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Abstract. Model predictive control requires the solution of a sequence of continuous optimization problems that
are nonlinear if a nonlinear model is used for the plant. We describe briefly a trust-region feasibility-perturbed
sequential quadratic programming algorithm (developed in a companion report), then discuss its adaptation to
the problems arising in nonlinear model predictive control. Computational experience with several representative
sample problems is described, demonstrating the effectiveness of the proposed approach.
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1. Introduction

Model predictive control (MPC), also referred to as receding-horizon control, is a method
that applies on-line optimization to a model of a system, with the aim of steering the system
to a desired target state. In recent years, MPC has become a prominent advanced control
technique, especially in the chemical process industry. However, for computational reasons,
MPC applications largely have been limited to linear models; that is, those in which the
dynamics of the system model are linear. Such models often do not capture the dynamics
of the system adequately, especially in regions that are not close to the target state. In
these cases, nonlinear models are necessary to describe accurately the behavior of physical
systems.

From an algorithmic point of view, nonlinear model predictive control requires the re-
peated solution of nonlinear optimal control problems. At certain times during the control
period, the state of the system is estimated, and an optimal control problem is solved over a
finite time horizon (commencing at the present time), using this state estimate as the initial
state. The control component at the current time is used as the input to the system. Algo-
rithms for nonlinear optimal control, which are often specialized nonlinear programming
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algorithms, can therefore be used in the context of nonlinear model predictive control, with
the additional imperatives that the problem must be solved in “real time,” and that good
estimates of the solution may be available from the state and control profiles obtained at
the previous timepoint.

The linear MPC problem is well studied from an optimization standpoint. It gives rise to a
sequence of optimal control problems with quadratic objectives and linear dynamics, which
can be viewed as structured convex quadratic programming problems. These problems can
be solved efficiently by algorithms that exploit the structure. For example, an interior-point
method that uses a recursive relation to solve the linear systems at each iteration has been
described by Rao et al. [26]. The nonlinear MPC problem has been less widely studied, and
is a topic of recent interest.

Albuquerque et al. [1] have used a sequential quadratic programming (SQP) approach,
using a primal-dual interior-point method to solve the quadratic programming subprob-
lems. They used a general-purpose solver for sparse symmetric indefinite systems to solve
the linear systems arising at each interior-point iteration, together with finite-difference
methods to estimate the Hessian terms. They assumed that a good solution estimate was
available for each nonlinear problem, so the algorithm contains no techniques to ensure
global convergence. An example shows that a large application can be controlled success-
fully with their approach, in that the optimal control problem can be solved in the interval
between changes to the system inputs. Later work of Bartlett et al. [2] describes the use
of active-set quadratic programming solvers as possible alternatives to the interior-point
solvers of [1], and concludes that for problems with few degrees of freedom, the active-set
approach may be more efficient. Cervantes et al. [9] described application of an interior-
point method directly to the nonlinear optimal control formulation, of the type that has
recently been proposed for general nonlinear programming problems. This method gener-
ates steps by applying a modified SQP method to a barrier-function reformulation of the
nonlinear program, and also makes use of a line search, a merit function, and reduced-space
quasi-Newton Hessian approximations. Biegler et al. [5] modify this approach by using a
preconditioned conjugate gradient approach to solve the linear equations, allowing them
to use finite-difference approximations to the exact Hessian-vector products in place of the
explicit quasi-Newton reduced Hessian approximations. Rather than a single merit function,
they also use a “filter” criterion to select the line search parameter, an approach that has
been the subject of much recent (practical and theoretical) investigation in the context of
general nonlinear programming. The recent thesis of Martinsen [21] describes a reduced-
space SQP approach modified to include features of the FSQP approach of Lawrence and
Tits [18], which is based on line searches and on maintenance of feasibility with respect to
the inequality constraints at every step. (Equality constraints may be violated by the iterates,
and are handled via a penalty term.)

Diehl et al. [11] consider the solution of the nonlinear optimal control problem in the
specific context of nonlinear MPC. An SQP framework is used, with the Hessians in the
quadratic program being either the Hessian of the objective function in the nonlinear MPC
problem, or a partitioned quasi-Newton approximation introduced by Bock and Plitt [7].
A line search approach based on a nonsmooth penalty function is used to ensure global
convergence; additional details are given in Leineweber et al. [19]. Their method also



NONLINEAR MODEL PREDICTIVE CONTROL 89

include an “initial value embedding” strategy, in which approximate derivative information
(based on the previous iteration, or a reference trajectory) is used to generate the first SQP
step cheaply at each new timepoint.

The works described above have a number of common features. First, they use multiple-
shooting or collocation techniques to formulate the underlying continuous-time problem as
a problem with finitely many variables that is suitable for solution by structured nonlinear
programming techniques. Second, their iterates consist of both control variables and state
variables, which are not required to be consistent with respect to the state dynamics. (In
the language of nonlinear programming, the iterates are infeasible.) This “simultaneous”
approach is known to have advantages in terms of stability; open-loop unstable systems
have been observed to give rise to instability in algorithmic approaches that use the model
equation to eliminate the states to produce a formulation involving only the control variables.
As a result of the infeasible iterates, these algorithms construct a merit function (typically
based on the objective function value and the sum of constraint violations) to assess the
worth of different points, or else use a filter approach based on the objective function and
constraint violations separately. Third, the methods typically use a line search approach to
curtail steps that appear to be unacceptable.

In this paper, we describe an approach that differs from those above in two fundamental
ways. First, it computes iterates containing both state and control components, but perturbs
these to retain feasibility with respect to the constraints at every iteration. Second, it replaces
the line-search globalization approach with a scaled trust-region approach. The algorithm
is essentially the feasibility-perturbed SQP method described by Wright and Tenny [28],
adapted to the nonlinear MPC context. The quadratic programming subproblems are solved
by using the specialized interior-point approach described in [26].

By retaining feasibility of all iterates, the algorithm gains several significant advan-
tages. First, the objective function can be used as a merit function, greatly simplifying
the description of the algorithm. Algorithms that allow infeasible iterates must construct
a merit function from some combination of objective function, constraint infeasibilities,
Lagrange multiplier estimates, and various parameters. Since we insist on consistency
of the model equation at every iteration, it may be objected that we run the risk of en-
countering the stability problems that attend the inputs-only formulation. However, by
using a change of variables within the feasibility perturbation strategy, we avoid such
problems. A second advantage of the feasible approach is that the latest iterate can be
used as a (suboptimal) feasible solution, if it is necessary to terminate the solution pro-
cess early. Third, feasibility may allow a more natural formulation of the problem than
may be needed when infeasible iterates are allowed. For example, when one of the states
is a concentration of a chemical, a naturally nonnegative variable, algorithms that allow
infeasible points may allow (nonphysical) negative values of this variable to be consid-
ered at some iterations, leading to unpredictable behavior of the algorithm. This may be
remedied by introducing an additional nonnegativity constraint and insisting on feasibility
with respect to this constraint, or by a change of variables. A feasible-point algorithm,
on the other hand, will not produce nonphysical values of this variable at any iteration,
hence allowing a more natural formulation and obviating any additional nonnegativity
constraints.
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Our computational experience also shows that our algorithm requires fewer iterates than
other SQP-type approaches on a wide range of problems. We believe this performance is due
in large part to the retention of feasibility, and the avoidance of unpredictable algorithmic
behavior that comes with allowing infeasible points.

We note that other features of the approach of Diehl et al. [11] that are specific to the
nonlinear MPC context, including the initial-value embedding, can also be incorporated
into our approach. We omit further discussion of these issues, however, and focus on the
solution of the nonlinear optimal control problem that arises at each timepoint.

An earlier version of the algorithm of this paper was applied to a copolymerization reactor
by Tenny et al. [27]. Because of the analysis in companion work [28], the algorithm is now
on a more solid footing. We also add several enhancements, including the use of a stabilizing
change of variables during the feasibility perturbation stage and the choice of a trust region
scaling matrix.

The remainder of the paper is structured as follows. In Section 2, we describe briefly
the feasibility-perturbed SQP algorithm, Algorithm FP-SQP, of Wright and Tenny [28].
Section 3 introduces our formulation of the nonlinear MPC problem we solve, while the SQP
subproblem arising from this formulation is presented in Section 4. The specific elements
of Algorithm FP-SQP are presented in the subsequent sections. Section 5 describes the
perturbation technique used to maintain feasibility of the iterates. Section 6 presents the
various Hessian approximations that can be used in the SQP subproblem. Our trust-region
scaling matrix for the NMPC problem is derived in Section 7. Finally, Section 8 contains
computational results on a variety of nonlinear control models.

2. The trust-region projected sequential quadratic programming algorithm

We describe the trust-region feasibility-perturbed sequential quadratic programming al-
gorithm, which we refer to as Algorithm FP-SQP, with respect to the following general
formulation of a constrained nonlinear optimization problem:

min f (z) subject to c(z) = 0, d(z) ≤ 0, (2.1)

where z ∈ Rn is the vector of variables, f : Rn → R, c : Rn → Rm , and d : Rn → Rr are
smooth (twice continuously differentiable) functions. We denote by F the set of feasible
points for (2.1). A full description of this algorithm and derivation of its convergence
properties appears in [28].

Algorithm FP-SQP generates a sequence of feasible iterates {z j } j=0,1,2,..., where a step
from the current iterate z to the next iterate is obtained by first solving the following quadratic
programming subproblem for �z:

min
�z

m(�z)
def= ∇ f (z)T �z + 1

2
�zT H�z (2.2a)

subject to c(z) + ∇c(z)T �z = 0, d(z) + ∇d(z)T �z ≤ 0, (2.2b)

‖��z‖p ≤ �, (2.2c)
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where (2.2b) represents linearization of the constraints c(·) and d(·) around the current
iterate z, (2.2c) is a trust-region constraint (where p ∈ [1, ∞] denotes the choice of norm),
and � is a scaling matrix for the trust region. We make the assumption (Assumption 1
below) that (2.2b) and (2.2c) together bound the size of the full vector �z. This assumption
holds trivially if � in (2.2c) is uniformly nonsingular, but we are interested also in cases in
which � has zero eigenvalues. The matrix H in (2.2a) is assumed to be symmetric but not
necessarily positive semidefinite. For best local convergence behavior, H should be a good
approximation to the Hessian of the Lagrangian for the problem (2.1) on the nullspace of
the gradients of the constraints active at the solution z∗.

Having solved (2.2) for �z, we obtain a candidate step �̃z by perturbing �z in such a
way as to satisfy two conditions. First, feasibility:

z + �̃z ∈ F . (2.3)

Second, asymptotic exactness: There is a continuous monotonically increasing function
φ : R+ → R+ with φ(0) = 0 such that

‖�z − �̃z‖2 ≤ φ(‖�z‖2) ‖�z‖2. (2.4)

The acceptability of a candidate step �̃z depends on a “sufficient decrease” test, which
makes use of the following ratio of actual to predicted decrease in f :

ρ j = f (z j ) − f (z j + �̃z
j
)

−m j (�z j )
, (2.5)

where z j is the current iterate; m j represents the model function m of (2.2) evaluated at
z = z j , for some approximate Hessian Hj ; �z j solves (2.2); and �̃z

j
satisfies (2.3) and

(2.4). If ρ j exceeds a small positive quantity η, we accept the step and set z j+1 = z j + �̃z
j
,

and possibly adjust the trust-region radius � and scaling matrix � in preparation for the
next iteration. Otherwise, we set z j+1 = z j , decrease �, and calculate a new candidate step.

We specify the algorithm formally as follows.

Algorithm 2.1 (FP-SQP).

Given a feasible starting point z0 ∈F, trust-region upper bound �̄ > 0, initial radius
�0 ∈ (0, �̄), η ∈ [0, 1/4), and p ∈ [1, ∞];

for j = 0, 1, 2, . . .

Obtain the SQP step �z j by solving (2.2);

Seek a feasibility-perturbed SQP �̃z
j

with the properties (2.3) and (2.4);

if no such �̃z
j

can be found;
(* don’t take the step; decrease the trust region *)
� j+1 ← (1/2)‖� j�z j‖p;
z j+1 ← z j ; � j+1 ← � j ;
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else
Calculate ρ j using (2.5);
if ρ j < 1/4

(* decrease in f is insufficient; shrink trust region*)
� j+1 ← (1/2)‖� j�z j‖p;

else if ρ j > 3/4 and ‖� j�z j‖p = � j

(* good progress; increase trust region for next iteration *)
� j+1 ← min(2� j , �̄);

else
� j+1 ← � j ;

if ρ j > η

(* take the step provided decrease is at least minimal *)

z j+1 ← z j + �̃z
j
;

choose new scaling matrix � j+1;
else

z j+1 ← z j ; � j+1 ← � j ;
end (for).

Before stating the main convergence results for this algorithm, which are proved in the
companion paper [28], we introduce some notation and assumptions.

The Lagrangian function for (2.1) is

L(z, µ, λ)
def= f (z) + µT c(z) + λT d(z), (2.6)

where µ ∈ Rm and λ ∈ Rr are Lagrange multipliers. The Karush-Kuhn-Tucker conditions
for (2.1) are as follows:

∇zL(z, µ, λ) = ∇ f (z) + ∇c(z)µ + ∇d(z)λ = 0, (2.7a)

c(z) = 0, (2.7b)

0 ≥ d(z) ⊥ λ ≥ 0, (2.7c)

where ⊥ indicates that λT d(z) = 0. The Mangasarian-Fromovitz constraint qualification
(MFCQ) at a feasible point z, which ensures that the linearization of the constraints (2.2b)
adequately captures the local geometry of F near z, requires that

∇c(z) has full column rank; and there exists a vector v ∈ Rn such that (2.8a)

∇c(z)T v = 0 and vT ∇di (z) < 0 for all indices i with di (z) = 0. (2.8b)

If z is a stationary point for (2.1) at which (2.8) is satisfied, then there exist vectors µ and
λ such that (2.7) is satisfied by the triplet (z, µ, λ).

The level set L0 for the feasible starting point z0 of Algorithm FP-SQP is defined as
follows:

L0
def= {z | c(z) = 0, d(z) ≤ 0, f (z) ≤ f (z0)} ⊂ F .
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Our assumption on the trust-region bound (2.2c) is as follows:

Assumption 1. There is a constant δ such that for all points z ∈ L0 and all positive
definite scaling matrices � used by the algorithm, we have for any �z satisfying the
constraints

c(z) + ∇c(z)T �z = 0, d(z) + ∇d(z)T �z ≤ 0

that

δ−1‖�z‖2 ≤ ‖��z‖p ≤ δ‖�z‖2. (2.9)

In this assumption, the constant that relates ‖·‖2 with the equivalent norms ‖·‖p (for
p ∈ [1, ∞]) is absorbed into the constant δ. This assumption is weaker than the one
usually made for trust region algorithms, which requires that � be a uniformly non-
singular scaling matrix. This looser form accommodates our desire to apply the trust-
region bound to only a subset of the variables in the NMPC problem (namely, the
inputs). The sizes of the state variables are controlled implicitly through the equality
constraints.

Our assumption on the boundedness of the set containing the iterates and on smoothness
of the functions f , c, and d is conventional, and can be stated as follows.

Assumption 2. The level set L0 is bounded, and the functions f , c, and d in (2.1) are twice
continuously differentiable in an open neighborhood N (L0) of this set.

Note that L0 is certainly closed, so that if Assumption 2 holds, it is also compact.
For the third assumption, which bounds the distance from an infeasible point z to the

feasible set F in terms of values of the constraint functions c and d, we define B(z, t) to be
the open Euclidean ball about z:

B(z, t)
def= {y | ‖y − z‖ < t}.

Here and in all subsequent formulas, an omitted subscript on ‖·‖ denotes the Euclidean
norm.

Assumption 3. For every point ẑ ∈ L0, there are positive quantities ζ and �̂3 such that for
all z ∈ cl(B(ẑ, �̂3)) we have

min
v∈F

‖v − z‖ ≤ ζ (‖c(z)‖ + ‖[d(z)]+‖) , (2.10)

where [d(z)]+ = [max(di (z), 0)]r
i=1.
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We actually require this assumption to hold only in a neighborhood of points visited
by the algorithm; in particular, in a neighborhood of the solution. The estimate (2.10) is
not satisfied only in exceptional circumstances, when a constraint qualification fails to
hold.

In the companion report [28], we proved two global convergence results for Algorithm
FP-SQP. These results differ in their assumptions on the series of Hessian matrices Hj that
appear in the quadratic programming subproblem (2.2). The first result makes an assumption
on these matrices that is typically satisfied by quasi-Newton updating schemes.

Theorem 2.1. Suppose that Assumptions 1, 2, and 3 are satisfied, and assume that all limit
points of the algorithm satisfy MFCQ. Suppose in addition that the approximate Hessians
Hj satisfy the bound ‖Hj‖2 ≤ σ0 + jσ1, for some nonnegative constants σ0 and σ1. Then
the algorithm has a stationary limit point.

The second convergence results assumes uniform boundedness of the Hessians Hj . Such
a bound would hold if for instance each Hj were taken to be the Hessian of the Lagrangian
(2.6), for suitable definitions of the Lagrange multiplier estimates µ and λ, or some positive
definite modification of this matrix.

Theorem 2.2. Suppose that Assumptions 1, 2, and 3 are satisfied, and that the Hessian
approximations Hj satisfy ‖Hj‖ ≤ σ for all j and some constant σ . Then the algorithm
cannot have a limit point z̄ at which the MFCQ condition (2.8) holds but the KKT conditions
(2.7) are not satisfied.

Under additional assumptions on the algorithm and the solution of the problem, rapid
local convergence can also be proved. We refer the interested reader to [28, Section 4] for
details.

3. Model predictive control: Problem definition

For the purposes of our study, we examine discrete-time nonlinear systems in which the
control moves are injected and measurements are taken at every sampling time. Usually,
the system variables are shifted so that the desired value of the state variable is zero, and
the fundamental aim of the control strategy is to drive the state variables to zero. At each
sampling time, an open-loop optimal control problem is solved over a finite horizon N , with
the aim of identifying the input u0 that should be injected into the system at the present time.
This quantity can be obtained by solving a nonlinear optimal control problem whose initial
state is the current state of the system. Because u0 must be calculated in real time, efficient
algorithms for solving this nonlinear optimal control problem are desirable. Algorithm FP-
SQP is well suited for this type of application, in part because each iterate it generates is
feasible and therefore can be used as a suboptimal solution, if it is necessary to terminate
the algorithm prior to convergence. This property is especially important in systems with
faster sampling rates.
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We consider the following formulation of this N -step finite-horizon MPC problem:

min
x,u,η


(x, u, η)
def=

N−1∑
k=0

[C(xk, uk) + �(ηk)] + �(xN ) + �(ηN ) (3.1a)

s.t. x0 given, xk+1 = F(xk, uk), k = 0, 1, . . . , N − 1, (3.1b)

Duk ≤ d, k = 0, 1, . . . , N − 1, (3.1c)

Gxk − ηk ≤ g, ηk ≥ 0, k = 1, 2, . . . , N , (3.1d)

where x , u, and η denote the sequences of vectors representing states, inputs, and state
constraint violations, respectively; that is,

x = (x1, x2, . . . , xN ),

u = (u0, u1, . . . , uN−1),

η = (η1, η2, . . . , ηN ).

Changing the use of m and n from Section 2, we suppose that xk ∈ Rn , k = 0, 1, . . . , N
and uk ∈ Rm , k = 0, 1, . . . , N − 1. We assume that the number of states n and the number
of inputs m are both modest, so that there is no need for sparse matrix techniques in dealing
with matrices of dimension m and n. The stage cost C(xk, uk) and the terminal penalty �(xN )
in (3.1a) are convex. Moreover, they are typically quadratic and strictly convex with respect
to the input variables uk in their arguments. The model function F(xk, uk) is usually the
source of nonlinearity in the optimization problem, making (3.1) a nonlinear programming
problem. The model equation is usually obtained by integrating a DAE model.

A more natural formulation of the MPC problem might impose the state constraints
Gxk ≤ g explicitly, but the formulation (3.1d) represents a “softening” of these constraints
by introducing the violation variables η and including penalty terms �(·) on the violations in
the objective function (3.1a). We assume, as is usual, that these penalties also are quadratic;
that is,

�(ηk) = ηT
k ηk + ψT ηk . (3.2)

Softening of state constraints often makes sense in terms of the problem formulation. The
input constraints Duk ≤ d represent physical restrictions on the available control action
(for instance, a limit on available power, flow rate, or voltage), so it is natural to make these
constraints “hard,” as in the formulation (3.1c). By contrast, state constraints often represent
desired values for profitability, safety, or convenience, so that violation of these constraints
is a condition to be discouraged rather than forbidden in the formulation. Since the penalty
terms for the constraint violations ηk are quadratic, and since these terms are defined by
linear inequalities, they do not contribute to the “nonlinear” nature of the problem (3.1),
and play little part in the development of this section.

If the constraints Duk ≤ d , k = 0, 1, . . . , N − 1 are feasible, then the full set of
constraints (3.1b), (3.1c), and (3.1d) is feasible. From any input sequence u that satisfies
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Duk ≤ d , we recover the states xk and violations ηk by setting xk+1 = F(xk, uk) and
ηk = max(Gxk − g, 0) for all k.

We note that closed-loop stability of the controlled, dynamic system requires that the
final state xN satisfy a certain inequality constraint, as discussed in the review by Mayne
et al. [22]. Such a constraint makes it difficult for our algorithm to maintain feasibility of
the iterates. Rather than include the terminal constraint in our formulation, we can simply
check that it is satisfied. If, during the course of the iterations, we decide that the terminal
constraint is unlikely to be satisfied at the computed solution, we increase the horizon N
and re-solve the problem.

For the purposes of this paper, we consider the problem (3.1) in isolation, as a single
nonlinear program that we wish to solve. To put this problem in context, however, we give a
brief description of MPC methodology. In MPC, a sequence of problems of the form (3.1)
are solved, one at each sampling point. A starting point for the input vector sequence {uk}
in (3.1) can be constructed by shifting the input vectors obtained at the solution from the
previous sampling point forward by one stage, and using an educated guess of the remaining
value uN−1, based on the solution of the discrete-time linear quadratic regulator solution.
A full feasible point for (3.1) can then be obtained in the manner described above.

At the very first sampling time, no previous input trajectory is available for defining the
starting point. A poor choice of this initial point may cause the optimizer to find undesirable
local minima. Our approach is to construct uk and xk+1 sequentially for k = 0, 1, . . . , N −1
as follows. We define a starting guess for u′

k by setting u′
k = uk−1, and linearize the model

F about (xk, u′
k). We then calculate the locally optimal linear infinite horizon feedback

law for the resulting linear model with quadratic objective. Application of this law yields
an improved estimate uk , which we accept as the initial guess. (In this development, we
assume that the dynamics of the model do not change greatly between each sampling time.)
Application of the model equation in (3.1b) now yields xk+1. The first value u0 can be
attained by starting with an initial guess u′

0, linearizing the system about x0 and the guess,
and determining the optimal feedback gain K0. This value of K0 generates a new value
for u0 = K0x0. The linearization and recalculation of K0 is repeated until the guess for
u0 converges to within a tolerance. If the initial guess violates the hard constraints on the
inputs, the result is adjusted to a feasible input; see (5.4).

4. The SQP subproblem

In the problem (3.1), inputs and states at the current sampling time k directly affect fu-
ture states xk+1, xk+2, . . . , but have no effect on states and inputs at previous times. Due
to this causal nature, the optimization problems are highly structured. For an appropriate
“interleaved” ordering of the components of u, x , and η, the Hessian of the objective and
the Jacobian of the constraints in (3.1) are block-banded. Rao, Wright, and Rawlings [26]
exploit this structure for the case of linear model F and convex quadratic C and 
 by
developing a customized primal-dual interior-point method for the resulting quadratic pro-
gramming problem. With some alterations, this method can be used to solve the subproblems
arising in the SQP algorithm of Section 2, applied to (3.1). We devise other features of the
SQP algorithm to ensure that this structure can be exploited at the level of the quadratic
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programming subproblem; for example, by choosing the approximate Hessians H in (2.2a)
to have the same structure as the exact Hessians.

For the remainder of the MPC discussion, it is convenient to introduce the following
definitions, based on the formulation in (3.1):

Qk = ∂2


∂x2
k

= ∂2C(xk, uk)

∂x2
k

, (4.1a)

Rk = ∂2


∂u2
k

= ∂2C(xk, uk)

∂u2
k

, (4.1b)

Mk = ∂2


∂uk∂xk
= ∂2C(xk, uk)

∂uk∂uk
, (4.1c)

Ak = ∂ F(xk, uk)

∂xk
, (4.1d)

Bk = ∂ F(xk, uk)

∂uk
(4.1e)

In the SQP approach applied to (3.1), the subproblem has a structure similar to (3.1),
except that the model equation is linearized, and the objective is replaced by a quadratic
whose second-order terms are approximations to the Hessian of the Lagrangian function
for (3.1). To be precise, the subproblem is as follows:

min
�x,�u,�η

1

2
�uT

0 R̃0�u0 + r T
0 �u0

+
N−1∑
k=1

{
1

2

[
�xk

�uk

] [
Q̃k M̃k

M̃T
k R̃k

] [
�xk

�uk

]
+

[
qk

rk

]T [
�xk

�uk

]}

+ 1

2
�xT

N Q̃N �xN + qT
N �xN +

N∑
k=1

�(ηk + �ηk) (4.2)

subject to

�x0 = 0, (4.3a)

�xk+1 = Ak�xk + Bk�uk, k = 0, 1, . . . , N − 1, (4.3b)

D(uk + �uk) ≤ d, k = 0, 1, . . . , N − 1, (4.3c)

G(xk + �xk) − (ηk + �ηk) ≤ g, k = 1, 2, . . . , N , (4.3d)

ηk + �ηk ≥ 0, k = 1, 2, . . . , N , (4.3e)

‖�k�uk‖∞ ≤ �, k = 0, 1, . . . , N − 1. (4.3f)

Note that feasibility of the current iterate x , u, η (in particular, xk+1 = F(xk, uk)) is exploited
in defining the linearization of the model equation (4.3b). The blocks that make up the
Lagrangian Hessian approximation are denoted by Q̃k , R̃k , and M̃k in (4.2). We discuss
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various choices for these approximations in Section 6. We have assumed that the constraint
violation penalties �(·) are quadratic, as in (3.2). Note that the trust-region constraint (4.3f)
is applied only to the {�u} components. We discuss the choice of scaling matrices �k in
Section 7.

5. Feasibility perturbation

In this section, we describe the perturbation technique that is used to recover a feasible step
�̃x, �̃u, �̃η from the trust-region SQP step �x, �u, �η. The perturbed step should satisfy
the asymptotic exactness condition (2.4).

We use a change of variables based on feedback gain matrices Kk obtained from finite-
horizon discrete-time linear-quadratic regulator for time-varying systems. The procedure
for defining Kk is developed from dynamic programming arguments, starting from the end
of the prediction horizon and working toward the beginning. The result is the discrete-time
Riccati equation [3]. First, define �N = QN , and then apply the following recursions for
k = N − 1, N − 2, . . . , 1:

Kk = − (
Rk + BT

k �k+1 Bk
)−1 (

MT
k + BT

k �k+1 Ak
)

�k = Qk + K T
k Rk Kk + Mk Kk + K T

k MT
k + (Ak + Bk Kk)T �k+1 (Ak + Bk Kk).

These calculations involve dense linear algebra with matrices of dimensions m and n and
are therefore modest in cost. The feedback gains Kk obtained from this scheme are consis-
tent with the optimal solution for the unconstrained time-varying linear system along the
trajectory of the current guess.

Given the stabilizing feedback gain matrices Kk and the SQP step, we can define v from
the following formula:

vk = (uk + �uk) − Kk(xk + �xk), k = 0, 1, . . . , N − 1, (5.1)

We may view v as the deviation from a stable closed-loop trajectory. We then determine the
perturbed components �̃x and �̃u as follows:

�̃uk = Kk(xk + �̃xk) − uk + vk, k = 0, 1, . . . , N − 1, (5.2a)

�̃xk+1 = F(xk + �̃xk, uk + �̃uk) − xk, k = 0, 1, . . . , N − 1. (5.2b)

By combining (5.1) with (5.2a), we see immediately that

�̃uk − �uk = Kk(�̃xk − �xk). (5.3)

Note �̃x0 = �x0 = 0 in (5.2a) and (5.3), so from the latter equation we have in particular
that �̃u0 = �u0.
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When there is a constraint Duk ≤ d on the inputs, we modify the procedure above by
solving the following subproblem after the calculation of each �̃uk from (5.2a):

min
�̂uk

(�̂uk − �̃uk)T Rk(�̂uk − �̃uk) subject to D(uk + �̂uk) ≤ d. (5.4)

We then make the replacement �̃uk ← �̂uk , and proceed with (5.2b). Although this
additional perturbation is not guaranteed to retain the stability benefits of the Riccati scheme,
we found that it works well in practice. (We note too that it is not strictly necessary for
the perturbation technique to be stable; it need only be good enough that the feasibility-
perturbed step is not too different from the original step.)

The perturbed step in the η components can be recovered from the following formula:

ηk + �̃ηk = max(G(xk + �̃xk) − g, 0), k = 1, 2, . . . , N . (5.5)

In Appendix A, we show that this feasibility projection approach satisfies the asymp-
totic exactness condition (2.4) under reasonable assumptions, and also suggest why the
stabilization scheme improves the results.

In the case of open-loop unstable models, the SQP subproblem itself may be ill-
conditioned. The change of variables in (5.1) may also be used in the QP to improve
the conditioning. In fact, the re-conditioning can be performed by using the same values
for Kk as we derived above for the perturbation.

6. Approximate Hessians

We now describe various ways to choose the matrices Q̃k , R̃k , and M̃k that appear in the
objective of the SQP subproblem (4.2). Since the variables η enter the constraints of (3.1)
linearly and the objective quadratically, the terms in the Hessian of the quadratic involving
these variables are constant, so it is not necessary to seek approximations of these terms.
Hence, for clarity, we omit these variables from the formulation considered in this section
and the next, although our implementations described in Section 8 solve the full problem
(3.1).

By omitting the soft state constraints from (3.1), we obtain

min
x,u


(x, u)
def=

N−1∑
k=0

C(xk, uk) + �(xN ) (6.1a)

s.t. x0 given, xk+1 = F(xk, uk), Duk ≤ d, k = 0, 1, . . . , N − 1, (6.1b)

while the SQP subproblem has the following form:

min
�x,�u

1

2
�uT

0 R̃0�u0 + r T
0 �u0 + 1

2
�xT

N Q̃N �xN + qT
N �xN

+
N−1∑
k=1

{
1

2

[
�xk

�uk

] [
Q̃k M̃k

M̃T
k R̃k

] [
�xk

�uk

]
+

[
qk

rk

]T [
�xk

�uk

]}
(6.2)
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subject to

�x0 = 0, (6.3a)

�xk+1 = Ak�xk + Bk�uk, k = 0, 1, . . . , N − 1, (6.3b)

D(uk + �uk) ≤ d, k = 0, 1, . . . , N − 1, (6.3c)

‖�k�uk‖∞ ≤ �, k = 0, 1, . . . , N − 1. (6.3d)

The Lagrangian for the problem (6.1) is as follows:

L(x, u, λ, µ) = 
(x, u) +
N−1∑
k=0

λT
k (F(xk, uk) − xk+1) + µT

k (Duk − d)

=
N−1∑
k=0

[
C(xk, uk) + λT

k (F(xk, uk) − xk+1) + µT
k (Duk − d)

] + �(xN ).

(6.4)

We can decompose the Lagrangian in a stagewise fashion, as follows:

L(x, u, λ, µ) = L0(u0, λ0, µ0)

+
N−1∑
k=1

Lk(xk, uk, λk−1, λk, µk) + LN (xN , λN−1), (6.5)

where

L0(u0, λ0, µ0) = C(x0, u0) + λT
0 F(x0, u0) + µT

0 (Du0 − d),

Lk(xk, uk, λk−1, λk, µk) = C(xk, uk) + λT
k F(xk, uk) − λT

k−1xk + µT
k (Duk − d),

LN (xN , λN−1) = �(xN ) − λT
N−1xN .

Note that each xk and uk appear only in Lk , and that each Lk depend on just a few of the
Lagrange multiplier components.

Using the definitions above, we now discuss various options for choosing the Hessian
terms in the SQP subproblem (6.2) and (6.3).

6.1. Exact Hessian

The first option is to use the exact Hessians of the Lagrangian; that is,

Q̂k = ∂2Lk

∂x2
k

, R̂k = ∂2Lk

∂u2
k

, M̂k = ∂2Lk

∂uk∂xk
. (6.6)
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The full Hessian of L with respect to the variables x and u, using a stagewise interleaving
of these variables, has the following block-banded structure:

∇2
x,uL =



R̂0

Q̂1 M̂1

M̂T
1 R̂1

Q̂2 M̂2

M̂T
2 R̂2

. . .

Q̂N−1 M̂ N−1

M̂T
N−1 R̂N−1

Q̂N



(6.7)

Note in particular that the Hessian of the Lagrangian is structured identically to the Hessian
of the objective in (6.1), and to the Hessian of the linear MPC problem, because there are
no coupled interactions between future and past states and inputs other than through the
model equality constraint.

We can also use a finite-difference approximation to the terms in (6.6). Note that each
Q̂k consists of Qk from (4.1a) added to a contribution involving λk and the second partial
derivatives of the model function F . If the model is linear, we have Q̂k = Qk . Similar
comments apply for R̂k and M̂k .

These choices for the Hessians of the SQP subproblem have the advantage of rapid local
convergence, under appropriate assumptions. The disadvantage is that second derivatives
of the model F may be difficult to compute by hand, and time-consuming to approximate
with a difference approximation. Moreover, the block-diagonal matrices

Hk
def=

[
Q̃k M̃k

M̃T
k R̃k

]
=

[
Q̂k M̂k

M̂T
k R̂k

]
(6.8)

may not be positive definite, in which case the SQP subproblem will not be a convex
quadratic program. Since the solver described in [26] requires a convex quadratic objective,
these matrices may need to be modified in order for the solver to work.

6.2. Hessians of the objective

An approximation that is often effective is to simply ignore the contributions from F and
use

Q̃k = Qk, R̃k = Rk, M̃k = Mk . (6.9)
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This choice is sometimes known as the “Gauss-Newton” choice. To our knowledge, this
choice of approximate Hessian was introduced by Li and Biegler [20] and has also been
discussed in Biegler [4] and Diehl et al. [11]. Although this choice is not asymptotically
equivalent to the ideal choice of Section 6.1 unless the model function F is linear or the
Lagrange multiplier components λk are zero, these matrices often have the right scale.
Moreover, the matrix

Hk
def=

[
Q̃k M̃k

M̃T
k R̃k

]
=

[
Qk Mk

MT
k Rk

]
(6.10)

is constant and positive semidefinite when (as is usually the case) the cost function C in
(6.1) is quadratic and convex.

We note that when the trajectory to be tracked is not far from the optimal trajectory, and
the xk in (6.1) represents the difference between these two trajectories, the state equations
(6.1b) are likely to be only weakly active. Consequently we can expect the λk to be close
to zero, so that the Gauss-Newton approximate Hessian is quite close to the true Hessian in
these circumstances.

6.3. Full Quasi-Newton approximation

Quasi-Newton variants of SQP for nonlinear programming have been the subject of ex-
tensive research; see [24, Chapter 18]. Indeed, most existing implementations of SQP use
quasi-Newton Hessian approximations, either to the full Lagrangian Hessian, or to the pro-
jection of this Hessian onto the nullspace of the active constraints. Here, we consider only
methods of the former kind. The Hessian approximations are updated after each iteration,
using information about the step just taken and the difference in the Lagrangian first deriva-
tives between the current iterate and the previous one. Specifically, we have the step vector
s defined by

s =
[

x+ − x

u+ − u

]
, (6.11)

where x+ and u+ denote the new iterates and x and u the current iterates; and

y =
[∇xL(x+, u+, λ, µ) − ∇xL(x, u, λ, µ)

∇uL(x+, u+, λ, µ) − ∇uL(x, u, λ, µ)

]

=
[
∇x
(x+, u+) − ∇x
(x, u) + ∑N−1

k=0 (Ak(x+
k , u+

k ) − Ak(xk, uk))T λk

∇u
(x+, u+) − ∇u
(x, u) + ∑N−1
k=0 (Bk(x+

k , u+
k ) − Bk(xk, uk))T λk

]
, (6.12)

where we have used the notation (4.1) to define Ak and Bk .
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The damped BFGS approach (see Powell [25] and Nocedal and Wright [24, p. 540])
maintains a positive definite approximation H to the full Lagrangian Hessian (6.7), and
updates it after each step according to the following rule:

Algorithm 6.1 (damped BFGS).

if sT y < 0.2sT Hs
define θ = 0.8sT Hs/(sT Hs − sT y)
set y ← θy + (1 − θ )Hs

end if
update H as follows:

H ← H − HssT H

sT Hs
+ yyT

yT s
. (6.13)

A sensible starting initial guess for H is the matrix (6.7) with the approximations (6.9),
possibly with the addition of a multiple of the identity matrix to ensure strict positive
definiteness.

A naive application of this procedure to our problem is not practical, since after just one
update H becomes in general a fully dense matrix. Since it does not preserve the block
structure of (6.7), we cannot use the efficient quadratic programming technique to solve the
SQP subproblem.

6.4. Sparsified Quasi-Newton approximation

An ad-hoc alternative to the approach just discussed is to impose the desired sparsity pattern
(that is, the pattern in (6.7)) on the Hessian approximation H after each step. In other words,
we carry out the procedure above to update H , and then zero out all parts of H that are
outside the block-diagonal band in (6.7). It can be shown that this approach maintains
positive definiteness of the approximations (given a positive definite initial approximation
to H ). However, approaches that enforce specific sparsity patterns in this fashion do not
enjoy a good reputation, even for unconstrained problems.

6.5. Partitioned Quasi-Newton approaches

We now consider approaches that maintain separate approximations to the Hessians of each
of the component Lagrangians Lk in (6.5). Griewank and Toint [14] proposed methods of
this type for partially separable nonlinear systems, and these methods were first applied
to nonlinear control problems by Bock and Plitt [7]. In our problem, the Lagrangian in
(6.5) is in fact completely separable in the state and input variables. Each pair (xk, uk)
appears only in the term Lk , and the coupling between stages comes only in the model
equation.
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We apply this approach by defining “stagewise” versions of the s and y vectors in (6.11)
and (6.12). For k = 1, 2, . . . , N − 1, we have

sk =
[

x+
k − xk

u+
k − uk

]
, (6.14)

and

yk =
[

∂
∂xk

Lk(x+
k , u+

k , λk−1, λk, µk) − ∂
∂xk

Lk(xk, uk, λk−1, λk, µk)
∂

∂uk
Lk(x+

k , u+
k , λk−1, λk, µk) − ∂

∂uk
Lk(xk, uk, λk−1, λk, µk)

]

=
[

∂
∂xk

C(x+
k , u+

k ) − ∂
∂xk

C(xk, uk) + (Ak(x+
k , u+

k ) − Ak(xk, uk))T λk

∂
∂uk

C(x+
k , u+

k ) − ∂
∂uk

C(xk, uk) + (Bk(x+
k , u+

k ) − Bk(xk, uk))T λk

]
, (6.15)

where we again used the notation (4.1) for Ak and Bk . For the initial and final stages, we
have

s0 = u+
0 − u0,

y0 = ∂

∂u0
C(x+

0 , u+
0 ) − ∂

∂u0
C(x0, u0) + (A0(x+

0 , u+
0 ) − A0(x0, u0))T λ0

(6.16)
sN = x+

N − xN

yN = ∂

∂xN
�(x+

N ) − ∂

∂xN
�(xN ).

We now use sk and yk to maintain an approximation Hk to the kth diagonal block in (6.7),
which for all but the initial and final stages has the form

Hk =
[

Q̃k M̃k

M̃T
k R̃k

]
(6.17)

A damped-BFGS variant of the partitioned approach uses the update strategy of Algo-
rithm 6.3, applied to each stage k separately. To be precise, we apply Algorithm 6.3 to each
stage k = 0, 1, . . . , N , with sk , yk , and Hk replacing s, y, and H , respectively. We then
obtain decompose the approximate Hessians Hk according to (6.17), to obtain the matrices
Q̃k , R̃k , and M̃k to be used in (6.2).

As well as being efficient, this approach maintains positive semidefiniteness of the diag-
onal blocks, so the SQP subproblem can be passed to the convex quadratic programming
solver without complications.

An alternative approach is to use the symmetric rank-1 (SR1) update (see [24, Section 8.2])
in place of the damped BFGS approach. The update formula for the stage-k block
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is as follows:

Hk ← Hk + (yk − Hksk)(yk − Hksk)T

(yk − Hksk)T sk
, (6.18)

where the update is skipped if the denominator in (6.18) is too small; that is, if the following
criterion is satisfied:

|(yk − Hksk)T sk | < 10−6‖yk − Hksk‖ ‖sk‖. (6.19)

The Hessian approximations Q̃k , R̃k , and M̃k are then recovered from the decomposition
(6.17).

The symmetric rank-one (SR1) update is in a sense more natural than BFGS, as it does not
maintain positive definiteness (and there is no reason to expect the diagonal blocks of (6.7)
to be positive definite). However, the indefinite approximations may cause problems for the
quadratic programming solver. We handle this by passing to the quadratic programming
solver a version of Hk in which the negative eigenvalues have been replaced by zero. That
is, we form the eigenvalue decomposition

Hk = Vk�k V T
k ,

where �k is a diagonal matrix containing the eigenvalues, and V T
k is orthogonal. We then

redefine Hk to be

Hk ← Vk�
+
k V T

k ,

where �+
k is obtained from �k by replacing the negative diagonals by zero. Since the matri-

ces Hk are small in our applications, the cost of performing these eigenvalue decompositions
is relatively trivial.

7. Trust region scaling

In our problem (3.1), the states x and the constraint violations η are fully determined by
the inputs u and the constraints (3.1b), (3.1c), and (3.1d). Therefore, rather than apply a
trust region constraint to all the variables in the SQP method, we define the trust region
only in terms of the inputs. In this section, we discuss the issue of scaling the trust region
constraint; that is, choosing the matrices �k in (4.3f). It is well known that scaling can have
a significant impact on the practical performance of trust-region algorithms.

In trust-region algorithms for unconstrained problems, the subproblems usually have the
following form:

min
�z

∇ f (z)T �z + 1

2
�zT H�z, subject to ‖D�z‖ ≤ �. (7.1)
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Often, D is chosen to be a diagonal matrix whose diagonal elements are related to the diag-
onals of H . When the trust-region constraint is a Euclidean norm, the optimality conditions
for (7.1) yield

(H + ξ DT D)�z = −∇ f (z), (7.2)

for some Lagrange multiplier ξ ≥ 0. Hence, a common choice is to make each diagonal of
D the square root of the corresponding diagonal of H . Similar choices of D are appropriate
for other norms, as we discuss at the end of this section.

Motivated by this choice, we use the constraints in the our SQP subproblem to eliminate
all but the input variables, and obtain a subproblem of the form (7.1) in which �z is made
up of �u0, �u1, . . . , �uN−1. We then base the scaling matrix on the diagonal blocks of the
Hessian in this subproblem.

For simplicity, we work with a special case of (3.1) in which neither the input con-
straints Duk ≤ d nor the soft state constraints are present. (Our derivation is exactly the
same as in the general case, but less cluttered.) To be specific, our MPC problem is as
follows:

min
x,u,η


(x, u, η)
def=

N−1∑
k=0

[C(xk, uk) + �(ηk)] + �(xN ) + �(ηN ) (7.3a)

s.t. x0 given, xk+1 = F(xk, uk), k = 0, 1, . . . , N − 1. (7.3b)

With a Euclidean-norm trust region, the corresponding SQP subproblem is

min
�x,�u

1

2
�uT

0 R̃0�u0 + r T
0 �u0 + 1

2
�xT

N Q̃N �xN + qT
N �xN

+
N−1∑
k=1

{
1

2

[
�xk

�uk

] [
Q̃k M̃k

M̃T
k R̃k

] [
�xk

�uk

]
+

[
qk

rk

]T [
�xk

�uk

]}
(7.4)

subject to

�x0 = 0, (7.5a)

�xk+1 = Ak�xk + Bk�uk, k = 0, 1, . . . , N − 1, (7.5b)

‖�k�uk‖2 ≤ �, k = 0, 1, . . . , N − 1. (7.5c)

We aggregate the variables in this subproblem as follows:

�x = (�x1, �x2, . . . , �xN ), �u = (�u0, �u1, . . . , �uN−1),
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and also aggregate the data matrices as follows:

A =



−I

A1 −I

A2 −I

. . .
. . .

AN−1 −I


, B =


B0

B1

. . .

BN−1

 , (7.6a)

M =



0

M̃1 0

0 M̃2 0
...

. . .

0 0 . . . M̃ N−1 0


, Q̃ =


Q̃1

Q̃2

. . .

Q̃N

 , (7.6b)

� =


�0

�1

. . .

�N−1

 , R̃ =


R̃0

R̃1

. . .

R̃N−1

 , (7.6c)

q = (q1, q2, . . . , qN ), r = (r0, r1, . . . , rN−1). (7.6d)

Using this notation, the objective (7.4) can be written in a more compact form:

1

2

[
�x

�u

]T [
Q̃ M̃T

M̃ R̃

][
�x

�u

]
+

[
�x

�u

]T [
q

r

]
, (7.7)

as can the constraints (7.5b):

A�x + B�u = 0. (7.8)

Since A is square and nonsingular, we can use (7.8) to eliminate �x , and write the objective
(7.7) in terms of �u alone, as follows:

1

2
�uT Q̂�u + r̂ T �u, (7.9)

where

Q̂ = R̃ + BT A−T Q̃ A−1 B − (M̃ A−1 B + BT A−T M̃T )

r̂ = r − BT A−T q.
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Following the motivation above, we choose � to be a block-diagonal matrix such that the
diagonal blocks of �T � = �2 are identical to those of Q̂. Since from (7.6), A is block lower
triangular and B is block diagonal, A−1 and A−1 B are both block lower triangular. From
the structure of M̃ in (7.6b), we have that the diagonal blocks of (M̃ A−1 B + BT A−T M̃T )
are zero. Hence, the diagonal blocks of Q̂ are simply those of R̃ + BT A−T Q̃ A−1 B, which
are as follows:

Q̂11 = R̃0 + BT
0 Q̃1 B0 + BT

0 AT
1 Q̃2 A1 B0 + · · ·

+ BT
0 AT

1 . . . AT
N−1 Q̃N AN−1 . . . A1 B0,

Q̂22 = R̃1 + BT
1 Q̃2 B1 + BT

1 AT
2 Q̃3 A2 B1 + · · ·

+ BT
1 AT

2 . . . AT
N−1 Q̃N AN−1 . . . A2 B1,

...

Q̂N N = R̃N−1 + BT
N−1 Q̃N BN−1.

Therefore, we can construct the scaling matrices for the Euclidean-norm trust region by the
following recursive relationship: Define GN = Q̃N , and then apply the following formula
for k = N , N − 1, . . . , 2:

Gk−1 = Q̃k−1 + AT
k−1Gk Ak−1.

Then we have

Q̂kk = R̃k−1 + BT
k−1Gk Bk−1, k = 1, 2, . . . , N ,

so our choice for the scaling matrices is

�k−1 = Q̂1/2
kk , k = 1, 2, . . . , N . (7.10)

In practice, the use of a 2-norm trust region introduces a nonlinear constraint into the
subproblem, making it no longer a quadratic program. Rather than use the same scaling
matrices �k for the ∞-norm as for the 2-norm, we construct tangent planes to the ellip-
soidal 2-norm constraint using an eigenvalue decomposition. For each k, we calculate the
orthogonal Vk and positive diagonal �k such that

�T
k �k = �2

k = Vk�
2
k V T

k .

We then define the ∞-norm constraint as follows:∥∥�k V T
k �u

∥∥
∞ ≤ �, k = 0, 1, . . . , N − 1.

This constraint defines the smallest multi-dimensional box that circumscribes the Euclidean-
norm trust region.
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8. Computational results

In this section, we describe computational experience with Algorithm FP-SQP applied to
nonlinear MPC. We describe in detail two examples that are typical of problems that arise
in industrial practice, showing how the various mechanisms described in Sections 5, 6,
and 7 contribute to the effectiveness of the approach. We then summarize computational
experience with these two examples and three others.

Our first example involves a continuously stirred tank reactor (CSTR).

Example 8.1. Consider a CSTR in which the exothermic reaction A −→ B is taking place.
The temperature of the reactor is reduced by adjusting the temperature of the coolant fluid
in a heat exchange coil inside the vessel. The goal is to determine the optimal trajectory of
future coolant temperatures such that the system reaches a desired steady state.

The equations governing this system are as follows:

ĊA = q

V
(CA f − CA) − k0 exp

(
− E

RT

)
CA, (8.1a)

Ṫ = q

V
(T f − T ) + (−�H )

ρC p
k0 exp

(
− E

RT

)
CA + U A

VρC p
(Tc − T ), (8.1b)

where CA and T describe the state of the system, Tc is the input, and the remaining quantities
are parameters whose values, as presented in [16], are given in Table 1. The variable CA is
the concentration of species A in mol/L , T is the temperature of the reactor in K , and Tc is
the temperature of the coolant.

Given target values CA,target and Ttarget for the states and Tc,target for the input, we
define the states and input for this system as follows:

x =
[

CA − CA,target

T − Ttarget

]
, u = Tc − Tc,target.

We use the target values CA,target = 0.5 M, Ttarget = 350 K, and Tc,target = 300 K. The initial
state of the system is x0 = (1.0, 350)T .

We obtain a discrete-time problem from this model by defining a sampling interval of
�t = 0.05 minutes, and performing numerical integration of the equations (8.1) between

Table 1. Parameters for the CSTR model of Example 8.1.

q 100 L/min E/R 8750 K

CA f 1 mol/L k0 7.2 × 1010 min−1

UA 5 × 104 J/min · K V 100 L

ρ 1000 g/L T f 350 K

C p 0.239 J/g · K �H −5 × 104 J/mol



110 TENNY, WRIGHT AND RAWLINGS

sampling times using the LSODE code [17]. We define the components of the cost function
as follows:

C(xk, uk) = xT
k Qxk + uT

k Ruk, �(xN ) = xT
N PxN (8.2)

where Q = [ 0 0
0 4 ] and R = 2. The matrix P is the Lyapunov penalty associated with the

discrete linear quadratic regulator problem with penalties Q and R on the linearized system
at the set point. It has the following value:

P =
[

99164.7 2104.17

2104.17 73.2818

]
.

The prediction horizon N is 60 time steps, or 3 minutes. The input u is constrained so that
the coolant temperature may not be colder than 230 K; that is, Tc ≥ 230.

For this example, the choice of target operating point is open-loop unstable. For temper-
atures just above the set point, the plant ignites, converting most of the reactant to product,
and releasing more heat than the coolant can remove. Although we do not explicitly impose
a “soft” state constraint to discourage this situation, it is certainly undesirable to steer the
system through an ignition.

We find from solving the formulation (3.1) that the problem has several local solutions,
which can be identified by starting the algorithm from different starting points. Figure 1
shows the profiles for the input variable u at three selected local solutions, along with the
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Figure 1. Input profiles and objective function values of local minima of CSTR example.
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final objective value corresponding to each profile. The trajectory with the lowest objective
function is believed to be the global optimum, arrived at by using the initial guess procedure
described in Section 3. The other two minima plotted here are much less desirable, as
they result from ignition. The controller in both these cases saturates at the minimum
coolant temperature (that is, Tc remains at its lower bound of 230 for several successive
sampling times) but is incapable of preventing ignition. These solutions were obtained
by adding random noise at the level of 10% to the initial guess used to obtain the global
solution.

An interesting property about the input profiles in the figure is that they all asymptotically
converge to the steady-state input coolant temperature of 300 K. Each local solution still
stabilizes the system, even though ignition occurs. Though ignition makes these solutions
unacceptable in this case, the stabilization indicates that the controller is well designed.
Local solutions may give acceptable control performance in other cases.

The existence of local solutions leads us to conclude that, as in other nonconvex optimiza-
tion problems, the choice of starting point may be crucial to the quality of the computed
solution. This observation has implications for the way we generate starting points for
solving the MPC problem (3.1) at subsequent sampling times. The technique proposed in
Section 3 of shifting the solution of (3.1) at the previous timepoint to obtain a starting point
for the current timepoint may not be adequate. For instance, if F(x, u) is not an adequate
model of the true system, the state x1 obtained by solving (3.1) at the previous timepoint may
be distant from the estimate of x0 obtained by applying a state estimation procedure at the
current timepoint. Likewise, if the state and input targets change between sampling times,
either due to a change in setpoint or as a result of rejecting non-zero mean disturbances,
the shifting procedure may produce a poor initial guess. This could lead the algorithm to
produce a potentially undesirable local optimum for (3.1). We can avoid these difficulties
by repeating the initialization procedure in Section 3.

A key component in the formulation of Algorithm FP-SQP is the use of stabilization in
the feasibility perturbation procedure, described in Section 5. Omission of stabilization
can result in state trajectories �̃xk that diverge wildly from the SQP steps �xk . This
phenomenon was noted for Example 8.1, as illustrated in figure 2. This figure is a phase
portrait, with the first component CA and second component T of the system state plotted
on the horizontal and vertical axes, respectively. From the initial guess indicated on the plot,
the first iteration of Algorithm FP-SQP yielded a step �x for the subproblem, where x +�x
is labeled as “QP Solution” in the figure. When we recovered a feasible step �̃x by means
of the stabilized feasibility perturbation procedure described in Section 5, we obtained a
perturbed step �̃x that is quite close in this phase portrait to the original SQP step; see
the curve labeled “Stabilized perturbation.” If, however, we omit the stabilization (setting
Kk = 0 for all k), we obtain a perturbed step �̃x that is distant from the original SQP step;
see the curve labeled “Naive perturbation,” for which some of the points are off the scale.
In fact, the unstabilized perturbation predicts an ignition of the system. The unstabilized
perturbation leads to poor algorithmic performance in this example—the Algorithm FP-
SQP takes hundreds of iterations to converge. The trust region radius � must be shrunk to a
very small value before an acceptable perturbed step is generated by the naive perturbation
approach.
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Figure 2. Phase portrait of states during the first iteration of the CSTR example.

We now turn to our second example.

Example 8.2. An electromagnetically actuated mass spring damper system is governed
by the equations

ṗ = v (8.3)

v̇ = − k

m
p − c

m
v + α

m

C

(d0 − p)γ
(8.4)

where the states p and v represent position and velocity, respectively, and the input C is a
function of the current applied to the coil (see [23]). The parameters in this model take on
the following values: α = 4.5 × 10−5, γ = 1.99, c = 0.6590, k = 38.94, d0 = 0.0102,
and m = 1.54. We apply the constraint 0 ≤ C ≤ 3 to the input.

Given target values ptarget and vtarget for the states and Ctarget for the inputs, we define the
state variable x and the input u as follows:

[
x1

x2

]
=

[
p − ptarget

v − vtarget

]
, u = C − Ctarget.

We used the target values ptarget = .0074 and vtarget = 0 (that is, we try to steer the mass
to a specified position at rest); and the target input is Ctarget = .0532. The initial state of the
system is p0 = 0, v0 = .012.



NONLINEAR MODEL PREDICTIVE CONTROL 113

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.2  0.4  0.6  0.8  1

In
pu

t

Time

Initial guess

1
2

3

4

5

Optimal

Figure 3. Input profiles at each iteration of Example 8.2.

The sampling time is .01 and the prediction horizon is 100 time steps. We choose the
penalty matrices Q, R, and P as in (8.2), to be

Q =
[

1 0

0 1

]
, R = 1, P =

[
18776.1 1746.93

1746.93 67.751

]
.

To demonstrate the evolution from initial guess to final solution, we present in figure 3
the input profile at each iteration of Algorithm FP-SQP, where the Hessian of the objective
was used to approximate the Lagrangian Hessian, as in (6.9). Because all iterates of FP-SQP
are feasible, we could use any of these iterates as a feasible suboptimal solution. In this
case, Algorithm FP-SQP converges in 10 iterations, but the input profiles become almost
indistinguishable after iteration 6.

Returning to the feasibility perturbation scheme of Section 5, we show that the property
(2.4) holds for the perturbation scheme presented here, when applied to Example 8.2. In
Table 2, we tabulate the ratio

‖(�̃x, �̃u) − (�x, �u)‖2/‖(�x, �u)‖2

at each iteration, where (�x, �u) is the SQP step and (�̃x, �̃u) is the feasibility-perturbed
SQP step. We also show the objective value at each iteration. From the table, it is clear that
as the algorithm iterates, the discrepancy between the SQP step and its feasibility-perturbed
variant vanishes as the iterates near the solution, so that (2.4) is satisfied for the perturbation
scheme used here. Similar results were obtained on other examples.
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Table 2. Asymptotic exactness of feasibility perturbation in Example 8.2.

Iteration Objective value ‖�z−�̃z‖2
‖�z‖2

Initial 1.48171132254992

1 1.03826539433288 7.980E-2

2 0.986956571853988 1.293E-2

3 0.896987789509686 4.476E-2

4 0.356871962432300 6.654E-1

5 0.217035426442347 2.300E-2

6 0.214667335503278 2.703E-3

7 0.214630294390683 2.399E-5

8 0.214629782597039 7.499E-7

9 0.214629774955025 8.200E-9

10 0.214629774925470 1.280E-9

The Hessian of the Lagrangian in this example is indefinite, which indicates that the
Hessian update schemes must take action to approximate this Hessian with a positive definite
matrix. In the case of the BFGS approaches, the modified update mechanism is invoked more
frequently. For the finite-difference-Hessian and the SR1 schemes, the resulting negative
eigenvalues are set to zero, as described in Section 6, so that the subproblem may be solved
by the convex QP solver of [26].

In Table 3, we compare variants of the Algorithm FP-SQP that use the various Hessian
approximation strategies from Section 6. We also show results obtained with the commer-
cial nonlinear optimization package NPSOL [13]. NPSOL is an SQP code that uses a BFGS
approximation to the Hessian of the Lagrangian, as in Section 6.3. It uses dense linear alge-
bra, and therefore is unable to take advantage of the structure of MPC problems. However,
since the total number of variables in our examples is not particularly large (at most a few
hundred), our problems can still be solved by this code in reasonable time. NPSOL does
not restrict itself to feasible iterates and uses an augmented Lagrangian merit function to
determine whether to accept steps. We applied NPSOL to the MPC problem in two ways.
The first approach, denoted by NPSOLz in Table 3, refers to the application of NPSOL di-
rectly to the formulation (3.1). The second approach, denoted by NPSOLu, is the equivalent
optimization problem that results from substituting the model equality constraints directly
into the objective function, thereby eliminating the states xk from the problem and yielding
an optimization over only the input variables uk and the constraint violations ηk .

Algorithm FP-SQP was implemented in Octave [12]. As mentioned earlier, the code
LSODE was called from Octave to perform the numerical integrations between sampling
times, necessary to obtain a discrete model. DDASAC [8] was used to determine the para-
metric sensitivities of the model equation with respect to their states and inputs. In the finite-
difference-Hessian variant of FP-SQP (Section 6.1) finite differencing over the gradients
calculated by DDASAC at perturbed points was used to obtain an approximate Lagrangian
Hessian. Our platform was a 1.2 GHz AMD Athlon running Debian Linux. Initial points
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Table 3. Comparison of iterations and CPU time to optimality tolerance.

Method Example 8.1 Example 8.2 CSTR4 PEND COPOLY

Finite-difference 4 13 4 5 3

Hessian 18.34 246.93 39.24 78.56 196.60

Objective Hessian 9 10 7 8 5

(Gauss-Newton) 11.67 50.75 7.04 26.48 20.27

Partitioned BFGS 6 FAIL 8 8 4

8.37 N/A 9.92 26.73 16.54

Sparsified BFGS 7 10 7 8 4

10.06 52.64 7.45 27.15 17.19

Partitioned SR1 6 12 7 11 4

8.07 60.78 8.86 36.62 16.13

NPSOLu FAIL 50 3 12 FAIL

N/A 2279.73 16.30 127.53 N/A

NPSOLz 23 >100 4 16 FAIL

6783.61 162989.12 4870.23 7834.80 N/A

were calculated by the procedure described in Section 3. For Algorithm FP-SQP, these
initial guesses were good enough that the trust region did not become active on any of the
problems for which convergence was reported.

The parameter values used to initialize Algorithm 2.1 are η = 0 and �0 = 1000.
For optimality, one of two tolerances must be satisfied. The absolute tolerance condi-
tion requires ‖u j − u j−1‖∞ ≤ 1 × 10−8. The relative tolerance is satisfied when ‖u j −
u j−1‖∞/(‖u j−1‖∞ + ε) ≤ 1 × 10−6, in which ε is defined as the smallest real number
representable in floating point arithmetic.

We apply these codes to five test problems. The first two are Examples 8.1 and 8.2
described above. The third example, CSTR4, is a benchmark tank reactor model described in
[10]. This system has four states, two inputs, and a prediction horizon of thirty samples. The
fourth example, PEND, is the inverted pendulum system studied by Hauser and Osinga [15].
In this nonlinear model, a moving cart with an inverted pendulum must be steadied by
appropriate changes to the velocity of the cart. The system has two states and one input, and
the horizon length is thirty samples. The fifth example, COPOLY, is a copolymerization
reaction and separation developed by Bindlish [6]. This model has fifteen states and three
inputs, and the prediction horizon is twenty sample times.

Table 3 shows the number of iterations and the run times for NPSOL and Algorithm
FP-SQP applied to each of the five examples. The run times contain limited information.
Because Octave is a interpreted language, there is significant overhead reflected in the CPU
times for the implementation of FP-SQP. Because the quasi-Newton approximation used
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in the NPSOL variants does not exploit the structure of the problem, its runtimes serve
in part to show the importance of exploiting this structure. Finally, because the sensitivity
calculations are so expensive in our implementation, the variant of FP-SQP that used a
finite-difference Hessian required an inordinate amount of time. The use of a more efficient
sensitivity code, or evaluation of the gradients in parallel on a multiprocessor system, could
be used to improve the runtime for this variant.

In normal operation, the initial guess to the optimizer would incorporate the solution to
the NMPC problem at the previous time step, rather than the procedure described at the
end of Section 3, which was used in Table 3. Barring large disturbances, the initial guess
from the previous timepoint would usually be solved in fewer iterations than the iteration
counts shown in Table 3. Since robust behavior in the presence of disturbance is a necessary
property of a practical control system, however, the performance of the algorithm without
prior information on the starting point is germane to our evaluation.

The results for NPSOL show that the original formulation (3.1) (the NPSOLz variant)
is more robust than the one in which the states are eliminated for Example 8.1, because
of the open-loop instability of this problem. We note that the variants of FP-SQP had
little difficulty with this problem, indicating that our stabilized perturbation procedure
described in Section 5 was effective. The NPSOLz variant generally has longer runtimes
that NPSOLu, because the number of variables (and therefore the sizes of the dense matrices
to be factored) is greater. More noteworthy are the observations that NPSOL fails altogether
on Examples 8.1 and COPOLY, and takes appreciably more iterations than the FP-SQP
variants on Examples 8.2 and PEND. We believe that the maintenance of feasibility in
FP-SQP gives it an advantage in robustness over NPSOL.

Table 3 also reveals that different variants of FP-SQP often take a similar number of
iterations, with one notable exception. The partitioned BFGS procedure fails to converge
on Example 8.2. This failure is a result of poor scaling of the Hessian approximation; the
trust region remains inactive, but the steps become smaller and smaller, to the point at which
the Hessian is so badly scaled that no further progress can be made. As noted earlier, the
finite-difference Hessian variant is not competitive, because of the expense of the repeated
sensitivity calculations with DDASAC needed to assemble the approximate Hessian.

In the application to MPC, both efficiency and robustness are necessary. The nonlinear
programming algorithm should be efficient enough to find a reasonable approximate solution
in the limited time available (the time interval between sampling points), while being robust
enough to deal with possibly large disturbances in the system. Given the results of this
section, we can draw the following conclusions.

• It is essential to exploit the stagewise structure of the problem.
• For models of the type used in our examples, which are typical of many industrial models,

methods that require finite-difference calculation of Hessian approximations are generally
too slow.

• Structured quasi-Newton schemes are frequently efficient, but sometimes fail in unpre-
dictable ways.

• The Gauss-Newton choice of the objective Hessian often works well, even when the
objective Hessian is singular.



NONLINEAR MODEL PREDICTIVE CONTROL 117

• An effective practical methodology may be to use the objective Hessian scheme in concert
with the structured quasi-Newton schemes, switching from one scheme to another when
a failure occurs.

Although the algorithms seemed not to have much difficulty identifying the global solu-
tions on these five examples, there may be situations in which we are led to a local solution,
particularly when there is a model-plant mismatch, or after a disturbance. If additional time
is available between sampling points, it may be well spent running these FP-SQP vari-
ants from a number of different initial guesses, and checking that the original computed
minimizer is at least as good as the minimizers obtained from these speculative starting
points.

To gain more insight into the behavior of the update schemes, figure 4 shows the lo-
cal convergence behavior of each algorithm on Example 8.1. We define the relative er-
ror in the objective as err j

def= ( f (z j ) − f (z∗))/ f (z∗), and in figure 4 we plot err j against
err j+1, comparing values of this error on successive iterations. Convergence rates can
be inferred by determining the slope of the line near the solution (the lower left cor-
ner) in this log-log plot. A slope of 2 indicates quadratic convergence, while a slope of
1 indicates linear convergence, It is clear from the figure that the finite-difference Hes-
sian variant yields a quadratic convergence rate. The variants based on the Hessian of
the objective or the sparsified BFGS update produce nearly linear convergence. The two
partitioned quasi-Newton updates appear slight better than linear, but they have some-
what jagged convergence profiles, possibly foreshadowing their occasional failure on other
examples.
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Appendix A: Asymptotic exactness of feasibility-perturbed step

In this section, we show that the feasibility perturbation scheme proposed in Section 5
satisfies the asymptotic exactness condition (2.4). For this purpose, we assume that the
constraints Duk ≤ d are not present (although the proof can be extended to handle this
case).

The key conditions relating the perturbed steps �̃uk , k = 0, 1, . . . , N − 1 and �̃xk ,
k = 1, 2, . . . , N to their original SQP-step counterparts �uk and �xk are (5.2b) and (5.3).
By setting k = 0 in (5.3), we see that

�̃u0 = �u0. (A.1)

To analyze the relationship between the original and perturbed SQP steps, we simplify the
notation as follows:

y = (x1, x2, . . . , xN ), w = (u1, u2, . . . , uN−1), w0 = u0,

c(y, w, w0) = [xk+1 − F(xk, uk)]k=0
N−1, K =


K1 0

K2 0

. . .
...

KN−1 0

 ,

so that (5.3) becomes

�̃w − �w = K (�̃y − �y), (A.2)

while (5.2b) becomes

c(y + �̃y, w + �̃w, w0 + �̃w0) = 0. (A.3)

Because (�y, �w, �w0) is an SQP step, we have

cy(y, w, w0)�y + cw(y, w, w0)�w + cw0 (y, w, w0)�w0 = 0. (A.4)

The feasibility-perturbed step (�̃y, �̃w) satisfies the algebraic conditions (A.2) and (A.3),
which can be viewed a parametrized system of nonlinear equations, with parameter �̃w0 =
�u0. Note that this system is “square;” that is, the number of equations equals the number
of unknowns. Hence, we can obtain the asymptotic exactness result by applying the implicit
function theorem. The Jacobian of this system at (�̃y, �̃w) = (0, 0) is[

cy(y, w, w0) cw(y, w, w0)

K −I

]
, (A.5)
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while its residual at the point (�̃y, �̃w) = (�y, �w) is[
c(y + �y, w + �w, w0 + �w0)

K (�y − �y) − (�w − �w)

]
=

[
cy�y + cw�w + cw0�w0

0

]
+ O(‖(�y, �w, �w0)‖2)

= O(‖(�y, �w, �w0)‖2), (A.6)

where we used smoothness of c and (A.4). If we assume that K is chosen so that the matrix
(A.5) is nonsingular, and if (�y, �w, �w0) is sufficiently small, the implicit function
theorem together with (A.6) implies that

(�y − �̃y, �w − �̃w) = O‖(�y, �w, �w0)‖2.

It follows immediately from (A.1) that

‖(�y, �w, �w0) − (�̃y, �̃w, �̃w0)‖
‖(�y, �w, �w0)‖ = O(‖(�y, �w, �w0)‖) = o(1), (A.7)

as required.
Note that the choice K = 0 (no stabilization) is sufficient to satisfy the assumptions

above, provided that cy(y, w, w0) is nonsingular. However, the nonzero choice of K in
Section 5 is designed to ensure that (A.5) is much better conditioned than cy(y, w, w0), and
thus that the constant in the O(·) term in (A.7) is smaller.

Finally, we show that asymptotic exactness also holds for the ηk components. From the
SQP step condition, we have similarly to (5.5) that

ηk + �ηk = max(G(xk + �xk) − g, 0).

By comparing this expression with (5.5), we obtain

‖�ηk − �̃ηk‖ ≤ ‖G(�xk − �̃xk)‖ = O(‖�xk − �̃xk‖).

Asymptotic exactness in these components now follows immediately from (A.7).
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