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Abstract

In this paper we propose a cooperative distributed linear model predictive control strategy applicable to any finite number of
subsystems with the following features: hard input constraints are satisfied; the distributed control provides nominal stability
for the same set of plants as centralized control; terminating the iteration of the distributed controllers prior to convergence
retains closed-loop stability; in the limit of iterating to convergence, the control is plantwide Pareto optimal and equivalent to
the centralized control solution; no coordination layer is employed.

We first prove exponential stability of suboptimal model predictive control and show the proposed cooperative control strat-
egy is in this class. We also establish that under perturbation from a stable state estimator, the origin remains exponentially
stable. For plants with sparsely coupled input constraints, we provide an extension in which the decision variable space of each
suboptimization is augmented to achieve Pareto optimality. We conclude with a simple example showing the performance
advantage of cooperative control compared to noncooperative and decentralized control strategies.
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1. Introduction

Model predictive control (MPC) has been widely adopted
in the petrochemical industry for controlling large, multi-
variable processes [1]. MPC solves an online optimization
to determine inputs, taking into account the current condi-
tions of the plant, any disturbances affecting operation, and
imposed safety and physical constraints. Over the last sev-
eral decades, MPC technology has reached a mature stage.
Closed-loop properties are well understood, and nominal
stability is easily demonstrated for many applications [2].

Chemical plants usually consist of linked unit operations
and can be subdivided into a number of subsystems. These
subsystems are connected through a network of material, en-
ergy, and information streams. Because plants often take
advantage of the economic savings available in material re-
cycle and energy integration, the plantwide interactions of
the network are difficult to elucidate. Plantwide control has
traditionally been implemented in a decentralized fashion,
in which each subsystem is controlled independently and
network interactions are treated as local subsystem distur-
bances [? 3]. It is well known, however, that when the inter-
subsystem interactions are strong, decentralized control is
unreliable [4].
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Centralized control, in which all subsystems are controlled
via a single agent, can account for the plantwide interactions.
Indeed, increased computational power, faster optimization
software, and algorithms designed specifically for large-scale
plantwide control have made centralized control more prac-
tical [5? ]. Objections to centralized control, however, are
often not computational but organizational. All subsystems
rely upon the central agent, making plantwide control diffi-
cult to coordinate and maintain. These obstacles deter im-
plementation of centralized control for large-scale plants.

As a middle ground between the decentralized and cen-
tralized strategies, distributed control preserves the topology
and flexibility of decentralized control yet possesses stabil-
ity properties. Stability is achieved by two features: the net-
work interactions between subsystems are explicitly modeled
and open-loop information, usually input trajectories, is ex-
changed between subsystem controllers. Distributed control
strategies differ in the utilization of the open-loop informa-
tion. In noncooperative distributed control each subsystem
controller anticipates the effect of network interactions only
locally [6? ]. These strategies are described as noncoopera-
tive dynamic games [7], and the plantwide performance con-
verges to the Nash equilibrium. If network interactions are
strong, however, noncooperative control can destabilize the
plant and performance may be, in these cases, poorer than
decentralized control [? ].

Alternatively, cooperative distributed control improves per-
formance by requiring each subsystem to consider the ef-
fect of local control actions on all subsystems in the network
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[? ]. Each controller optimizes a plantwide objective func-
tion, e.g., the centralized controller objective. Distributed
optimization algorithms are used to ensure a decrease in
the plantwide objective at each intermediate iterate. Un-
der cooperative control, plantwide performance converges to
the Pareto optimum, providing centralized-like performance.
Because the optimization may be terminated before conver-
gence, cooperative control is a form of suboptimal control for
the plantwide control problem. Hence, stability is deduced
from suboptimal control theory [8].

Other recent work in large-scale control has focused on co-
ordinating an underlying MPC structure. ? ] develop a coor-
dinating MPC that controls the plant variables with the great-
est impact on plant performance, then allow the other de-
centralized controllers to react to the coordinator MPC. In a
series of papers, ? present a controller for networked, non-
linear subsystems [? ? ]. A stabilizing decentralized control
architecture and a control Lyapunov function are assumed to
exist. The performance is improved via a coordinating con-
troller that perturbs the network controller, taking into ac-
count the closed-loop response of the network. ? ] propose
a distributed MPC that relies on a centralized dual optimiza-
tion. This coordinator has the advantage that it can han-
dle coupling dynamics and constraints optimally; however, it
must wait for convergence of the plantwide problem before it
can provide an implementable input trajectory. Cooperative
distributed MPC differs from these methods in that a coordi-
nator is not necessary and suboptimal input trajectories may
be used to stabilize the plant [see ? ].

In this paper, we state and prove the stability properties for
cooperative distributed control under state and output feed-
back. In Section 2, we provide relevant theory for suboptimal
control. Section 3 provides stability theory for cooperative
control under state feedback. For ease of exposition, we in-
troduce the theorems for the case of two controllers only. Sec-
tion 4 extends these results to the output feedback case. The
results are modified to the case of coupled input constraints
in Section 5. We then show how stability extends to the case of
any finite number of controllers. We conclude with an exam-
ple comparing performance of cooperative control with other
plantwide control strategies.

Notation. Given a vector x ∈ Rn the symbol |x| indicates
the Euclidean 2-norm; given a positive scalar r the symbol
Br indicates a closed ball of radius r centered at the ori-
gin, i.e. Br = {x ∈ Rn , |x| ≤ r }. Given two integers, l ≤
m, we define the set I[l ,m] = {l , l + 1, . . . ,m − 1,m}. The set
of positive reals is denoted R+. Given an input sequence
u = {u(0),u(1), . . . ,u(N −1)} ∈RN m and the input constraints
u(k) ∈U, k ∈ I[0,N−1], in whichU is compact, convex, and con-
tains the origin in its interior. To compress notation we use
u ∈U in addition to u ∈UN to indicate that the constraints ap-
ply to each element of the sequence. The symbol ′ indicates
the transpose.

2. Suboptimal Model Predictive Control

In this section, we provide the definitions and theory of
suboptimal MPC necessary for proving stability of coopera-
tive MPC. Waiting for distributed MPC strategies to converge
is equivalent to implementing centralized MPC with the opti-
mization distributed over many processors. These strategies
attain their full impact only when we allow termination prior
to convergence, in which case they behave as a centralized
suboptimal MPC.

We define the current state of the system as x ∈Rn , the tra-
jectory of inputs u = {u(0),u(1), . . . ,u(N −1)} ∈ RN m , and the
state and input at time k as (x(k),u(k)). For the latter, we of-
ten abbreviate the notation to (x,u). Denote the input con-
straints u ∈ U, and denote XN as the set of all x for which
there exists a feasible u. Initialized with a feasible input tra-
jectory ũ, the controller performs p iterations of a feasible
path algorithm and computes u such that some performance
metric is improved. At each sample time, the first input in the
(suboptimal) trajectory is applied, u = u(0). The state is up-
dated by the state evolution equation x+ = f (x,u), in which
x+ is the state at the next iterate.

For any initial state x(0), we initialize the suboptimal
MPC with a feasible input sequence ũ(0) = h(x(0)) with h(·)
continuous. For subsequent decision times, we denote ũ+
as the warm start, a feasible input sequence for x+ used
to initialize the suboptimal MPC algorithm. Here, we set
ũ+ = {u(1), . . . ,u(N −1),0}. This sequence is obtained by dis-
carding the first input, shifting the rest of the sequence for-
ward one step and setting the last input to zero.

We observe that the input sequence at termination u+ is
a function of the state initial condition x+ and of the warm
start ũ+. Noting that x+ and ũ+ are both functions of x and u,
the input sequence u+ can be expressed as a function of only
(x,u) by u+ = g (x,u). We refer to the function g as the iterate
update.

Given a system x+ = f (x), with equilibrium point at the ori-
gin 0 = f (0), denote withφ(k, x(0)) the solution x(k) given the
initial state x(0). We consider the following definition.

Definition 1 (Exponential stability on a set X). The origin is
exponentially stable on the set X if for all x(0) ∈ X, the solu-
tion φ(k, x(0)) ∈ X and there exists α > 0 and 0 < γ < 1 such
that ∣∣φ(k, x(0))

∣∣≤α |x(0)|γk

for all k ≥ 0.

The following lemma is an extension of [8, Theorem 1] for
exponential stability.

Lemma 2 (Exponential stability of suboptimal MPC). Con-
sider a system(

x+
u+

)
=

(
F (x,u)
g (x,u)

)
=

(
f (x,u)
g (x,u)

)
(x(0),u(0)) given (2.1)

with a steady-state solution (0,0) = ( f (0,0), g (0,0)). Assume
that the function V (·) : Rn ×RN m → R+ and input trajectory u
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satisfy

a |(x,u)|2 ≤V (x,u) ≤ b |(x,u)|2 (2.2a)

V (x+,u+)−V (x,u) ≤−c |(x,u(0))|2 (2.2b)

|u| ≤ d |x| x ∈Br (2.2c)

in which a,b,c,d ,r > 0. If XN is forward invariant for the
system x+ = f (x,u), the origin is exponentially stable for all
x(0) ∈XN .

Notice in the second inequality (2.2b), only the first input
appears in the norm |(x,u(0))|2. In the sequel, this norm is
used as a bound for the stage cost. Note also that the last in-
equality applies only for x in a ball of radius r , which may be
chosen arbitrarily small.

Proof of Lemma 2. First we establish the origin of extended
system (2.1) is exponentially stable for all (x(0),u(0)) ∈ XN ×
U. For x ∈Br , we have |u| ≤ d |x|. Consider the optimization

s = max
u∈U

|u|

The solution exists by the Weierstrass theorem since U is
compact and by definition we have that s > 0. Then we have
|u| ≤ (s/r ) |x| for x ∉ Br . Therefore, for all x ∈ XN , we have
|u| ≤ d̄ |x| in which d̄ = max(d , s/r ), and

|(x,u)| ≤ |x|+ |u| ≤ (1+ d̄) |x| ≤ (1+ d̄) |(x,u(0))|

which gives |(x,u(0))| ≥ c̄ |(x,u)| with c̄ = 1/(1+ d̄) > 0. There-
fore the extended state (x,u) satisfies

V (x+,u+)−V (x,u) ≤−c̃ |(x,u)|2 (x,u) ∈XN ×U (2.3)

in which c̃ = c(c̄)2. Together with (2.2), (2.3) establishes that
V (·) is a Lyapunov function of the extended state (x,u) for all
x ∈ XN and u ∈ U. Hence for all (x(0),u(0)) ∈ XN ×U and
k ≥ 0, we have

|(x(k),u(k))| ≤α |(x(0),u(0))|γk

in which α > 0 and 0 < γ < 1. Notice that XN ×U is forward
invariant for the extended system (2.1).

Finally, we remove the input sequence and establish that
the origin is exponentially stable for the closed-loop system
x+ = f (x,u). We have for all x(0) ∈XN and k ≥ 0

|x(k)| ≤|(x(k),u(k))| ≤α |(x(0),u(0))|γk

≤α(|x(0)|+ |u(0)|)γk ≤α(1+ d̄) |x(0)|γk

≤ᾱ |x(0)|γk

in which ᾱ=α(1+ d̄) > 0, and we have established exponen-
tial stability of the origin by observing that XN is forward in-
variant for the closed-loop system x+ = f (x,u).

Remark 1. For Lemma 2, we use the fact that U is compact.
For unboundedU, however, exponential stability may instead
be established by compactness of XN .

3. Cooperative Model Predictive Control

We now show cooperative MPC is a form of suboptimal
MPC and prove stability. To simplify the exposition and
proofs, in Sections 3-5 we assume the plant consists of only
two subsystems. We establish in Section 6, however, that the
results extend to any finite number of subsystems.

3.1. Definitions

3.1.1. Models

We assume for each subsystem i , there exist a collection of
linear models that denote the effect of inputs of subsystem j
on the states of subsystem i for all (i , j ) ∈ I[1,2] × I[1,2]

x+
i j = Ai j xi j +Bi j u j

in which xi j ∈ Rni j , u j ∈ Rm j , Ai j ∈ R(ni j ×ni j ), and Bi j ∈
R(ni j ×m j ). For a discussion of identification of this model
choice, see [9]. Considering subsystem 1, we collect the states
to form[

x11

x12

]+
=

[
A11

A12

][
x11

x12

]
+

[
B11

0

]
u1 +

[
0

B12

]
u2

which denotes the model for subsystem 1. To ease notation,
we define the equivalent model

x+
1 = A1x1 + B̄11u1 + B̄12u2

for which

x1 =
[

x11

x12

]
A1 =

[
A11

A12

]
B̄11 =

[
B11

0

]
B̄12 =

[
0

B12

]

in which x1 ∈ Rn1 , A1 ∈ R(n1×n1), and B̄1 j ∈ R(n1×m j ) with
n1 = n11 +n12. Forming a similar model for subsystem 2, the
plantwide model is[

x1

x2

]+
=

[
A1

A2

][
x1

x2

]
+

[
B̄11

B̄21

]
u1 +

[
B̄12

B̄22

]
u2

We further simplify the plantwide model

x+ = Ax +B1u1 +B2u2

for which

x =
[

x1

x2

]
A =

[
A1

A2

]
B1 =

[
B̄11

B̄21

]
B2 =

[
B̄12

B̄22

]

3.1.2. Objective Functions

Consider subsystem 1, for which we define the quadratic
stage cost and terminal penalty, respectively

`1(x1,u1) = 1

2
(x ′

1Q1x1 +u′
1R1u1) (3.1a)

V1 f (x1) = 1

2
x ′

1P1 f x1 (3.1b)
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in which Q1 = diag(Q11,Q12) ∈ R(n1×n1), R1 ∈ R(m1×m1), and
P1 f ∈ R(n1×n1). We define the objective function for subsys-
tem 1

V1
(
x1(0),u1,u2

)= N−1∑
k=0

`1
(
x1(k),u1(k)

)+V1 f
(
x1(N )

)
Notice V1 is implicitly a function of both u1 and u2 because
x1 is a function of both u1 and u2. For subsystem 2, we simi-
larly define an objective function V2. We define the plantwide
objective function

V
(
x1(0), x2(0),u1,u2

)= ρ1V1
(
x1(0),u1,u2

)+ρ2V2
(
x2(0),u1,u2

)
in which ρ1,ρ2 > 0 are relative weights. For notational sim-
plicity, we write V (x,u) for the plant objective.

3.1.3. Constraints

We require the inputs satisfy

u1(k) ∈U1 u2(k) ∈U2 k ∈ I[0,N−1]

in which U1 and U2 are compact and convex such that 0 is in
the interior of Ui ∀i ∈ I[1,2].

Remark 2. The constraints are termed uncoupled because the
feasible region of u1 is not affected by u2, and vice-versa.

3.1.4. Assumptions

The following assumptions are used to establish stability.

Assumption 3. For all (i , j ) ∈ I[1,2] × I[1,2]

(a) The systems (Ai j ,Bi j ) are stabilizable.
(b) The input penalties Ri > 0.
(c) The state penalties Qi ≥ 0.
(d) The systems (Ai j ,Qi j ) are detectable.
(e) N ≥ max j∈I[1,2] (

∑
i∈I[1,2]

nu
i j ), in which nu

i j is the number of

unstable modes of Ai j , i.e., number of λ ∈ eig(Ai j ) such
that |λ| ≥ 1.

The assumption 3(e) is required so that the horizon N is
sufficiently large to zero the unstable modes.

3.1.5. Unstable Modes

For an unstable plant, we constrain the unstable modes to
zero at the end of the horizon to maintain closed-loop sta-
bility. To construct this constraint, consider the real Schur
decomposition of Ai j for each (i , j ) ∈ I[1,2] × I[1,2]

Ai j =
[

Ss
i j Su

i j

][
As

i j −
Au

i j

][
Ss

i j
′

Su
i j

′

]
(3.2)

in which As
i j is stable and Au

i j has all unstable eigenvalues.

Let Σi j denote the solution of the Lyapunov equation

As
i j

′
Σi j As

i j −Σi j =−Ss
i j

′Qi j Ss
i j (3.3)

3.1.6. Terminal Penalty
Given the definition of the Schur decomposition (3.2), we

define the matrices

Ss
i = diag(Ss

i 1,Ss
i 2) As

i = diag(As
i 1, As

i 2) ∀i ∈ I[1,2] (3.4a)

Su
i = diag(Su

i 1,Su
i 2) Au

i = diag(Au
i 1, Au

i 2) ∀i ∈ I[1,2] (3.4b)

Lemma 4. The matrices (3.4) satisfy the Schur decompositions

Ai =
[
Ss

i Su
i

][
As

i −
Au

i

][
Ss

i
′

Su
i
′
]

∀i ∈ I[1,2]

We further define the matrices

Σi = diag(Σi 1,Σi 2) ∀i ∈ I[1,2] (3.5)

Lemma 5. The matrices (3.5) satisfy the Lyapunov equations

As
1
′
Σ1 As

1 −Σ1 =−Ss
1
′Q1Ss

1 As
2
′
Σ2 As

2 −Σ2 =−Ss
2
′Q2Ss

2

We then choose the terminal penalty for each subsystem to
be the cost to go under zero control, such that

P1 f = Ss
1Σ1Ss

1
′ P2 f = Ss

2Σ2Ss
2
′ (3.6)

3.1.7. Cooperative Model Predictive Control Algorithm
Let υ0 be the initial condition for the cooperative MPC al-

gorithm (see Section 3.2 for the discussion of initialization).
At each iterate p ≥ 0, the following optimization problem is
solved for subsystem i , i ∈ I[1,2]

min
υi

V (x1(0), x2(0),υ1,υ2) (3.7a)

subject to[
x1

x2

]+
=

[
A1

A2

][
x1

x2

]
+

[
B̄11

B̄21

]
υ1 +

[
B̄12

B̄22

]
υ2 (3.7b)

υi ∈Ui (3.7c)

Su
j i
′x j i (N ) = 0 j ∈ I[1,2] (3.7d)

|υi | ≤ di
∑

j∈I[1,2]

∣∣x j i (0)
∣∣ if x j i (0) ∈Br ∀ j ∈ I[1,2] (3.7e)

υ j =υp
j j ∈ I[1,2] \ i (3.7f)

in which we include the hard input constraints, the stabilizing
constraint on the unstable modes, and the Lyapunov stability
constraint. We denote the solutions to these problems as

υ∗1 (x1(0), x2(0),υp
2 ), υ∗2 (x1(0), x2(0),υp

1 )

Given the prior, feasible iterate (υp
1 ,υp

2 ), the next iterate is de-
fined to be

(υp+1
1 ,υp+1

2 ) = w1

(
υ∗1 (υp

2 ),υp
2

)
+w2

(
υ

p
1 ,υ∗2 (υp

1 )
)

(3.8)

w1 +w2 = 1, w1, w2 > 0

for which we omit the state dependence of υ∗1 and υ∗2 to re-
duce notation. This distributed optimization is of the Gauss-
Jacobi type [see ? , pp.219–223]. At the last iterate p̄, we set

u ← (υp̄
1 ,υp̄

2 ) and inject u(0) into the plant.
The following properties follow immediately.
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Lemma 6 (Feasibility). Given a feasible initial guess, the iter-
ates satisfy

(υp
1 ,υp

2 ) ∈U1 ×U2

for all p ≥ 1.

Lemma 7 (Convergence). The cost V (x(0),υp ) is nonincreas-
ing for each iterate p and converges as p →∞.

Lemma 8 (Optimality). As p → ∞ the cost V (x(0),υp ) con-
verges to the optimal value V 0(x(0)), and the iterates (υp

1 ,υp
2 )

converge to (u0
1,u0

2) in which u0 = (u0
1,u0

2) is the Pareto (cen-
tralized) optimal solution.

See proofs in Appendix.

Remark 3. This paper presents the distributed optimization
algorithm with subproblem (3.7) and iterate update (3.8) so
that the Lemmas 6–8 are satisfied. This choice, however, is
nonunique and other optimization methods may exist satis-
fying these properties.

3.2. Stability of Cooperative Model Predictive Control

We define the steerable set XN as the set of all x such that
there exists a u ∈U satisfying (3.7d).

Assumption 9. Given r > 0, for all i ∈ I[1,2], di is cho-
sen large enough such that there exists a ui ∈ U satisfying
|ui | ≤ di

∑
j∈I[1,2]

∣∣xi j
∣∣ and (3.7d) for all xi j ∈Br ∀ j ∈ I[1,2].

Remark 4. Given Assumption 9, XN is forward invariant.

We now show the stability of the closed-loop system by
treating cooperative MPC as a form of suboptimal MPC. We
define the warm start for each subsystem as

ũ+
1 = {u1(1),u1(2), . . . ,u1(N −1),0}

ũ+
2 = {u2(1),u2(2), . . . ,u2(N −1),0}

The warm start ũ+
i is used as the initial condition for the co-

operative MPC problem in each subsystem i . We define the
functions g p

1 and g p
2 as the outcome of applying the cooper-

ative control iteration (3.8) p times

u+
1 = g p

1 (x1, x2,u1,u2) u+
2 = g p

2 (x1, x2,u1,u2)

The system evolution is then given by
x+

1
x+

2
u+

1
u+

2

=


A1x1 + B̄11u1 + B̄12u2

A2x2 + B̄21u1 + B̄22u2

g p
1 (x1, x2,u1,u2)

g p
2 (x1, x2,u1,u2)


for which we simplify into(

x+
u+

)
=

(
Ax +B1u1 +B2u2

g p (x,u)

)
Theorem 10 (Exponential stability). Given Assumptions 3
and 9, the origin (x = 0) of the closed-loop system x+ = Ax +
B1u1 +B2u2 is exponentially stable on the set XN .

Proof. First we show that V (·) satisfies (2.2a). By the
definition of `i (·), we can write V (x,u) in the form
|A x|2Q + |Bu|2R by eliminating the states in V (·).
Defining H = diag(A ′QA ,B′RB) > 0, and choosing
a = mini (λi (H )) and b = maxi (λi (H )) satisfies (2.2a). Next
we show V (·) satisfies (2.2b). Using the warm start at the next
sample time, we have the following cost

V (x+, ũ+) =V (x,u)−ρ1`1(x1,u1)−ρ2`2(x2,u2)

+1

2
ρ1x1(N )′

(
A′

1P1 f A1 −P1 f +Q1

)
x1(N ) (3.9)

+1

2
ρ2x2(N )′

(
A′

2P2 f A2 −P2 f +Q2

)
x2(N )

Using the Schur decomposition defined in Lemma 4, the con-
straints (3.7d) and (3.6), the last two terms of (3.2) can be writ-
ten as

1

2
ρ1x1(N )′Ss

1

(
As

1
′
Σ1 As

1 −Σ1 +Ss
1
′Q1Ss

1

)
Ss

1
′x1(N )

+1

2
ρ2x2(N )′Ss

2

(
As

2
′
Σ2 As

2 −Σ2 +Ss
2
′Q2Ss

2

)
Ss

2
′x2(N ) = 0

These terms are zero because of Lemma 5. Using this result
and applying the iteration of the controllers gives

V (x+,u+) ≤V (x,u)−ρ1`1(x1,u1)−ρ2`2(x2,u2)

Because `i is quadratic in both arguments, there exists a c > 0
such that

V (x+,u+)−V (x,u) ≤−c |(x,u)|2

The Lyapunov stability constraint (3.7e) for
x11, x12, x21, x22 ∈Br implies for (x1, x2) ∈ Br that
|(u1,u2)| ≤ 2d̂ |(x1, x2)| in which d̂ = max(d1,d2), satis-
fying (2.2c). Therefore the closed-loop system satisfies
Lemma 2. Hence the closed-loop system is exponentially
stable.

4. Output Feedback

We now consider the stability of the closed-loop system
with estimator error.

4.1. Models

For all (i , j ) ∈ I[1,2] × I[1,2]

x+
i j = Ai j xi j +Bi j u j (4.1a)

yi =
∑

j∈I[1,2]

Ci j xi j (4.1b)

in which yi ∈ Rpi is the output of subsystem i and Ci j ∈
R(pi×ni j ). Consider subsystem 1. As above, we collect the
states to form y1 = [C11 C12]

[ x11
x12

]
and use the simplified no-

tation y1 =C1x1 to form the output model for subsystem 1.

Assumption 11. For all (i , j ) ∈ I[1,2] × I[1,2], (Ai j ,Ci j ) is de-
tectable.
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4.2. Estimator

We construct a decentralized estimator. Consider subsys-
tem 1, for which the local measurement y1 and both inputs
u1 and u2 are available but for which x1 must be estimated

x̂+
1 = A1x̂1 + B̄11u1 + B̄12u2 +L1(y1 −C1x̂1)

in which x̂1 is the estimate of x1 and L1 is the Kalman fil-
ter gain. Defining the estimate error as e1 = x1 − x̂1 we have
e+1 = (A1 −L1C1)e1.

Proposition 12. For each i ∈ I[1,2], (Ai ,Ci ) is detectable if and
only if for each j ∈ I[1,2] (Ai j ,Ci j ) is detectable.

Proof. The proof follows from the definition of Ai and Ci and
the Hautus lemma.

By Assumptions 3 and 11 with Proposition 12 there exists
an L1 such that (A1−L1C1) is stable and therefore the estima-
tor for subsystem 1 is stable. Defining e2 similarly, the esti-
mate error for the plant evolves[

e1

e2

]+
=

[
AL1

AL2

][
e1

e2

]
in which ALi = Ai −Li Ci . We collect the estimate error of each
subsystem together and write e+ = ALe.

4.3. Stability with Estimate Error

We consider the stability properties of the extended closed-
loop system x̂

u
e

+

=
F (x̂,u)+Le

g p (x̂,u)
ALe

 (4.2)

in which F (x̂,u) = Ax̂+B1u1+B2u2 and L = diag(L1C1,L2C2).
Because AL is stable there exists a Lyapunov function J (·) with
the following properties

ā |e|σ ≤J (e) ≤ b̄ |e|σ
J (e+)−J (e) ≤−c̄ |e|σ

in which σ > 0, ā, b̄ > 0, and the constant c̄ > 0 can be cho-
sen as large as desired by scaling J (·). For the remainder of
this section, we choose σ= 1 in order to match the Lipschitz
continuity of the plantwide objective function V (·). From
the nominal properties of cooperative MPC, the origin of the
nominal closed-loop system x+ = Ax + B1u1 + B2u2 is ex-
ponentially stable on XN if the suboptimal input trajectory
u = (u1,u2) is computed using the actual state x, and the cost
function V (x,u) satisfies (2.2). We require the following feasi-
bility assumption.

Assumption 13. The set XN is compact, and there exist two
sets X̂N and E containing the origin such that the follow-
ing conditions hold: (i) X̂N ⊕ E ⊆ XN , where ⊕ indicates
the Minkowski sum; (ii) for each x̂(0) ∈ X̂N and ê(0) ∈ E ,
the solution of the extended closed-loop system (4.2) satisfies
x̂(k) ∈XN for all k ≥ 0.

Consider the sum of the two Lyapunov functions

W (x̂,u,e) =V (x̂,u)+ J (e)

We next show that W (·) is a Lyapunov for the perturbed sys-
tem and establish exponential stability of the extended state
origin (x̂,e) = (0,0). From the definition of W (·) we have

a |(x̂,u)|2 + ā |e| ≤W (x̂,u,e) ≤ b |(x̂,u)|2 + b̄ |e| =⇒
ã(|(x̂,u)|2 +|e|) ≤W (x̂,u,e) ≤ b̃(|(x̂,u)|2 +|e|) (4.3)

in which ã = min(a, ā) > 0 and b̃ = max(b, b̄) > 0. Next we
compute the cost change

W (x̂+,u+,e+)−W (x̂,u,e) =V (x̂+,u+)−V (x̂,u)+ J (e+)− J (e)

The Lyapunov function V is quadratic in (x̂,u) and, hence,
Lipschitz continuous on bounded sets. Therefore we have∣∣V (F (x̂,u)+Le,u+)−V (F (x̂,u),u+)

∣∣≤ LV |Le|

in which LV is the Lipschitz constant for V with respect to its
first argument. Using the system evolution we have

V (x̂+,u+) ≤V (F (x̂,u),u+)+ L̄V |e|

in which L̄V = LV |L|. Subtracting V (x̂,u) from both sides
gives

V (x̂+,u+)−V (x̂,u) ≤−c |(x̂,u(0))|2 + L̄V |e|
W (x̂+,u+,e+)−W (x̂,u,e) ≤−c |(x̂,u(0))|2 + L̄V |e|− c̄ |e|

≤ −c |(x̂,u(0))|2 − (c̄ − L̄V ) |e|
W (x̂+,u+,e+)−W (x̂,u,e) ≤−c̃(|(x̂,u(0))|2 +|e|) (4.4)

in which we choose c̄ > L̄V and c̃ = min(c, c̄ − L̄V ) > 0. This
choice is possible because c̄ can be chosen arbitrarily large.
Notice this step is what motivated the choice of σ= 1. Lastly,
we require the constraint

|u| ≤ d |x̂| , x̂ ∈Br (4.5)

Theorem 14 (Exponential stability of perturbed system).
Given Assumptions 3, 11, 13, for each x̂(0) ∈ X̂N and e(0) ∈ E ,
there exist constantsα> 0 and 0 < γ< 1, such that the solution
of the perturbed system (4.2) satisfies, for all k ≥ 0

|(x̂(k),e(k)| ≤α|(x̂(0),e(0)|γk (4.6)

Proof. Using the same arguments as for Lemma 2, we write:

W (x̂+,u+,e+)−W (x̂,u,e) ≤−ĉ(|(x̂,u)|2 +|e|) (4.7)

in which ĉ ≥ c̃ > 0. Therefore W (·) is a Lyapunov func-
tion for the extended state (x̂,u,e) with mixed norm powers.
The standard exponential stability argument can be extended
for the mixed norm power case to show that the origin of
the extended closed-loop system (4.2) is exponentially stable,
hence, for all k ≥ 0

|(x̂(k),u(k),e(k))| ≤ α̃ |(x̂(0),u(0),e(0))|γk
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in which α̃ > 0 and 0 < γ < 1. Notice that Assumption 13 im-
plies that u(k) exists for all k ≥ 0 because x̂(k) ∈XN .

We have, using the same arguments used in Lemma 2

|(x̂(k),e(k))| ≤ |(x̂(k),u(k),e(k))| ≤ α̃ |(x̂(0),u(0),e(0))|γk

≤α |(x̂(0),e(0))|γk

in which α= α̃(1+ d̄) > 0.

Corollary 15. Under the Assumptions of Theorem 14, for each
x(0) and x̂(0) such that e(0) = x(0)− x̂(0) ∈ E and x̂(0) ∈ X̂N ,
the solution of the closed-loop state x(k) = x̂(k)+e(k) satisfies:

|x(k)| ≤ ᾱ|x(0)|γk (4.8)

for some ᾱ> 0 and 0 < γ< 1.

5. Coupled Constraints

In Remark 2, we commented that the constraint assump-
tions imply uncoupled constraints, because each input is
constrained by a separate feasible region so that the full fea-
sible space is defined (u1,u2) ∈U=U1×U2. This assumption,
however, is not always practical. Consider two subsystems
sharing a scarce resource for which we control the distribu-
tion. There then exists an availability constraint spanning the
subsystems. This constraint is coupled because each local re-
source constraint depends upon the amount requested by the
other subsystem.

Remark 5. For plants with coupled constraints, implement-
ing MPC problem (3.7) gives exponentially stable, yet subop-
timal, feedback.

In this section, we relax the assumption so that (u1,u2) ∈
U for any U compact, convex and containing the origin in
its interior. Consider the decomposition of the inputs u =
(uU 1,uU 2,uC ) such that there exists a UU 1,UU 2, and UC for
which

U=UU 1 ×UU 2 ×UC

and

uU 1 ∈UU 1, uU 2 ∈UU 2, uC ∈UC

for which UU 1, UU 2, and UC are compact and convex. We de-
note uUi the uncoupled inputs for subsystem i , i ∈ I[1,2], and
uC the coupled inputs.

Remark 6. UU 1,UU 2, orUC may be empty, and therefore such
a decomposition always exists.

We modify the cooperative MPC problem (3.7) for the
above decomposition. Define the augmented inputs (û1, û2)

û1 = E1

uU 1

uU 2

uC

 û2 = E2

uU 1

uU 2

uC



in which

E1 =
[

I 0 0
0 0 I

]
E2 =

[
0 I 0
0 0 I

]
Define the augmented objective function

V̂ (x1(0), x2(0), û1, û2) =V (x1(0), x2(0), Ê1û1, Ê2û2) (5.1)

in which

u1 = Ê1û1 u2 = Ê2û2

Ê1 =
[

I
I1

]
Ê2 =

[
I

I2

]
in which (I1, I2) are diagonal matrices with either 0 or 1 diag-
onal entries and satisfy I1 + I2 = I . For simplicity, we summa-
rize the previous relations as u = Ê û with Ê = diag(Ê1, Ê2). We
solve the augmented cooperative MPC problem for i ∈ I[1,2]

min
υ̂i

V̂ (x1(0), x2(0), υ̂1, υ̂2) (5.2a)

subject to

[
x1

x2

]+
=

[
A1

A2

][
x1

x2

]
+

[
B̄11

B̄21

]
Ê1υ̂1 +

[
B̄12

B̄22

]
Ê2υ̂2 (5.2b)

υ̂i ∈UUi ×UC (5.2c)

Su
j i
′x j i (N ) = 0 j ∈ I[1,2] (5.2d)

|υ̂i | ≤ di |xi (0)| if xi (0) ∈Br (5.2e)

υ̂ j = υ̂p
j j ∈ I[1,2] \ i (5.2f)

The update (3.8) is used to determine the next iterate.

Lemma 16. As p → ∞ the cost V̂ (x(0), υ̂p ) converges to the
optimal value V 0(x(0)), and the iterates (Ê1υ̂

p
1 , Ê2υ̂

p
2 ) converge

to the Pareto optimal centralized solution u0 = (u0
1,u0

2).

Therefore, problem (5.2) gives optimal feedback and may
be used for plants with coupled constraints.

6. M Subsystems

In this section, we show that the stability theory of cooper-
ative control extends to any finite M > 0 number of subsys-
tems.

For M subsystems, the plantwide variables are defined

x =


x1

x2
...

xM

 u =


u1

u2
...

uM

 Bi =


B̄1i

B̄2i
...

B̄Mi

 ∀i ∈ I[1,M ]

V (x,u) = ∑
i∈I[1,M ]

ρi Vi (xi ,ui ) A = diag(A1, . . . , AM )
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Each subsystem solves the optimization

min
υi

V (x(0),υ)

subject to

x+ = Ax + ∑
i∈I[1,M ]

Biυi

υi ∈Ui

Su
j i
′x j i (N ) = 0 j ∈ I[1,M ]

|υi | ≤ di
∑

j∈I[1,M ]

∣∣x j i (0)
∣∣ if x j i (0) ∈Br j ∈ I[1,M ]

υ j =υp
j j ∈ I[1,M ] \ i

The controller iteration is given by

υp+1 = ∑
i∈I[1,M ]

wi (υp
1 , . . . ,υ∗i , . . . ,υp

M )

in which υ∗i =υ∗i
(
x(0),υp

j | j ∈ I[1,M ] \ i
)
. After p̄ iterates, we set

u ←υp̄ and inject u(0) into the plant.
The warm start is generated by purely local information

ũ+
i = {ui (1),ui (2), . . . ,ui (N −1),0} ∀i ∈ I[1,M ]

The plantwide cost function then satisfies for any p̄ ≥ 0

V (x+,u+) ≤V (x,u)− ∑
i∈I[1,M ]

ρi`i (xi ,ui )

|u| ≤d |x| x ∈Br

Generalizing Assumption 3 to all (i , j ) ∈ I[1,M ] × I[1,M ], we find
that Theorem 10 applies and cooperative MPC of M subsys-
tems is exponentially stable.

Moreover, expressing the M subsystem outputs as

yi =
∑

j∈I[1,M ]

Ci j xi j i ∈ I[1,M ]

and generalizing Assumption 11 for (i , j ) ∈ I[1,M ] × I[1,M ], co-
operative MPC for M subsystems satisfies Theorem 14. Fi-
nally, for systems with coupled constraints, we can decom-
pose the feasible space such that U = (

∏
i∈I[1,M ]

UUi ) ×UC .
Hence, the input augmentation scheme of Section 5 is ap-
plicable to plants of M subsystems. Notice that, in general,
this approach may lead to augmented inputs for each sub-
system that are larger than strictly necessary to achieve opti-
mal control. The most parsimonious augmentation scheme
is described elsewhere [10].

7. Example

Consider a plant consisting entirely of three tanks con-
nected in series through material flow. A pipe empties into
the first tank, and the effluent of the last tank is split and
partly redirected to the first tank (see Figure 1). The models

F1 F2 F3 D

R

H1 H2 H3

F0

Figure 1: Three tanks in series with recycle.

for the tanks are

d H1

d t
= 1

S1
(F0 +R −F1)

d H2

d t
= 1

S2
(F1 −F2)

d H3

d t
= 1

S3
(F2 −F3)

R =αF3

in which Si is the cross-sectional area of tank i and α is the
fraction of F3 recycled. All steady-state flows satisfy the equa-
tions

F1 = F0

1−α
F2 = F1

F3 = F2

Given a inlet flow of F0 = 10 with α= 0.5, we have the steady-
state flows F s

1 = F s
2 = F s

3 = 20. The steady-state heights are any
H s

1 = H s
2 = H s

3 = H̄ s . Here, we choose H̄ s = 10. Defining devi-
ation variables around this steady state and transforming it
into discrete time we summarize this model as

x+ = Ax +Bu (7.1)

y =C x

in which

x =
H1 −H s

1
H2 −H s

2
H3 −H s

3

 u =
F1 −F s

1
F2 −F s

2
F3 −F s

3

 y =
H1 −H s

1
H2 −H s

2
H3 −H s

3



A =
1

1
1

 B =

−
∆
S1

α ∆
S1

∆
S2

− ∆
S2
∆
S3

− ∆
S3

 C =
1

1
1



Notice the system is composed completely of integrating
modes, i.e., |λ| = 1 for all λ ∈ eig(A).

7.1. Distributed control

One distributed control strategy is to control each of the
tanks independently. We select the pairing (yi ,ui ) = (Hi ,Fi ),
and construct a model of the form (4.1). Consider the dis-
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Table 1: Performance comparison

Cost Performance loss (%)
Centralized MPC 210.38 0.00
Cooperative MPC (10 iterations) 213.92 1.69
Cooperative MPC (1 iteration) 229.06 8.88
Noncooperative MPC 252.00 19.78
Decentralized MPC 274.51 30.48

tributed modelx11
x12
x13

+
=

1
0

1

x11
x12
x13

+

−
∆
S1

0
α ∆

S1


u1

u2
u3



y1 = [
1 0 1

]x11
x12
x13


x21

x22
x23

+
=

1
1

0

x21
x22
x23

+


∆
S2

− ∆
S2

0


u1

u2
u3

 (7.2)

y2 = [
1 1 0

]x21
x22
x23


x31

x32
x33

+
=

0
1

1

x31
x32
x33

+

0
∆
S3

− ∆
S3


u1

u2
u3



y3 = [
0 1 1

]x31
x32
x33


in which A12, A23, and A31 are zero and satisfy the stabiliz-
ability and detectability assumptions.

Remark 7. Given the initial condition xi j (0) = Hi (0) − H s
i

∀i , j ∈ I[1,3] × I[1,3], the models (7.1) and (7.2) have the same
input/output behavior, i.e., the response of height Hi to flow
F j for all i , j ∈ I[1,3] × I[1,3].

Therefore model (7.2) is an adequate model for implemen-
tation in distributed control.

7.2. Simulation

Consider the performance of distributed control of model
(7.2). We choose the parameters S1 = S2 = S3 = 1 and a sam-
ple time ∆= 0.1. The tuning parameters are specified

Qi =C ′
i Ci +0.001I Ri = I ∀i ∈ I[1,3]

The inputs have been constrained so that there is no negative
flow, i.e., Fi −F s

i ≥ 5 for all i ∈ I[1,3]. We simulate a setpoint
change in all of the tanks at t = 5 so that all levels should
increase 5 units. In Figure 2, the performance of the dis-
tributed control strategies are compared to the centralized
control benchmark. For this example, noncooperative con-
trol is an improvement over decentralized control (see Ta-
ble 1). Cooperative control with only a single iteration is sig-
nificantly better than noncooperative control, however, and
approaches centralized control as more iteration is allowed.

10

11

12

13

14

15

0 5 10 15 20 25 30

H1

Time

Optimal target

Cent

Decent

Noncoop

Coop (1 iter)

0

1

2

3

4

5

0 5 10 15 20 25 30

F1

Time

Cent

Decent

Noncoop

Coop (1 iter)

Figure 2: Performance of three tanks simulation. First tank input and output
are shown. All tanks perform similarly.

8. Conclusion

In this paper we present a novel cooperative controller in
which the subsystem controllers optimize the same objec-
tive function in parallel without the use of a coordinator. The
control algorithm is equivalent to a suboptimal centralized
controller, allowing the distributed optimization to be termi-
nated at any iterate before convergence. At convergence, the
feedback is Pareto optimal. We show exponential stability for
the nominal case and for perturbation by a stable state esti-
mator. For plants with sparsely coupled constraints, the con-
troller can be extended by repartitioning the decision vari-
ables to maintain Pareto optimality.

We make no restrictions on the strength of the dynamic
coupling in the network of subsystems, offering flexibility in
plantwide control design. Moreover, the cooperative con-
troller can improve performance of plants over traditional
decentralized control and noncooperative control, especially
for plants with strong open-loop interactions between sub-
systems. A simple example is given showing this performance
improvement.
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A. Further Proofs

Proof of Lemma 6. By assumption, the initial guess is feasi-
ble. Because U1 and U2 are convex, the convex combination
(3.8) with p = 0 implies (υ1

1,υ1
2) is feasible. Feasibility for p > 1

follows by induction.

Proof of Lemma 7. For every p ≥ 0, the cost function satisfies
the following

V (x(0),υp+1) =V (x(0), w1(υ∗1 ,υp
2 )+w2(υp

1 ,υ∗2 ))

≤ w1V (x(0), (υ∗1 ,υp
2 ))+w2V (x(0), (υp

1 ,υ∗2 )) (A.1a)

≤ w1V (x(0), (υp
1 ,υp

2 ))+w2V (x(0), (υp
1 ,υp

2 )) (A.1b)

≤V (x(0),υp )

The first equality follows from (3.8). The inequality (A.1a) fol-
lows from convexity of V (·). The next inequality (A.1b) follows
from the optimality of υ∗i ∀i ∈ I[1,2], and the final line follows
from w1 +w2 = 1. Because the cost is bounded below, it con-
verges.

Proof of Lemma 8. We give a proof that requires only closed-
ness (not compactness) of Ui , i ∈ I[1,2]. From Lemma 7, the
cost converges, say to V. Since V is quadratic and strongly
convex, its sublevel sets lev≤a(V ) are compact and bounded
for all a. Hence, all iterates belong to the compact set
lev≤V (υ0)(V )∩U, so there is at least one accumulation point.
Let ῡ be any such accumulation point, and choose a subse-
quence P ⊂ {1,2,3, . . . } such that {υp }p∈P converges to ῡ. We
obviously have that V (x(0), ῡ) = V, and moreover that

lim
p∈P , p→∞

V (x(0),υp ) = lim
p∈P , p→∞

V (x(0),υp+1) = V (A.2)

By strong convexity of V and compactness of Ui , i ∈ I[1,2],
the minimizer of V (x(0), ·) is attained at a unique point u0 =
(u0

1,u0
2). By taking limits in (A.1) as p →∞ for p ∈P , and us-

ing w1 > 0, w2 > 0, we can deduce easily that

lim
p∈P , p→∞

V (x(0), (υ∗1 (υp
2 ),υp

2 )) = V (A.3a)

lim
p∈P , p→∞

V (x(0), (υp
1 ,υ∗2 (υp

1 ))) = V (A.3b)

We suppose for contradiction that V 6=V (x(0),u0) and thus
ῡ 6= u0. Because V (x(0), ·) is convex, we have

∇V (x(0), ῡ)′(u0 − ῡ) ≤∆V :=V (x(0),u0)−V (x(0), ῡ) < 0

where ∇V (x(0), ·) denotes the gradient of V (x(0), ·). It follows
immediately that either

∇V (x(0), ῡ)′
[

u0
1 − ῡ1

0

]
≤ (1/2)∆V or (A.4a)

∇V (x(0), ῡ)′
[

0
u0

2 − ῡ2

]
≤ (1/2)∆V (A.4b)

Suppose first that (A.4a) holds. Using the fact that V is
quadratic, we have that

V (x(0), (υp
1 +ε(u0

1 −υp
1 ),υp

2 ))

=V (x(0),υp )+ε∇V (x(0),υp )′
[

u0
1 −υ

p
1

0

]
+ 1

2
ε2

[
u0

1 −υ
p
1

0

]′
∇2V (x(0),υp )

[
u0

1 −υ
p
1

0

]
≤V+ (1/4)ε∆V +βε2 (A.5)

for all p ∈ P sufficiently large, for some β independent of ε
and p. By fixing ε to a suitably small value (certainly less than
1), we have both that the right-hand side of (A.5) is strictly
less than V and that υp

1 + ε(u0
1 −υ

p
1 ) ∈ U1. By taking limits in

(A.5) and using (A.3) and the fact that υ∗1 (υp
2 ) is optimal for

V (x(0), (·,υp
2 )) in U1, we have

V = lim
p∈P , p→∞

V (x(0), (υ∗1 (υp
2 ),υp

2 ))

≤ lim
p∈P , p→∞

V (x(0), (υp
1 +ε(u0

1 −υp
1 ),υp

2 ))

<V

giving a contradiction. By identical logic, we obtain the same
contradiction from (A.4b). We conclude that V = V (x(0),u0)
and thus ῡ= u0. Since ῡwas an arbitrary accumulation point
of the sequence {υp }, and since this sequence is confined to a
compact set, we conclude that the whole sequence converges
to u0.

Proof of Corollary 15. We first note that: |x(k)| ≤ |x̂(k)| +
|e(k)| ≤p

2|(x̂(k),e(k))|. From Theorem 14 we can write:

|x(k)| ≤p
2α |(x̂(0),e(0))|γk ≤ ᾱ |x̂(0)+e(0)|γk

with ᾱ = p
2α, which concludes the proof by noticing that

x(0) = x̂(0)+e(0).

10



Proof of Lemma 16. Because V̂ (·) is convex and bounded be-
low, the proof follows from Lemma 8 and from noticing that
the point u0 = (Ê1û0

1, Ê2û0
2), with û0

i = limp→∞ υ̂i , i ∈ I[1,2], is
Pareto optimal.

11
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