the algorithms presented in the earlier works, leaving open the question of
whether accelerated first-order methods can be applied in a block relaxation context.
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The current paper was motivated by the need to provide theoretical support for
the algorithm described in Shi et al. [23] for `1-regularized logistic regression. In the
event, significant modifications were needed to make the method fit the framework
of the present paper. We describe this application in detail in Section 5, and give
computational results obtained with an implementation of the algorithm presented
here.

There is a recent and extensive literature on least-squares and logistic regression
problems with nonsmooth regularizers. We mention a few such contributions here,
with a focus on methods that are suitable for large problems.

Shevade and Keerthi [21] present a relaxation algorithm for `1-regularized logis-
tic regression which selects one component at a time for relaxation — the one that
violates the optimality conditions maximally. Friedman, Hastie, and Tibshirani [7]
discuss a coordinate descent method for the `1-regularized least-squares loss (with an
additional penalty term involving ‖x‖22 – the “elastic net” formulation). They describe
a cyclic coordinate relaxation method with exact line search along each direction. For
logistic-regression loss, they propose a sequential-quadratic-programming outer loop,
solving the quadratic subproblem with the method for least-squares loss. Koh, Kim,
and Boyd [14] reformulate `1-regularized logistic regression as a linearly constrained
smooth optimization problem, and apply an interior-point method that uses conju-
gate gradients to compute the steps. The method of Shi et al. [22] for `1-regularized
logistic regression computes steps as in (1.3), but for the full set of components and
for a fixed (large) value of µk. An Armijo line search is added, as is a continuation
strategy in the parameter τ (discussed further in Section 5). When the correct nonzero
set appears to have been identified, the algorithm uses second-order steps like those
in [14]. Yuan et al. [34] present an extensive and useful survey of various methods
for `1-regularized regression, using least-squares, logistic loss functions, and various
extensions. Computational comparisons between different approaches are reported in
detail.

An early reference to group-`2 regularizers is the thesis of Bakin [1]. Yuan and
Lin [35] discuss group-`2 regularizer with least-squares loss function. An extension of
LARS [4] is proposed to solve it, but no convergence analysis is presented. Kim, Kim,
and Kim [13] describe a gradient projection approach for the formulation in which
regularization is imposed as a constraint of the form P (x) ≤ β, rather than included
in the objective, showing that the projection can be performed efficiently when P is
the group-`2 regularizer. Meier, van de Geer, and Bühlmann [17] consider logistic
regression with a group-`2 regularizer, applying variants of coordinate descent and
the method from [26] to a problem in DNA splice site detection.

Turlach, Venables, and Wright [30] describe an application and computational
results for an interior-point method for a least-squares objective with a group-`∞
regularizer, and give a statistical analysis for a special case involving orthonormal
coefficient matrices.

1.2. Outline. We outline briefly the remainder of the paper. Section 2 reviews
the relevant optimality and nondegeneracy conditions, discusses manifolds and their
characterization, and defines partial smoothness. The relationship of second-order
optimality conditions to strong local minimizers is explored in Subsection 2.3; this
topic is useful when we introduce the reduced-Newton acceleration scheme in Subsec-
tion 3.4.

The proximal block coordinate relaxation algorithm is introduced and analyzed in
Section 3. Global convergence results are obtained in Subsection 3.2, and identification
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of the (assumed) partly smooth manifold on which the limit point lies is analyzed in
Subsection 3.3. The reduced-Newton acceleration scheme is described and analyzed
in Subsection 3.4.

Section 4 outlines how the algorithm could be applied to several nonsmooth reg-
ularization functions that have been proposed in the recent literature. In Section 5,
we describe an application to `1-regularized logistic regression, giving details on the
implementation and presenting computational results on three test problems with
somewhat different properties. These tests suggest that there is much to be gained,
computationally speaking, from using higher-order acceleration on the apparently op-
timal manifold, and from judicious implementation of a continuation strategy in the
regularization parameter τ . The code and test data used in Section 4 is available
at http://www.cs.wisc.edu/~swright/LPS/, to allow reproduction of the tables in
this paper (up to the effects of randomness in the algorithm, which are significant).

2. Optimality and Nondegeneracy Conditions. In this section, we discuss
properties of the objective function φτ in the neighborhood of a solution x∗. Subsec-
tion 2.1 discusses criticality conditions. Subsection 2.2 discusses manifolds and their
characterization, and defines the partially smooth manifolds of Lewis [15]. Subsec-
tion 2.3 discusses second-order conditions and shows how the notion of a strong local
minimizer x∗ of φτ is tied to the second-order sufficient conditions of the restriction
of this function to the partly smooth manifold containing x∗.

Provided that ∇f is locally Lipschitz at a point x, φτ is prox-regular at x. In
fact, we can find σ > 0 such that for all x′ and x′′ close to x, we have

(2.1) φτ (x′′) ≥ φτ (x′) + gT (x′′ − x′)− σ|x′′ − x′|2, for each g ∈ ∂φτ (x′),

where, by smoothness of f , we have ∂φτ (x) = ∇f(x) + τ∂P (x). Note that in (2.1),
in contrast to general prox-regular functions, σ is independent of g; it can simply be
chosen as the local Lipschitz constant for ∇f near x.

2.1. Criticality and Optimality. We say that z∗ is a strong local minimizer
of a function h : IRr → ĪR with modulus c > 0 if

(2.2) h(z) ≥ h(z∗) + c|z − z∗|2 + o(|z − z∗|2) for all z near z∗.

(We use ĪR throughout to denote the extended reals [−∞,+∞].) The criticality con-
dition for h is 0 ∈ ∂h(z∗), and the nondegeneracy condition is 0 ∈ ri ∂h(z∗), where ri
denotes the relative interior of a set. For the particular function φτ of (1.1), we have

g ∈ ∂φτ (x) ⇔ g[q] ∈ ∇[q]f(x) + τ∂Pq(x[q]), for all q ∈ Q.

(This claim follows from smoothness of f , the closed proper convex nature of each Pq,
the fact that {[q] | q ∈ Q} is a partition of {1, 2, . . . , n}, and elementary results from
Rockafellar [20], especially Theorem 23.8.) Thus, the criticality condition 0 ∈ ∂φτ (x∗)
can be stated equivalently as follows:

(2.3) 0 ∈ ∇[q]f(x∗) + τ∂Pq(x
∗
[q]), for all q ∈ Q,

while nondegeneracy at x∗ can be written in a similar partitioned form:

(2.4) 0 ∈ ri
[
∇[q]f(x∗) + τ∂Pq(x

∗
[q])
]
, for all q ∈ Q.
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2.2. Manifolds and Partial Smoothness. We start our discussion of mani-
folds by repeating some definitions from Hare and Lewis [9, Definition 2.3] and Lewis
and Wright [16, Definition 1.2]. We also use some notation and terminology regarding
manifolds from Vaisman [31].

A set M ⊂ IRm is a manifold about z̄ ∈ IRm if it can be described locally by a
collection of Cp functions (p ≥ 2) with linearly independent gradients. That is, there
exists a map F : IRm → IRk that is Cp around z̄ with ∇F (z̄)T ∈ IRk×m surjective and
such that points z near z̄ lie in M if and only if F (z) = 0. The normal space to M
at z̄, denoted as usual by NM(z̄), is then the range of ∇F (z̄), while the tangent space
to M at z̄ is the null space of ∇F (z̄)T .

It is convenient here and later to assume that ∇F (z̄) is a matrix with orthonormal
columns. This assumption can be made without loss of generality, by performing a
QR factorization of ∇F (z̄) (with Q being m×k orthonormal and R being k×k upper
triangular) and replacing F (z) by R−1F (z) (thus replacing ∇F (z) by ∇F (z)R−1).

We state an elementary technical result on manifold parametrization, which is
essentially proved in [31, Sections 1.4-1.5]. A simple proof appears for completeness
in Appendix A.

Lemma 2.1. Let the manifold M ⊂ IRm containing z̄ be characterized by a Cp

function F : IRm → IRk with the properties described above, where p ≥ 2. Then there is
a point ȳ ∈ IRm−k and a Cp function G mapping some neighborhood of ȳ to IRm such
that G(y) ∈M for all y near ȳ. Moreover, G(y)− z̄ = Y (y − ȳ) +O(|y − ȳ|2), where

Y ∈ IRm×(m−k) is an orthonormal matrix whose columns span the tangent space to
M at z̄.

The proof constructs G using the implicit function theorem and sets ȳ = 0. In
practice, we can often identify a suitable G by making use of the structure of P (as
demonstrated later) but we do not know (or need to know) ȳ until the solution of
the problem is known. Hence, it is useful to state and use the results in this section
without assuming ȳ = 0.

It follows immediately from Lemma 2.1 that ∇G(ȳ)T = Y and that
[
∇F (x̄) Y

]
is an m×m orthogonal matrix.

The next technical result shows how perturbations from a point at which h is
partly smooth can be decomposed according to the manifold characterization above.
A proof appears in Appendix A.

Lemma 2.2. Let the manifold M ⊂ IRm be characterized in a neighborhood of
z̄ ∈M by Cp mappings F : IRm → IRk and G : IRm−k → IRm and the point ȳ described
above. Then for all z near z̄, there are unique y(z) ∈ IRm−k and v(z) ∈ IRk such that
z = G(y(z)) +∇F (z̄)v(z), and moreover (y(z), v(z)) is a Cp function of z.

Partial smoothness can now be defined as follows [15, Section 2].

Definition 2.3. A function h : IRm → ĪR is partly smooth at a point z̄ ∈ IRm

relative to a set M⊂ IRm containing z̄ if M is a manifold about z̄ and the following
properties hold:

(i) (Smoothness) The restricted function h |M is C2 near z̄;
(ii) (Regularity) h is subdifferentially regular at all points z ∈ M near z̄, with

∂h(z) 6= ∅;
(iii) (Sharpness) The affine span of ∂h(z̄) is a translate of NM(z̄);
(iv) (Sub-continuity) The set-valued mapping ∂h :M→→ IRm is continuous at z̄.

We refer to M as the active manifold.

Since f is smooth, it does not complicate the definition of active manifolds for φτ
at x∗; we need examine only the function P . Additionally, the structure (1.2) of P
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ensures that we can express the active manifold as a Cartesian product over the block
components. That is, we can say that P (and hence φτ ) is partly smooth at x∗ with
active manifoldM if and only if each P[q] is partly smooth at x∗[q] with active manifold

Mq, where M = ⊗q∈QMq. (For a proof of this claim, see [15, Proposition 4.5].)
Following [15, Definition 5.6], we say that x∗ is a strong critical point of φτ relative

to the active manifold M, where φτ is partly smooth with respect to M at a point
x∗, if

(i) x∗ is a strong local minimizer of φτ |M with some modulus c > 0, and
(ii) the nondegeneracy condition (2.4) holds.

2.3. Second-Order Conditions. We now discuss second-order conditions that
ensure at least quadratic increase in the objective φτ as we move away from a so-
lution x∗. These conditions motivate the Newton-based acceleration techniques of
Subsection 3.4.

The first result relates the strong local minimizer property for φτ |M at x∗ to the
second-order sufficient conditions for an explicit representation of this function along
this manifold.

Theorem 2.4. Suppose that φτ is partly smooth at x∗ ∈ IRn relative to an
active manifold M ⊂ IRn. Suppose that M is characterized by C2 mappings F :
IRn → IRk and G : IRn−k → IRn and a point y∗ ∈ IRn−k, such that F (x) = 0 for
all x ∈ M near x∗, ∇F (x∗) is orthonormal, G(y) ∈ M for all y near y∗, and
G(y) = x∗ + Y (y − y∗) + O(|y − y∗|2) for some matrix Y such that

[
∇F (x∗) Y

]
is

orthogonal. Then φτ |M has a strong local minimizer at x∗ with modulus c > 0 if and
only if the function defined by

(2.5) ψτ (y) = φτ (G(y))

is C2 in a neighborhood of y∗ with ∇ψτ (y∗) = 0 and ∇2ψτ (y∗) positive definite, with
minimum eigenvalue at least 2c.

Proof. By Definition 2.3(i), we can define a neighborhood U of x∗ and a C2

mapping ρ : U → ĪR that agrees with φτ on M ∩ U . Then from (2.5), we have
ψτ = ρ ◦G, which is a composition of two C2 functions and is therefore itself C2 in a
neighborhood of y∗. Note too that

|G(y)− x∗| = |Y (y − y∗) +O(|y − y∗|2)| = |y − y∗|+O(|y − y∗|2).

Consider first the forward implication. Since x∗ is a local minimizer of φτ |M, we
have that ψτ (y)− ψτ (y∗) = φτ (G(y))− φτ (x∗) ≥ 0 for all y ∈ IRn−k sufficiently close
to y∗, from which it follows that ∇ψτ (y∗) = 0. Thus we have

ψτ (y)− ψτ (y∗) =
1

2
(y − y∗)T∇2ψτ (y∗)(y − y∗) + o(|y − y∗|2).

Since if φτ |M has a strong local minimizer at x∗ with modulus c, we have

ψτ (y)− ψτ (y∗) = φτ (G(y))− φτ (x∗)

≥ c|G(y)− x∗|2 + o(|G(y)− x∗|2) = c|y − y∗|2 + o(|y − y∗|2).

The forward implication follows by combining these last two estimates.
For the reverse implication, we have similarly that

φτ (G(y))− φτ (x∗) = ψτ (y)− ψτ (y∗)

≥ c|y − y∗|2 + o(|y − y∗|2) = c|G(y)− x∗|2 + o(|G(y)− x∗|2),
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giving the result.
We now show that strong critical points are in fact strong local minimizers for

φτ . The argument is similar to that of Wright [32, Theorem 3.2 (i)] in a different
setting, but is somewhat more general. It allows nonconvexity in the smooth part of
φτ (namely, f). We note that the result is not true for general prox-regular functions,
as the example of [15, Section 7] attests.

Theorem 2.5. Suppose that φτ is partly smooth at x∗ relative to M, that f is
Lipschitz continuously differentiable at x∗, and that x∗ is a strong critical point. Then
x∗ is in fact a strong local minimizer.

Proof. Let the mappings F and G, the matrix Y , and the point y∗ ∈ IRn−k be
defined as in Theorem 2.4, and recall that ∇G(y∗)T = Y . From Lemma 2.2, for all
x near x∗, we can find unique y ∈ IRn−k and v ∈ IRk with |(y − y∗, v)| = O(|x − x∗|)
such that x = G(y) +∇F (x∗)v. We thus have

(2.6) φτ (x)− φτ (x∗) = [φτ (G(y) +∇F (x∗)v)− φτ (G(y))] + [φτ (G(y))− φτ (x∗)] .

For the last bracketed term, we have from the strong local minimizer condition that
there is c > 0 such that

(2.7) φτ (G(y))− φτ (x∗) ≥ c|G(y)− x∗|2

for all y near y∗. For the first bracketed term, note first that from Lemma A.1 there is
ε > 0 such that supg∈∂φτ (x∗) g

T d ≥ ε|d| for all d ∈ NM(x∗) = range∇F (x∗). Second,
from Definition 2.3 (iv), we have by choosing the neighborhood of x∗ sufficiently small
that for all ĝ ∈ ∂φτ (G(y)), there is g ∈ ∂φτ (x∗) such that |ĝ− g| ≤ ε/2. Third, recall
that by Lipschitz continuity of ∇f at x∗, there is σ > 0 such that (2.1) holds in a
neighborhood of x∗. Using all these facts, we have for all y and v such that y − y∗
and v are sufficiently small that

φτ (G(y)+∇F (x∗)v)− φτ (G(y))

≥ sup
ĝ∈∂φτ (G(y))

ĝT∇F (x∗)v − σ|∇F (x∗)v|2

≥ sup
g∈∂φτ (x∗)

gT∇F (x∗)v − (ε/2)|∇F (x∗)v| − σ|∇F (x∗)v|2

≥ ε|∇F (x∗)v| − (ε/2)|∇F (x∗)v| − σ|∇F (x∗)v|2.

By substituting this inequality and (2.7) into (2.6), we have that

φτ (x)− φτ (x∗) ≥ (ε/2)|∇F (x∗)v| − σ|∇F (x∗)v|2 + c|G(y)− x∗|2.

By choosing the neighborhood of x∗ small enough, we can ensure that |∇F (x∗)v| <
ε/(4σ) and therefore

φτ (x)− φτ (x∗) ≥ σ|∇F (x∗)v|2 + c|G(y)− x∗|2

≥ min(σ, c)
[
|∇F (x∗)v|2 + |G(y)− x∗|2

]
≥ 1

2
min(σ, c) [|∇F (x∗)v|+ |G(y)− x∗|]2

≥ 1

2
min(σ, c)|x− x∗|2,

as required.
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Algorithm 1 Accelerated Proximal Block Coordinate Relaxation

Input: µtop > µmin > 0, T > 1, τ > 0, η > 1, β ≥ 1, γ ∈ (0, .5), tol > 0;
for k = 0, 1, 2, . . . do

Choose Qk ⊂ Q such that (1.5) is satisfied for the chosen T ;
Choose µk ∈ [µmin, µtop];
Solve (1.3) for dk;
while φτ (xk + dk) > φτ (xk)− |dk|3 do

Set µk ← ηµk;
Solve (1.3) for dk;

end while
{Try to improve on prox-descent step}
Find d̃k with φτ (xk + d̃k) ≤ φτ (xk + dk) and φτ (xk + d̃k) ≤ φτ (xk)− γ|d̃k|3;
Set xk+1 ← xk + d̃k;

end for

3. Accelerated Proximal Block Coordinate Relaxation. Algorithm 1 is
the basic framework we consider in this paper. It is quite general, in that the sequence
of relaxation sets need only satisfy (1.5), there are few restrictions on the choice of
the initial µk at each iteration, and the successful proximal step dk can be replaced
by any other step d̃k that improves the value of φτ and satisfies another modest de-
crease condition. Subsection 3.2 proves a global convergence result for this framework
(specifically, criticality of accumulation points), while Subsection 3.3 describes iden-
tification properties for the active manifold. A reduced-Newton acceleration scheme
is described in Subsection 3.4, along with local convergence results.

The “sufficient decrease” criteria are key to the algorithm. From current iterate
x, the prox-descent step d is required to satisfy

(3.1) φτ (x)− φτ (x+ d) ≥ |d|3,

while the step d̃ actually taken must satisfy both

(3.2) φτ (x)− φτ (x+ d̃) ≥ γ|d̃|3,

for a given parameter γ ∈ (0, .5), and

(3.3) φτ (x+ d̃) ≤ φτ (x+ d).

(The choice d̃ = d is obviously one option that satisfies both (3.2) and (3.3).)
Note that if the solution of the subproblem (1.3) is d = 0 for the first value tried

(indicating that the optimality condition (2.3) is satisfied in the components of Qk),
the acceptance condition is satisfied and µk is not increased. This is a reasonable
outcome, as the algorithm detects correctly that, to first order, no further progress
can be made in this relaxation set.

We note that value of µk at iteration k, for relaxation set Qk, may have little
relevance for iteration k + 1, where the relaxation set Qk+1 may be quite different.
Algorithm 1 does not assume any “memory” in the choice of damping values. In our
implementations, however, we have found that an effective initial choice of µk+1 is
some multiple (for example, .8) of the final value of µk from the previous iteration.

3.1. Technical Results. We start with two technical results about the depen-
dence of the (unique) solution of subproblem (1.3) on µ and x. In the first result, we
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assume that x and Q′ in (1.3) are given, and explore the dependence of the solution
on µ alone.

Lemma 3.1. Suppose P is finite at a point x ∈ IRn and denote the (unique)
solution of (1.3) for any µ > 0 and fixed relaxation set Q′ by d(µ). We have that
|d(µ)| is a decreasing function of µ and that d(µ)→ 0 as µ ↑ ∞.

Proof. We give an elementary proof and assume for simplicity that Q′ = Q.
Supposing that µ̃ > µ > 0, we have directly from (1.3) that

∇f(x)T d(µ̃) +
µ̃

2
|d(µ̃)|2 + τP (x+ d(µ̃)) ≤ ∇f(x)T d(µ) +

µ̃

2
|d(µ)|2 + τP (x+ d(µ)),

∇f(x)T d(µ) +
µ

2
|d(µ)|2 + τP (x+ d(µ)) ≤ ∇f(x)T d(µ̃) +

µ

2
|d(µ̃)|2 + τP (x+ d(µ̃)).

By adding these inequalities and rearranging, we obtain

1

2
(µ̃− µ)|d(µ̃)|2 ≤ 1

2
(µ̃− µ)|d(µ)|2,

which by µ̃− µ > 0 implies the first result.
Suppose now that d(µ) 6→ 0 as µ ↑ ∞. By a compactness argument we can find

an increasing, unbounded sequence µj , j = 1, 2, . . . and a limit point d̂ 6= 0 such that

d(µj)→ d̂. Since 0 is a feasible point for (1.3), for each j, we have that

∇f(x)T d(µj) +
µj
2
|d(µj)|2 + τP (x+ d(µj)) ≤ τP (x).

Rearranging, we obtain

P (x+ d(µj)) ≤ P (x)− 1

τ

[
∇f(x)T d(µj) +

µj
2
|d(µj)|2

]
.

By taking limits, we have limj→∞ P (x + d(µj)) = −∞. However since d(µj) → d̂

and P (x + d̂) > −∞ (since P is proper), and since closedness of P implies lower

semicontinuity at x+ d̂, we have a contradiction.
In the next result, we assume only that µ ≥ µmin > 0, and investigate the

dependence of the solution of (1.3) on x, for x in a neighborhood of a critical point.
Lemma 3.2. Suppose that x∗ is a critical point for φτ and that f is locally

Lipschitz at x∗. Then there is a constant L̄ such that provided that µ ≥ µmin, we have
|d| ≤ L̄|x− x∗| for all x sufficiently close to x∗.

Proof. We assume for simplicity that Q′ = Q. (Similar logic holds for any
Q′ ⊂ Q.) Suppose for contradiction that there are sequences {xl} and {µl} with
xl → x∗ and µl ≥ µmin for all l = 1, 2, . . . , such that

(3.4) lim
l→∞

|xl − x∗|
|dl|

= 0.

By criticality of x∗, we have

−1

τ
∇f(x∗) ∈ ∂P (x∗),

so by convexity of P we have

(3.5) P (xl + dl) ≥ P (x∗)− 1

τ
∇f(x∗)T (xl + dl − x∗).
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On the other hand, dl is optimal in (1.3) (better than the alternative step x∗ − xl),
so we have

(3.6) ∇f(xl)T dl+
µl
2
|dl|2 + τP (xl+dl) ≤ ∇f(xl)T (x∗−xl) +

µl
2
|xl−x∗|2 + τP (x∗).

By substituting from (3.5) for P (xl+dl) into (3.6), we have after some rearrangement
that

µl
2
|dl|2 ≤ [∇f(x∗)−∇f(xl)]T (xl + dl − x∗) +

µl
2
|xl − x∗|2

≤ L|xl − x∗|(|xl − x∗|+ |dl|) +
µl
2
|xl − x∗|2,

where L is the local Lipschitz constant for ∇f at x∗. Dividing both sides by µl|dl|2,
we have

1

2
≤ L

µl

|xl − x∗|
|dl|

(
|xl − x∗|
|dl|

+ 1

)
+

1

2

|xl − x∗|2

|dl|2
.

By taking limits as l→∞, we have from µl ≥ µmin and (3.4) that the right-hand side
approaches zero, giving a contradiction.

3.2. Global Convergence. We now that accumulation points of Algorithm 1
are critical. Our first result verifies that the algorithm is well defined (in the sense
that each inner loop eventually terminates) in the neighborhood of any point at which
∇f is locally Lipschitz.

Lemma 3.3. Suppose that ∇f is locally Lipschitz in a neighborhood of a point x̄.
Then there are positive constants ρ and µ̂ such that the solution d of (1.3) evaluated at
any x with |x− x̄| ≤ ρ and any µ with µ ≥ µ̂ satisfies the sufficient decrease condition
(3.1).

Proof. Choose ρ small enough that for some L > 0 we have

(3.7) |x− x̄| ≤ ρ and |d| ≤ ρ ⇒ |∇f(x+ d)−∇f(x)| ≤ L|d|.

Now suppose for contradiction that for some x with |x − x̄| ≤ ρ, there is a sequence
µj ↑ ∞ such that for dj that solves (1.3) with µ = µj and Q′ = Qj ⊂ Q, we have

(3.8) φτ (x)− φτ (x+ dj) < |dj |3.

By taking a subsequence if necessary, we can assume that Qj ≡ Q̄ ⊂ Q. Since
dj → 0 from Lemma 3.1, we can assume further that |dj | ≤ ρ for all j. By optimality
conditions (1.4) for (1.3), we have

−1

τ

[
∇[q]f(x) + µjd

j
[q]

]
∈ ∂Pq(x[q] + dj[q]), for all q ∈ Q̄,

and therefore by convexity of Pq we have

(3.9) Pq(x[q])− Pq(x[q] + dj[q]) ≥
1

τ
(dj[q])

T
[
∇[q]f(x) + µjd

j
[q]

]
, for all q ∈ Q̄.
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Thus we have for all j that

φτ (x+ dj)− φτ (x)

= (dj)T∇f(x) + (dj)T
[
∇f(x+ tjd

j)−∇f(x)
]

+ τ(P (x+ dj)− P (x)) for some tj ∈ (0, 1)

≤ (dj)T∇f(x) + L|dj |2 −
∑
q∈Q̄

(dj[q])
T
[
∇[q]f(x) + µjd

j
[q]

]
from (3.7) and (3.9)

= −µj |dj |2 + L|dj |2.

Hence for all j sufficiently large, using again that dj → 0 and µj ↑ ∞, we have

φτ (x)− φτ (x+ dj) ≥ (µj − L)|dj |2 > |dj |3,

contradicting (3.8) and proving the result.
It follows immediately that when ∇f is locally Lipschitz in a neighborhood of an

iterate xk of Algorithm 1, the inner loop eventually terminates with a value of µk that
satisfies the sufficient decrease condition.

We next prove the result about criticality of accumulation points.
Theorem 3.4. Suppose that Algorithm 1 generates an infinite sequence and

that x∗ is an accumulation point of this sequence at which ∇f is locally Lipschitz
continuous. Then x∗ is a critical point.

Proof. Denote by K the subsequence such that limk∈K x
k = x∗. Since {φτ (xk)} is

decreasing and bounded below, the sequence converges and in fact φτ (xk) ↓ φτ (x∗).
From (3.2), we have

φτ (xk)− φτ (xk+1) ≥ γ|d̃k|3, for k = 0, 1, 2, . . . ,

so that d̃k → 0 for the full sequence. Since limk∈K |xk − x∗| = 0, we have for all
j = 1, . . . , T (where T is the cycle length from (1.5)) that

0 ≤ lim
k∈K
|xk−j − x∗| ≤ lim

k∈K
|xk − x∗|+

j∑
l=1

|d̃k−l| = 0,

and hence limk∈K x
k−j = x∗ for all j = 0, 1, . . . , T .

By local Lipschitz continuity, we can define positive constants L > 0 and ρ > 0
such that |∇f(x + d) − ∇f(x)| ≤ L|d| for all x, d with |x − x∗| ≤ ρ and |d| ≤ ρ.
As in Lemma 3.3, we can identify µ̂ > 0 such that the sufficient decrease condition
(3.1) is satisfied along with |d| ≤ ρ, when |x − x∗| ≤ ρ and d is obtained from (1.3)
for µ ≥ µ̂, for any Q′ ⊂ Q. After eliminating from the subsequence K all indices k
such that k ≤ T , and all indices k such that |xk−j − x∗| > ρ for some j = 0, 1, . . . , T ,
we still have an infinite subsequence by the argument above. The mechanism of the
algorithm ensures that µk−j ≤ max(ηµ̂, µtop) for all k ∈ K and all j = 0, 1, . . . , T . In
particular, we have µk−jd

k−j → 0 where the limit is taken over all elements k ∈ K
and j = 0, 1, . . . , T .

We now choose any q ∈ Q and note from (1.5) that q ∈ Qk−j for some j =
0, 1, . . . , T − 1 and for every k ∈ K. Let jk = k − j for some such j. We have from
subproblem optimality (1.4) that

0 ∈ ∇[q]f(xjk) + µjkd
jk
[q] + τ∂Pq(x

jk
[q] + djk[q]), for all k ∈ K.
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By taking limits of this expression as k ∈ K approaches ∞, noting from the previous
paragraph that limk∈K µjkd

jk = 0, and using outer semicontinuity of ∂Pq, we have

0 ∈ ∇[q]f(x∗) + τ∂Pq(x
∗
[q]).

Since q is any element of Q, we conclude that the criticality condition (2.3) holds at
x∗, completing the proof.

3.3. Identification. In this section, we prove results about identification of the
active manifold by iterates of the algorithm. We assume throughout that the active
manifold at the limit point x∗ is partly smooth and that the nondegeneracy condition
(2.4) is satisfied. A characterization of identification from Hare and Lewis [9] is
key to the analysis. This result has recently been applied to algorithms that take
prox-descent steps in Hare [10] (for smooth constrained optimization) and Lewis and
Wright [16] and Hare [11] (for regularized optimization). The novelty in the analysis
is largely in the handling of the block-coordinate steps rather than full prox-descent
steps involving all the coordinates at once.

The first result shows that the prox-descent step from (1.3) yields identification
from any point x sufficiently close to a nondegenerate critical point x∗, provided that
the relaxation set Q′ encompasses all components q for which x[q] does not lie on the
correct manifold.

Theorem 3.5. Let the nondegenerate criticality condition (2.4) be satisfied at x∗

and suppose that ∇f is locally Lipschitz there. Suppose that each Pq is partly smooth
at x∗[q], with active manifold Mq, for all q ∈ Q. Then there is a δ̄ > 0 such that for

any x with |x − x∗| < δ̄, one step of Algorithm 1 starting from x with relaxation set
Q(x) chosen such that q ∈ Q(x) whenever x[q] /∈ Mq results in a step d for which
x+ d ∈M.

Proof. Suppose for contradiction that there are sequences xl → x∗ and Q(xl) ⊂ Q
with q ∈ Q(xl) whenever xl[q] /∈Mq, yet one iteration of Algorithm 1 yields a step dl

such that xl + dl /∈M. We can assume without loss of generality that Q(xl) ≡ Q′ for
some Q′ ⊂ Q.

By the local Lipschitz property of ∇f , we can use Lemma 3.3 and Theorem 3.4
to deduce existence of µ̂ such that the sufficient decrease condition (3.1) is satisfied
for all µ ≥ µ̂ and all l sufficiently large. Hence, the mechanism of the algorithm will
choose µl with µmin ≤ µl ≤ max(ηµ̂, µtop), and set dl to the solution of (1.3) for
x = xl and µ = µl. Moreover, from Lemma 3.2, we have |dl| = O(|xl−x∗|). It follows
that µld

l → 0.

We have for q ∈ Q′ that[
∇f(xl + dl) + τ∂P (xl + dl)

]
[q]

=∇[q]f(xl + dl) + τ∂Pq(x
l
[q] + dl[q])

=
[
∇[q]f(xl) + µld

l
[q] + τ∂Pq(x

l
[q] + dl[q])

]
+O(|dl|)− µldl[q],

and so from subproblem optimality (1.4) we have

dist
(

0,
[
∇f(xl + dl) + τ∂P (xl + dl)

]
[q]

)
≤ O(|dl|) + µl|dl| → 0, for all q ∈ Q′.(3.10)
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We now consider q /∈ Q′, for which xl[q] ∈ Mq and dl[q] = 0. Note first that we
have

(3.11) ∇[q]f(xl + dl) = ∇[q]f(x∗) +O(|xl − x∗|) +O(|dl|),

by Lipschitz continuity of ∇f . Moreover, using partial smoothness of Pq at x∗ and
the property −∇[q]f(x∗) ∈ τ∂Pq(x∗), we have

dist(−∇[q]f(x∗), τ∂Pq(x
l
[q] + dl[q])

= dist(−∇[q]f(x∗), τ∂Pq(x
l
[q]) since dl[q] = 0 for q /∈ Q′

= dist(−∇[q]f(x∗), τ∂Pq(x
∗
[q]) + o(1) by Definition 2.3(iv)

= o(1).(3.12)

It follows by combining (3.11) and (3.12) that

(3.13) dist
(

0,
[
∇f(xl + dl) + τ∂P (xl + dl)

]
[q]

)
→ 0, for all q /∈ Q′.

By combining (3.10) and (3.13), we obtain

dist
(
0,∇f(xl + dl) + τ∂P (xl + dl)

)
→ 0,

implying from [9, Theorem 5.3] that xl + dl ∈M for all l sufficiently large, giving the
desired contradiction.

In the next result we consider the behavior of Algorithm 1 in the neighborhood of
a nondegenerate critical point, when the choice of relaxation sets satisfies the gener-
alized Gauss-Seidel condition (1.5). Obviously, we cannot hope to identify the correct
manifold until all the components have had their turn for inclusion in Qk, which be-
cause of (1.5), happens at least once in each cycle of T iterations. We also need to
assume that the steps d̃k actually taken by the algorithm do not move away from the
manifold identified by the prox-descent steps dk.

Theorem 3.6. Let the nondegenerate criticality condition (2.4) be satisfied at x∗

and suppose that ∇f is locally Lipschitz there. Suppose that each Pq is partly smooth at
x∗[q], with active manifold Mq, for all q ∈ Q. Then there is a δ̄ > 0 with the following

property. If Algorithm 1 is started from any initial point x0 such that |x0 − x∗| < δ̄
and φτ (x0)− φτ (x∗) ≤ δ̄, with xk + d̃k lying on the same manifold as xk + dk for all
k = 0, 1, 2, . . . , T − 1, then either φτ (xk) < φτ (x∗) for some k = 0, 1, 2, · · · (in which
case Algorithm 1 cannot have an accumulation point at x∗) or else the T th iterate xT

lies on the manifold M := ⊗q∈QMq.

Proof. Suppose for contradiction that there is no valid choice of δ̄. We can then
define a sequence {xl,0}l=1,2,... with |xl,0−x∗| ≤ l−1 and φτ (xl,0)−φτ (x∗) ≤ l−1 such
that φτ (xl,k) ≥ φτ (x∗) for all iterates {xl,k}k=0,1,2,... of Algorithm 1 starting from
xl,0, and after T steps of the algorithm, the T th iterate satisfies xl,T /∈ M. Since
φτ (x∗) + l−1 ≥ φτ (xl,0) ≥ φτ (xl,k) ≥ φτ (x∗), we have from (3.1) and (3.2) that |dl,k|
and |d̃l,k| are both bounded by a multiple of l−1/3 for all k = 0, 1, . . . , T − 1.

Choosing any q ∈ Q, we denote by kl the largest iteration index in 0, 1, . . . , T − 1
for which q ∈ Qkl . (Note that (1.5) guarantees existence of kl.) Similarly to the proof
of Theorem 3.5, we use Lipschitz continuity of ∇f at x∗ along with the reasoning
in the proofs of Lemma 3.3 and Theorem 3.4 to deduce that the damping parameter
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µl,kl used at each of these steps is uniformly bounded over l. We now have[
∇f(xl,T ) + τ∂P (xl,T )

]
[q]

= ∇[q]f

(
xl,kl +

T−1∑
k=kl

d̃l,k

)
+ τ∂Pq

(
xl,kl[q] +

T−1∑
k=kl

d̃l,k[q]

)

= ∇[q]f
(
xl,kl

)
+

T−1∑
k=kl

O(|d̃l,k|) + τ∂Pq

(
xl,kl[q] + dl,kl[q]

)
+ o(1)

=
[
∇[q]f(xl,kl) + µl,kld

l,kl
[q] + τ∂Pq(x

l,kl
[q] + dl,kl[q] )

]
+

T−1∑
k=kl

O(|d̃l,k|)− µl,kld
l,kl
[q] + o(1),

where the second equality follows from Definition 2.3(iv) (continuity of ∂Pq along the

manifold identified by xl,kl[q] + dl,kl[q] ) and the fact that each subsequent iterate xl,k[q] ,

k = kl + 1, . . . , T lies on the manifold identified by xl,kl + dl,kl . Using subproblem
optimality (1.4) and our estimates of |dl,kl |, |d̃l,kl |, and µl,kl , we have that

dist
(

0,
[
∇f(xl,T ) + τ∂P (xl,T )

]
[q]

)
→ 0.

Since this estimate can be derived for all q ∈ Q, we have that

dist
(
0,∇f(xl,T ) + τ∂P (xl,T )

)
→ 0,

implying from [9, Theorem 5.3] that xl,T ∈ M for all l sufficiently large, giving the
desired contradiction.

We note that when each Pq is everywhere finite valued, the function P is Lipschitz
on IRn, and in this case we can dispense with the assumption that φτ (x0)−φτ (x∗) ≤ δ̄
in Theorem 3.6.

3.4. Reduced-Newton Acceleration. We now describe a variant of Algo-
rithm 1 in which the step d̃k is obtained from a reduced-Newton step on the current
estimate of the optimal manifold M. At iteration k, the procedure is as follows:
Compute dk satisfying (3.1) and find a manifoldMk containing xk +dk that is partly
smooth at xk + dk. (If no such manifold can be conveniently identified, set d̃k = dk

and skip the acceleration step.) Now identify a mapping Gk that parametrizes the
manifoldMk, in the sense of Lemma 2.1, and a point yk such that Gk(yk) = xk + dk

and Gk(y) ∈ Mk for all y in a neighborhood of yk. Next, define ψkτ (y) := φτ (Gk(y))
(as in (2.5)) and compute a Newton step wk for ψkτ from yk. Finally, define the step
to be taken as d̃k := G(yk + wk)− xk, if this step satisfies the acceptance conditions
(3.2) and (3.3), and if xk + d̃k lies on the same manifold Mk as xk + dk. Otherwise,
set d̃k = dk.

We now prove a superlinear convergence for this procedure, building on the identi-
fication result of Theorem 3.6, the properties of manifolds and their parametrizations
introduced in Subsection 2.2, and the standard properties of Newton’s method.

Theorem 3.7. Suppose that x∗ is a strong critical point of φτ , where f is C2

at x∗ and each Pq is partly smooth at x∗[q] with respect to an active manifold Mq.

Let {xk} be the sequence generated by the algorithm, with the acceleration procedure
described above, and assume that xk → x∗. Then xk ∈ M := ⊗q∈QMq for all k
sufficiently large, and the convergence of {xk} to x∗ is Q-quadratic.
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Proof. We can use Theorem 3.6 to deduce that xk + dk ∈M for all k sufficiently
large, so the acceleration procedure ensures that in fact xk+1 = xk + d̃k ∈M for all k
sufficiently large. Hence we can assume thatMk ≡M and Gk ≡ G in the description
of the acceleration procedure.

In the remainder of the proof, we identify a radius δ > 0 such that the step
d̃k obtained by the acceleration procedure is accepted for all k large enough that
|xk − x∗| < δ. For clarity, in the analysis below, we drop the superscript “k” and
replace “k + 1” by “+”.

Since the assumptions of Theorems 2.4 and 2.5 are satisfied, we have that x∗ is
a strong local minimizer for some modulus of convexity c > 0. By constructing the
parametrization G ofM as described above, and defining ψτ as in (2.5), we have that
∇2ψτ (ȳ) is positive definite with smallest eigenvalue at least 2c at the solution ȳ for
which G(ȳ) = x∗, while ∇ψτ (ȳ) = 0.

By applying Lemma 3.2, and noting that µ ≥ µmin, we have for |x− x∗| ≤ δ (by
decreasing δ if necessary) that the solution d of (1.3) satisfies

(3.14) |d| ≤ c2|x− x∗| ≤ c2δ,

for some constant c2 > 0. Hence, we have

(3.15) |x+ d− x∗| ≤ (1 + c2)δ.

Consider now the reduced Newton step from x+ d. From Lemma 2.1, we have

(3.16) x+ d− x∗ = G(y)− x∗ = Y (y − ȳ) +O(|y − ȳ|2),

for an orthonormal matrix Y , so that by reducing δ further as needed, we have

(3.17)
1

2
|y − ȳ| ≤ |x+ d− x∗| ≤ 2|y − ȳ|.

Using this estimate together with (3.15), we see that |y − ȳ| = O(δ), so by reducing
δ again if necessary and defining ψτ as in (2.5), the Newton step w from y is well
defined, and we have

(3.18) w = −[∇2ψτ (y)]−1∇ψτ (y).

Moreover, standard analysis of Newton’s method yields that

(3.19) |y + w − ȳ| ≤ c3|y − ȳ|2

for some c3 > 0. We have in particular that

(3.20)
1

2
|y − ȳ| ≤ |w| ≤ 2|y − ȳ|.

Defining d̃ = G(y + w)− x, we have from Lemma 2.1 that

(3.21) x+ d̃− x∗ = G(y + w)− x∗ = Y (y + w − ȳ) +O(|y + w − ȳ|2),

for the same orthonormal matrix Y as in (3.16), so by decreasing δ further if necessary,
we have

(3.22)
1

2
|y + w − ȳ| ≤ |x+ d̃− x∗| ≤ 2|y + w − ȳ|.
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By comparing (3.16) with (3.21), we obtain

(3.23) d̃− d = Y w +O(|y − ȳ|2) +O(|y + w − ȳ|2),

so from (3.20), we have

(3.24) d̃− d = Y w +O(|w|2) = Y w +O(|y − ȳ|2).

By the usual argument, we thus have

(3.25)
1

2
|d− d̃| ≤ |w| ≤ 2|d− d̃|.

Denoting the next iterate by x+, defined by x+ := x+ d̃, we have

|x+ − x∗| ≤ 2|y + w − ȳ| from (3.22)

≤ 2c3|y − ȳ|2 from (3.19)

≤ 8c3|x+ d− x∗|2 from (3.17)

≤ 8c3(1 + c2)2|x− x∗|2 from (3.15)(3.26)

≤ 8c3(1 + c2)2δ|x− x∗| since |x− x∗| ≤ δ.

By decreasing δ again if necessary, we have that |x+ − x∗| ≤ 0.5|x − x∗|, so all
the estimates obtained above and below for x (and its corresponding steps d and d̃)
continue to apply at x+ and indeed at all subsequent iterates. Note too that for this
choice of δ, we have

(3.27) |d̃| ≤ |x+ − x∗|+ |x− x∗| ≤ 1.5|x− x∗| ≤ 1.5δ.

We conclude by showing that d̃ satisfies the acceptance conditions (3.2) and (3.3).
We have from standard Newton analysis, and using (3.25), that

φτ (x+ d̃) = ψτ (y + w) ≤ ψτ (y)− c4|w|2

= φτ (x+ d)− c4|w|2 ≤ φτ (x+ d)− 1

4
c4|d− d̃|2,(3.28)

for some c4 > 0, so that (3.3) holds. Since d satisfies (3.1), we have

φτ (x)− φτ (x+ d̃) = [φτ (x)− φτ (x+ d)] + [φτ (x+ d)− φτ (x+ d̃)]

≥ |d|3 +
1

4
c4|d̃− d|2.(3.29)

We consider two cases. First, when |d̃− d| ≤ .2|d̃|, we have |d| ≥ |d̃| − |d− d̃| ≥ .8|d̃|,
so from (3.29) it follows that

φτ (x)− φτ (x+ d̃) ≥ |d|3 ≥ (.8)3|d̃|3 ≥ γ|d̃|3,

(since γ ∈ (0, .5)), so that (3.2) holds. Second, when |d̃− d| > .2|d̃|, we have immedi-
ately from (3.29) that

φτ (x)− φτ (x+ d̃) ≥ 1

4
c4|d̃− d|2 ≥ .01c4|d̃|2.

By using (3.27) and reducing δ if necessary (to ensure that |d̃| ≤ .01c4/γ), we have
that (3.2) holds in this case too.

We conclude that it is possible to choose δ > 0 such that if |xk − x∗| ≤ δ for any
iterate xk generated by Algorithm 1, and using the acceleration procedure outlined
above, the enhanced step d̃l is accepted at all iterates l ≥ k. Because of (3.26), the
subsequent iterates converge Q-quadratically to x∗, as claimed.
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4. Applications. We discuss here implementation of the approaches of Section 3
to several particular cases of regularization function P in (1.1).

We start with the case of `1 regularized optimization, in which f is smooth and
P (x) = ‖x‖1. In the notation of (1.2), we have Q = {1, 2, . . . , n}, [q] = q for q =
1, 2, . . . , n, and Pq(x[q]) = |xq|. Each subproblem (1.3) then becomes

min
d

∑
q∈Q′
∇qf(x)dq +

µ

2

∑
q∈Q′

d2
q + τ

∑
q∈Q′
|xq + dq|.

It is well known that the solution d can be evaluated in O(|Q′|) operations via the
“shrinkage operator.” After rearrangement and a change of variables, we can write
this problem equivalently as

min
z

1

2
|z − g|2 +

τ

µ
‖z‖1,

for zq := xq + dq and gq := xq − (1/µ)∇qf(x) (q ∈ Q′), whose explicit solution is

zq = sign(gq) max(|gq| − τ/µ, 0), q ∈ Q′.

For each vector x and each component q, there are three appropriate choices of com-
ponent manifold Mq: α < 0, α > 0, and α = 0 for scalar α, depending on whether
xq is negative, positive, or zero, respectively. The estimateM for the active manifold
at iterate x + d is the Cartesian product of these component manifolds. We derive
an explicit representation along the lines of Lemma 2.1 as follows. Define the sets
Q0 := {i : xi + di = 0}, Q− := {i : xi + di < 0}, and Q+ := {i : xi + di > 0} and
the matrix E whose columns are the columns of the n × n identity that correspond
to indices in Q0, while Y is its complement. The mappings F and G described in
Lemma 2.1 are thus

F (x) = ETx, G(y) = Y y,

where the components of y are indexed not sequentially but rather with the indices i
from Q− and Q+.

The optimality condition (2.3) for x∗ is thus

(4.1) ∇f(x∗) + τv = 0,

where

(4.2) vi


= −1 if x∗i < 0

= 1 if x∗i > 0

∈ [−1, 1] if x∗i = 0.

The nondegeneracy condition (2.4) is the same, except that we require vi to be in the
open interval (−1, 1) when x∗i = 0.

For this case, the function ψτ (y) defined in (2.5) is thus

ψτ (y) = f(Y y)− τ
∑
i∈Q−

yi + τ
∑
i∈Q+

yi,

which is evidently as smooth as f . The Newton step for ψτ is easily calculated if
Y T∇f and Y T (∇2f)Y are known. If |Q−|+ |Q+| � n, it may be much less expensive

18



to evaluate these quantities (or approximations to them) than to evaluate the full
gradient and Hessian of f , as we discuss further in Section 5.

Consider next the case in which P is a group-`2 regularizer:

P (x) =
∑
q∈Q
|x[q]|,

where here each x[q] may be a subvector rather than a single component. The sub-
problem (1.3) is again separable in the subvectors d[q]; we solve

min
d[q]
∇[q]f(x)T d[q] +

µ

2
|d[q]|2 + τ |x[q] + d[q]|, q ∈ Q′.

A closed-form solution is again available; see for example [33, Section II.D]. When
[q] contains at least two components, the most natural possibilities for the partial
manifoldMq identified at x[q] +d[q] are the two cases x[q] +d[q] = 0 and x[q] +d[q] 6= 0.
The reduced function ψτ is thus obtained by zeroing out the components [q] in the
argument of f for which x[q] + d[q] = 0, and omitting these same terms from the
summation

∑
q∈Q′ ‖x[q]‖2. Note that both ∇ψτ and ∇2ψτ will have contributions

from the regularization terms q for which x[q] + d[q] 6= 0.
Finally, we mention the group-`∞ case in which Pq(x[q]) = ‖x[q]‖∞. The subprob-

lem (1.3) can be solved in time linear in the number of components by using duality
to restate it in terms of projection onto an `1-norm ball; see [33, Section II.D] and [3]
for details. The estimate of active manifold Mq at a point x[q] 6= 0 is

Mq = {x[q] + z : zi = t sign(x[q])i for all i with |(x[q])i| = ‖x[q]‖∞ and some t ∈ IR},

that is, the manifold is (locally) the set of vectors whose components that achieve the
absolute maximum are the same as in x[q]. It is easy to find linear mappings F and
G corresponding to such manifolds, and the restriction of φτ toM is as smooth as f ,
in a neighborhood of x. From the subgradient of ‖u‖∞ at a point u 6= 0 defined by

∂‖u‖∞ =


[−1, 0] if ui = −‖u‖∞,

[0, 1] if ui = ‖u‖∞,

0 otherwise,

we see that ∂Pq(x[q] + z) is in fact constant for all x[q] + z ∈ Mq in a neighborhood

of x[q]. (When x[q] = 0, we have simply Mq = 0 ∈ IR|[q]| and ∂Pq(0) = [−1, 1]|[q]|.)

5. Computational Example. We present some computational results obtained
with Algorithm 1 on `1-regularized logistic regression. Our results suggest that the
major algorithmic features considered in this paper — block-coordinate relaxation and
reduced Newton-like steps — improve the efficienct of the basic prox-linear approach
significantly. The results are illustrative rather than definitive; optimized implementa-
tions and exhaustive testing of the various algorithmic options on a variety of realistic
data sets will be studied elsewhere.

We start by describing the logistic regression application, and give some detail of
the algorithmic choices made in our implementation of Algorithm 1.

5.1. `1-Regularized Logistic Regression. Suppose we are given a “training
set” of m feature vectors xi ∈ IRn, i = 1, 2, . . . ,m and corresponding binary labels
bi ∈ {−1,+1}, i = 1, 2, . . . ,m. Our goal is to learn a regression function p : IRn → [0, 1]
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that predicts the chance of a given feature vector x having label +1. (It follows that
1 − p(x) is the chance of x having label −1.) We parametrize p by a vector z ∈ IRn,
and assume that it has the following form:

(5.1) p(x; z) =
1

1 + ezT x
.

Note that 1− p(x; z) = 1/(1 + e−z
T x). We use the training set to find an appropriate

value for z, ideally one for which p(xi; z) is close to 1 when bi = +1 and close to zero
when bi = −1, for most i = 1, 2, . . . ,m.

The log-likelihood function for the observed data is

L(z) :=
∑

i:bi=+1

log p(xi; z) +
∑

i:bi=−1

log(1− p(xi; z))

=
∑

i:bi=−1

zTxi −
m∑
i=1

log(1 + ez
T xi).(5.2)

In logistic regression, z is chosen to maximize L(z). We can obtain a sparse z (one
with few nonzeros, their locations highlighting the most significant components of the
feature vector) by incorporating a multiple of ‖z‖1 in the objective. The function to
be minimized is thus

(5.3) φτ (z) = − 1

m
L(z) + τ‖z‖1.

(In our experiment below, we include an “intercept” in the regression by appending 1
to each feature vector but not including the corresponding additional component of z
in the regularization term. For simplicity, however, we omit this detail and base our
description on formulation (5.3).)

We now outline the cost of evaluating the function L and its gradient and Hessian.
To evaluate L, we need to compute zTxi, i = 1, 2, . . . ,m. Using X to denote the m×n
matrix whose rows are xTi , we see that the matrix-vector productXz is required, where
z is usually a vector of few nonzeros. If we assume no sparsity of the vectors xi, the
cost would be approximately m times the number of nonzeros in z. An additional
O(m) exponentiations, logarithms, and basic arithmetic operations are required.

For the gradient, we have

(5.4) ∇L(z) = −XTw, where wi =

{
−(1 + ez

T xi)−1, if bi = −1,

(1 + e−z
T xi)−1, if bi = +1.

Since the evaluation of Xz has already been performed as part of the function eval-
uation, the additional costs here are (i) computation of w (O(m) operations); and
(ii) computation of (XTw)j for the desired components j ∈ G ⊂ {1, 2, . . . , n} of the
gradient. For most data sets, (i) is dominated by (ii), and the cost of evaluating a
partial gradient for indices in the set G is approximately |G|/n times the cost of a full
gradient.

The Hessian of L is

(5.5) ∇2L(z) = −XTdiag(u)X, where ui =
ez
T xi

(1 + ezT xi)2
, i = 1, 2, . . . ,m.
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The cost of computing u is just O(m), as Xz is known from the function evaluation.
Hence the main cost of evaluating a principal submatrix [∇2L(z)]CC of the Hessian,
corresponding to the subset of variables C ⊂ {1, 2, . . . , n} used in the acceleration step,
is essentially the cost of a weighted matrix multiplication of the column submatrix
X·C by its transpose. To reduce cost further, we can use sampling of rows of X to
obtain an approximation to [∇2L(z)]CC , as in Byrd et al. [2]. After selecting the
subset S ⊂ {1, 2, . . . ,m} at random, the approximation is obtained by performing a
weighted matrix-matrix multiplication of XSC and its transpose.

5.2. Implementation. We now discuss some key aspects of the implementation.

Selection of Qk. We try two alternative techniques for selecting the relaxation
set Qk. In the first scheme, we set Qk to be some fixed (user-defined) fraction of
the indices in {1, 2, . . . , n}, randomly chosen with equal probability. We refer to this
as the “unbiased” scheme. In the alternative “biased” scheme, we include in Qk all
components of z that are nonzero at the current zk, and add some fixed fraction of
the other components, randomly chosen. In neither scheme do we check explicitly
that the condition (1.5) is satisfied, though our random selection strategy makes it
highly unlikely that any index will be overlooked indefinitely.

Reduced Newton-like steps. For computation of the accelerated step d̃k, we use
essentially the reduced Newton scheme described in Section 3.4. Optionally, we use a
sampled approximation to the reduced Hessian, as described above. Since the reduced
Hessian is ill-conditioned in many instances, we also add a damping term λkI to the
reduced Hessian, choosing λk to be 10 times the norm of the smallest vector in the
subdifferential of φτ taken over the subset of components at which this vector was
most recently computed. Finally, after computing the reduced (approximate) Newton
step d̃k, we scale it by a line search parameter αk, setting αk to be the largest positive
value for which none of the components of xk + αkd̃

k have different signs from the
components of xk + dk. If this αk is too small (below 10−2 in our implementation),
we conclude that the truncation is too severe for the reduced Newton step to have
much value, so we discard it without evaluating the function at this point. In the
formula (3.2), we set the parameter γ to 10−3, so that the modified step d̃k almost
always satisfies this condition whenever (3.3) holds.

Termination. Testing for termination occurs when the smallest vector in the sub-
differential of φτ over the current relaxation set falls below a specified threshold (in
our case, 10−6). When this occurs, we evaluate the subdifferential over all compo-
nents and check whether it satisfies the same criterion, terminating the algorithm if
it does so and continuing to iterate otherwise.

Choice of µk. Algorithm 1 places few restrictions on the choice of µk. In our
implementations, we used a scheme rooted in the Levenberg-Marquardt method for
nonlinear least squares. The initial choice of µk is max(µmin, 0.8µk−1), where µk−1

is the final value of this parameter from the previous iterate (after any increases
that are required to satisfy the sufficient decrease condition). We set the parameter
η (the factor by which µk is increased at inner iterations) to be 2, while µmin is set
somewhat arbitrarily to 10−3. We do not choose a value for µtop, but we do terminate
the algorithm with an error message if the value of µk exceeds 1020.

Continuation in τ . A heuristic to perform continuation in the regularization pa-
rameter τ is essential to efficient performance, especially for problems with mild regu-
larization (that is, those for which the number of nonzero components in z is relatively
large). When τ ≥ τmax := (1/m)‖∇L(0)‖∞, the minimizer of (5.3) is z = 0; this de-
fines the maximum value of interest. Our strategy starts by setting τ to this value,
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and decreases successively by a constant factor until the target value is attained. The
problem (5.3) is solved for each of these values of τ , starting from a point that is an
“adjustment” of the solution for the previous (larger) value of τ . This adjustment
is performed by applying a reduced Newton-like method for the current value of τ ,
holding the zero components for this previous solution fixed at zero. If any of the
Newton-like steps cause nonzero values to change sign, the adjustment is discarded
and we simply use the previous solution as the starting point. Apart from its ad-
vantages of efficiency, continuation is useful from the application point of view, as
an appropriate value of τ is usually not known a priori. It is useful to inspect the
solutions for a range of values and to use statistical procedures or domain knowledge
to select the most appropriate ones. The use of continuation heuristics is common in
compressed sensing (see, for example, [8, 6, 33]), but there have been few attempts to
provide theoretical support.

5.3. Results. The algorithm was implemented in Matlab, by modifying an ear-
lier version of the LPS code at http://www.cs.wisc.edu/~swright/LPS/. Compu-
tational results were obtained on a four-core 64-bit Linux system with 2.27 GHz Intel
Xeon processors and 6 GB main memory.

In reporting the results, we show the total number of function evaluations and the
total CPU time summed over all the cores in the system (which may of course exceed
wall-clock time). We also show an “equivalent” number of full gradient evaluations,
calculated by summing the total number of gradient components evaluated during the
run and dividing by n. (This statistic captures fairly the effect that evaluation of, say
10% of the elements of the gradient requires about 10% of the effort of a full gradient
evaluation.)

Ten continuation steps are used for all data sets, with the final target value being
.25 times τmax. Termination is declared for each value of τ when the norm of the
smallest subgradient vector falls below 10−6.

We constructed test data sets like those of [23], as follows. Given dimensions
m and n, each feature vector xi ∈ IRn is completely dense, with elements chosen
randomly to be +1 or 0 with equal probability. A “true” coefficient vector z̄ is
selected, and an intercept of −3 is introduced, so that the “true” odds function is
p(x; z̄) = (1 + exp(xT z̄ − 3))−1. The label is chosen to be bi = +1 with probability
p(xi, z̄), and −1 otherwise.

In our first data set bigdata2.mat, there are n = 20000 features and m = 4000
training points. The target coefficient vector z̄ is selected to have 10 nonzero com-
ponents, each chosen from N(0, 1). The second data set bigdata11.mat selects z̄ in
the same way but has markedly different dimensions: n = 1000 and m = 100000.
In the third data set bigdata13.mat, we have n = 1000 and m = 50000, but z̄ has
100 nonzeros with values 10ξ, where ξ is chosen from N(0, 1), independently for each
nonzero component. For the training sets bigdata2.mat bigdata11.mat, the solution
for the final value of τ has 9 and 8 nonzeros, respectively — similar to the 10 nonzeros
in the target vector z̄. For bigdata13.mat, the final solution has 64 nonzeros, which
would be sufficient to capture the most significant components from the 100 nonzeros
in z̄.

Tables 5.1, 5.2, and 5.3 show results for bigdata2.mat, bigdata11.mat, and
bigdata13.mat, respectively, for different choices of the parameters governing the
size of the partial gradient set G, the density of Hessian sampling |S|/m, and the two
different strategies for choice of the relaxation set Qk. Results for the variants that
use no reduced Newton acceleration (that is, set d̃k = dk for all k) are also shown,
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Table 5.1
Computational results for the bigdata2 set (n = 20000, m = 4000).

(a) Performance of the method described in Section 5, showing number of
function evaluations (nf), number of equivalent gradient evaluations (ng),
and CPU time (seconds).

unbiased Qk biased Qk
|G|/n |S|/m nf ng CPU nf ng CPU
1.00 1.00 139 46.0 38.2
1.00 0.05 179 37.0 28.7 not applicable
1.00 0.01 324 71.1 36.6
1.00 none 794 567.1 298.6
0.20 1.00 166 23.8 25.4 182 27.7 28.9
0.20 0.05 213 22.8 25.9 226 24.5 26.7
0.20 0.01 361 30.7 17.4 367 29.3 16.7
0.20 none 961 207.1 112.5 809 130.9 74.8
0.05 1.00 159 18.7 18.6 157 17.8 16.7
0.05 0.05 212 18.0 19.8 240 18.9 20.2
0.05 0.01 374 24.1 14.3 409 20.3 12.6
0.05 none 1140 157.4 90.5 764 43.3 30.2
0.01 1.00 153 16.3 15.7 157 16.4 15.1
0.01 0.05 200 15.4 16.8 228 16.5 16.8
0.01 0.01 338 16.7 10.2 365 16.8 10.5
0.01 none 1031 130.1 74.9 718 20.9 17.7

(b) Profile of a single run from Table 5.1(a): |G|/n = .01, |S|/m =
.01, for unbiased Qk.

τ nonzeros iterations nf ng CPU
4.58e-02 1 2 5 1.0 0.52
3.98e-02 4 10 21 2.1 1.19
3.47e-02 4 2 24 1.0 0.60
3.02e-02 6 13 36 2.1 1.30
2.63e-02 6 2 27 1.0 0.62
2.29e-02 7 11 39 2.1 1.27
1.99e-02 7 2 23 1.0 0.60
1.73e-02 8 25 70 3.2 2.13
1.51e-02 8 3 28 1.0 0.64
1.31e-02 8 3 28 1.0 0.65
1.14e-02 8 3 37 1.0 0.68

total 338 16.7 10.2

on the lines with the entry “none” in the column headed |S|/m. Note that when the
full gradient is evaluated (|G|/n = 1) there is no distinction between the “biased” and
“unbiased” sampling strategies, since Qk ≡ {1, 2, . . . , n}. Hence, the top right box is
not filled.

Tables 5.1(b), 5.2(b), and 5.3(b) show a profile for a particular run of the code
for a single set of parameter choices. We note that all variants produced the same
solutions (in terms of the final number of nonzeros, for each value of τ). These tables
show how the work was distributed between the sequence of τ values used in the
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Table 5.2
Computational results for the bigdata11 set (n = 1000, m = 100000).

(a) Performance of the method described in Section 5, showing number of
function evaluations (nf), number of equivalent gradient evaluations (ng),
and CPU time (seconds).

unbiased Qk biased Qk
|G|/n |S|/m nf ng CPU nf ng CPU
1.00 1.00 139 40.4 44.5
1.00 0.05 139 39.4 45.1 not applicable
1.00 0.01 145 39.4 45.6
1.00 none 580 500.3 356.5
0.20 1.00 164 24.1 39.8 159 24.5 37.9
0.20 0.05 177 27.0 43.0 183 27.2 43.9
0.20 0.01 175 25.5 42.1 183 25.7 43.1
0.20 none 1130 283.7 249.0 573 114.6 114.0
0.05 1.00 161 19.3 34.5 160 19.2 35.6
0.05 0.05 161 18.3 34.5 181 21.0 39.7
0.05 0.01 173 20.4 37.8 181 19.5 38.0
0.05 none 1352 222.7 226.2 542 44.5 67.3
0.01 1.00 163 18.8 34.9 160 17.9 34.6
0.01 0.05 167 18.8 34.9 182 18.1 39.1
0.01 0.01 164 17.8 33.7 180 19.0 38.0
0.01 none 1133 167.0 177.0 540 26.1 56.8

(b) Profile of a single run from Table 5.2(a): |G|/n = .01, |S|/m =
.01, for unbiased Qk.

τ nonzeros iterations nf ng CPU
1.89e-02 1 2 5 1.0 0.87
1.65e-02 2 8 17 2.1 2.43
1.43e-02 2 2 11 1.0 1.31
1.25e-02 3 7 20 2.1 3.77
1.09e-02 3 2 11 1.0 2.15
9.46e-03 3 2 11 1.0 2.05
8.23e-03 4 7 19 2.1 4.64
7.17e-03 5 6 19 2.1 4.86
6.24e-03 6 5 16 2.1 3.96
5.43e-03 9 9 22 2.2 4.90
4.73e-03 9 2 13 1.1 2.78

total 164 17.8 33.7

continuation heuristic, for one of the parameter combinations that worked fairly well
across all data sets.

We can make several general observations about the performance reported here.

1. The use of reduced Newton acceleration generally yields a vast performance
improvement over the method that uses only first-order information. In a
few cases, however, the first-order method is competitive, for example in the
bottom right of Tables 5.1(a) and 5.2(a), where we evaluate only 1% of the
gradient and use the “biased” scheme for selecting the relaxation set.
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Table 5.3
Computational results for the bigdata13 set (n = 1000, m = 5000).

(a) Performance of the method described in Section 5, showing number of function
evaluations (nf), number of equivalent gradient evaluations (ng), and CPU time (sec-
onds).

unbiased Qk biased Qk
|G|/n |S|/m nf ng CPU nf ng CPU
1.00 1.00 338 173.9 140.1
1.00 0.05 304 127.2 95.2 not applicable
1.00 0.01 409 166.2 127.2
1.00 none 13158 12994.3 4739.5
0.20 1.00 332 49.4 83.8 323 49.2 81.2
0.20 0.05 398 56.8 81.9 409 57.7 85.0
0.20 0.01 521 65.8 107.2 556 77.9 118.3
0.20 none 9118 1925.0 1026.1 12376 2914.2 1508.8
0.05 1.00 262 35.2 62.3 343 40.5 83.7
0.05 0.05 353 38.3 66.2 401 41.8 73.6
0.05 0.01 474 50.7 88.1 561 56.1 107.4
0.05 none 9472 1107.3 795.9 12418 1172.7 961.5
0.01 1.00 258 31.2 57.9 285 34.3 67.8
0.01 0.05 300 36.5 54.3 368 36.7 65.8
0.01 0.01 411 40.9 72.3 487 42.2 89.1
0.01 none 3019 463.7 285.5 12255 703.9 817.7

(b) Profile of a single run from Table 5.3(a): |G|/n = .01, |S|/m =
.01, for unbiased Qk.

τ nonzeros iterations nf ng CPU
3.18e-02 1 2 5 1.0 0.42
2.77e-02 9 11 22 3.2 3.40
2.41e-02 14 8 26 2.3 3.12
2.10e-02 15 9 29 2.3 4.72
1.83e-02 21 11 32 2.4 4.88
1.59e-02 32 15 43 3.8 6.86
1.38e-02 38 21 53 5.2 8.85
1.20e-02 43 23 56 5.5 10.23
1.05e-02 45 10 40 4.3 8.66
9.13e-03 56 23 57 5.8 10.89
7.95e-03 64 14 48 5.1 10.23

total 411 40.9 72.3

2. There is some performance benefit from using partial gradient evaluations,
but it is not very significant on these data sets. One reason is that to test
termination for each value of τ , we evaluate one full gradient vector∇L(z). In
many cases (for examples the runs reported in Tables 5.2(b), and 5.3(b)) this
is by far the most expensive operation for each τ ; the reduced gradient and
Hessian evaluations needed to perform the iterations cost little by comparison.
(Note that many entries in the ng column of these tables are barely more
than the level of 1.0 needed to perform the convergence test.) By applying
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techniques like those proposed recently in [5], we can potentially avoid this
bottleneck and obtain a rigorous convergence test without evaluating a full
gradient. We leave details to later work.

3. The simplest variant of Algorithm 1 — full gradient evaluation, no reduced-
Newton acceleration — gives for all three data sets the poorest performace
by far.

4. The benefits from using sampled approximations to the reduced Hessians
are not very significant, possibly because the reduced Hessian are such small
matrices in these computations that the time spent evaluating them is a
relatively small part of the computation.

5. There is no clear benefit to be gained from using the “biased” technique for
choosing Qk.

6. The “adjustment” strategy (for obtaining a warm start for each τ by applying
a reduced Newton method to the solution from the previous τ value) led
to significantly faster run times than simply using the previous solution as
the warm start. This is especially true for full-gradient variants, which are
uncompetitive if adjustment is not performed.

We repeat that our results are mainly illustrative in nature. The conclusions may
be quite different in other data regimes — for example if the dimensions were much
larger, if the data matrix X were sparse and derived from a real application (rather
than a random test model), or if the number of nonzero elements for the final value
of τ were larger.

5.4. Reproducibility. In the interests of reproducibility, we have placed the
code at http://www.cs.wisc.edu/~swright/LPS/ (see version 2.2 of LPS), along
with a routine TestTables.m for generating the data in the tables of this paper.
Because of the random nature of the algorithm (both in the selection of gradient
components and in the selection of training points to use in the Hessian estimate),
results will usually differ from run to run, and of course according to the capablities
of the computer on which they execute. The LPS distribution also contains data for
smaller standard test problems arising from real applications, and a routine to run
the code on these examples. They generally solve in a few seconds.

We include in the distribution the data sets number of smaller test problems,
mostly following those reported in [22], along with code to run these problems.
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Appendix A. Manifold Characterization: Proofs.

Proof. (Lemma 2.1) We prove the result constructively via the implicit function
theorem; see for example [18, Theorem A.2]. Assuming WLOG that ∇F (z̄) is or-
thonormal and defining Y as in the statement of the theorem, we observe that the
m ×m matrix

[
∇F (z̄) Y

]
is nonsingular, in fact orthogonal. We now consider the

map Φ : IRm × IRm−k → IRm defined as follows:

Φ(z, y) =

[
F (z)

Y T (z − z̄)− (y − ȳ)

]
.
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Note first that Φ(z̄, ȳ) = 0. Second, we have

∇zΦ(z, y) =
[
∇F (z) Y

]
,

which is nonsingular at the point (z, y) = (z̄, ȳ), as noted above. Third, Φ is p times
continuously differentiable in a neighborhood of (z̄, ȳ), by the assumed properties of
F . Thus, by applying the implicit function theorem, we have that z is implicitly a Cp

function of y. We identify G(y) with z to obtain the main result.
For the final statements, note from the implicit function theorem that

∇G(y) = −∇yΦ(z, y)[∇zΦ(z, y)]−1 =
[
0 I

] [
∇F (z) Y

]−1
,

and thus at y = ȳ, using
[
∇F (z̄) Y

]−1
=
[
∇F (z̄) Y

]T
, we have ∇G(ȳ) = Y T .

Thus, by Taylor’s theorem, we have

G(y)− z̄ = G(y)−G(ȳ) = Y (y − ȳ) +O(|y − ȳ|2).

Proof. (Lemma 2.2) We again invoke the implicit function theorem to prove the
claim. Defining the function Ψ : IRm−k × IRk × IRm → IRm by

Ψ(y, v; z) := G(y) +∇F (z̄)v − z,

we note first that Ψ(ȳ, 0; z̄) = 0. Second, we have

∇(y,v)Ψ(y, v; z) =

[
∇G(y)
∇F (z)T

]
,

so that

∇(y,v)Ψ(ȳ, 0; z̄) =

[
∇G(ȳ)
∇F (z̄)T

]
=

[
Y T

∇F (z̄)T

]
,

which is an orthogonal (and hence nonsingular) matrix. Third, sinceG is a Cp function
of y in a neighborhood of ȳ, we have that Ψ is also p times continuously differentiable
in a neighborhood of (ȳ, 0, z̄). Defining (y, v) to be the solution of Ψ(y, v; z) = 0 for
a given z, the conclusion follows immediately from the implicit function theorem.

Finally, we include the following result for completeness.
Lemma A.1. Suppose we have a function h : IRm → ĪR, a point z̄, and a manifold

M with z̄ ∈ M ⊂ IRm such that h is partly smooth at z̄ with respect to M. Suppose
in addition that the nondegenerate criticality condition 0 ∈ ri ∂h(z̄) holds. Then there
is ε > 0 such that for all d ∈ NM(z̄), we have

sup
g∈∂h(z̄)

gT d ≥ ε|d|.

Proof. Since aff ∂h(z̄) = NM(z̄) and 0 ∈ ri ∂h(z̄), there is ε > 0 such that
g ∈ ∂h(z̄) for all g ∈ NM(z̄) with |g| ≤ ε. Thus for any d ∈ NM(z̄), we have
εd/|d| ∈ ∂h(z̄), and the result follows immediately.
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